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Abstract—The emerging paradigm of wearable and im-
plantable medical sensors has enabled continuous and unob-
trusive monitoring for patients and human subjects, allowing
them to continue their normal activities, and yet be assured
of immediate response in case of a detected health emergency.
Energy harvesting has been proposed as a viable scheme for
powering such sensors as periodic retrievals for battery replace-
ments may not be feasible. The current state of the art in energy
harvesting allows tapping into several physical and naturally
existing sources, such as solar, wind, vibration, RF scavenging,
among others. However, there is a lack of theoretical models
that can predict future consumption and residual availability
of energy in a sensor node equipped with multiple boards that
can simultaneously operate on different types of sources. In this
paper, we propose MAKERS, a Markov model based method
to capture the energy states of such sensors. MAKERS allows
detailed prediction of the probability of a node failing to detect an
event owing to lack of energy, which is a key design consideration
for body sensor sensors.
Index Terms—Body Sensor Networks; Energy Harvesting;

Self-Powered Networks; Markov Processes

I. INTRODUCTION
The number of applications of Body Sensor Networks

(BSNs) on health monitoring is increasing exponentially dur-
ing the last years. Real time wearable sensors and actuators can
collect useful medical data and communicate with off-body
networks [1]. Various application scenarios for BSNs have
been proposed, including sensing vital parameters of patients
suffering from chronic diseases, sports medicine, soldier and
warfighter health monitoring, security, among others.
However, the major obstacle for adoption of BSNs is the

energy supply. Batteries do not provide enough energy to
maintain sensor nodes during long periods and other alter-
natives have to be considered. Energy harvesting (EH) is a
candidate solution to bridge the energy gap; devices enabled
with this technology can harvest energy from a number of
natural and artificial sources for sustained network operation.
While EH has already been demonstrated in BSNs [2] and [3],
environmental conservation and cost savings associated with
fewer battery replacements can be considered as complemen-
tary benefits of this technology.
The goal of EH networks is to ensure continuous network

operation, wherein nodes may regulate their transmission and
harvesting cycles judiciously to meet network constraints.

Specifically, in this paper, we provide a a discrete time model
of a given wearable sensor that senses a desirable parameter
and reports the data to a sink, which is an external device. The
model, called as MAKERS (Multiple boArd marKov modEl
for Energy haRvesting Sensors) integrates the energy model
and the traffic model of the sensor nodes, and allows us to
analyze the overall system to obtain performance metrics.
Only recently has the research community engaged in devel-

oping higher layer network protocols for EH networks. Despite
these strides in the area of protocol design for EH networks,
the development of theoretical models for energy harvesting,
and the prediction of the residual energy state during an
ongoing network operation are still in a nascent stage. In [4],
authors try to analyze the average energy harvested from a
board; in [5] and [6], researchers review some model of energy
harvesting nodes using Markov processes.
Analytical formulations modeling both the energy status of a

node and the traffic model for the case of a single harvesting
source have been previously presented in [7] [8], which we
extend significantly in this paper as follows:

• We develop a Markov model for capturing the energy
states of the sensors equipped with multiple energy har-
vesting boards. These sensors can harvest energy from
the same source, or a combination of different sources
(such as vibration and RF). This presents a general case
for EH BSN design, as a single source cannot be assumed
to be always present during network operation.

• We provide simplified analytical models for predicting
the probability of a sensor running out of energy (hence,
mis-detecting the event, which we call as the event-loss).
Compared to earlier work [7] [8], not only are our models
lower in complexity facilitating on-board computation in
the sensors, but can also be applied for sensors with
multiple harvesting boards.

The rest of this paper is described as follows: In Section II,
we list the general assumptions taken in the model. In Sec-
tion III we develop the MAKERS model. We derive analyti-
cally the event-loss probability in Section IV. In Section V, we
adapt the model to work with multiple energy sources, with
a thorough performance evaluation in Section VI. Finally, in
Section VII, we conclude our work.
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II. PRELIMINARY DISCUSSION AND ASSUMPTIONS
The MAKERS model assumes the case of multiple boards,

capable of harvesting energy from different sources. Before we
present the general model, we develop our analysis under the
constraint that all the M EH boards connected to each sensor
harvest energy from the same source a (e.g. two shoe-mounted
piezoelectrics). Later, we relax this constraint to account for
multiple sources. Note that many of the notations used in this
section are similar to the earlier work in [7].
Each EH board (out of the total M ) can be independently

in the active (i.e., currently harvesting with a rate ρa) or in the
inactive (off) state. Further, the time duration for which the
sensor stays in these two states are exponentially distributed
with the means Ton and Toff , respectively. The probability of
changing from active to inactive is r, and the reverse, is w.
Hence, the overall probability of the EH board to be active is:

µ =
w

r + w
(1)

An event that needs to be sensed and reported occurs with a
probability equal to p. The time between these sensing events,
tp, is exponentially distributed with mean Tp. Each event
consumes a total amount of energy equal to E, which includes
the energy expended nodal processing, as well as transmission
or reception of the data. If there is no event during a time
slot, no energy is consumed (the on-board sensors are passive
components), and battery leakage is negligible.
We note that the required energyE for a given sensing event

may not be completely harvested within a single time unit T .
Thus, multiple slots of duration T may be needed to obtain
sufficient energy within the node, which is given as k = E

ρaT
[8]. Let i ∈ [0,M ] be the number of active boards in a time
slot. Without loss of generality, we assume that 1 ≤ M ≤ k,
whereM is a positive integer and k a positive real number. In
addition, the node incorporates a battery or a super-capacitor,
with a storage capacity equal to (N−1)E. Hence, a full battery
will allow us to run N − 1 events.
The time unit or slot used in this model is T , where

T $ Ton, Toff , Tp. Hence, only one event can occur in a
time slot. As derived earlier in [8], r can be expressed as:
r = T

Ton
e−

t
Ton ≈ T

Ton
. Therefore, the probabilities w and

p are w ≈ T
Toff

and p ≈ T
Tp
, respectively. Note that while

distributions other than the exponential are possible for the
event intervals, the meaning of the variables r, w and p in the
overall system model will remain unchanged.

III. THE MAKERS MODEL

In this section, we develop our proposed analytical model.
Our approach will be to start first with a finer granularity of
a (M + 1)kN states model, that also splits up each inter-
sensing event duration into k sub-states (recall k fractional
harvesting durations give the energy required for the sensing
event). Then, by merging the sub-states every k, we build the
general (M + 1)N model. Finally, we describe how M + 1
merge into 1 and establish a simplified version of the model
with N states, which shall help in the following sections.
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Fig. 1. (M + 1)kN states model, M = 2 and k = 3 centered at state n

The MAKERS general model has (M + 1)N states, a
product of the M +1, from 0 to M active harvesting boards,
and N , which represents the amount of energy left in the
battery in the current time slot. During a time slot, the node
harvests a total amount of energy equal to iρaT and spends E
if an event occurs. Moreover, the energy that is being harvested
during the current time slot can not be used to run an event
that happens in it, unlike the assumptions made in [7]. In other
words, if we have residual energy k−1

k E in the battery, we will
not be able to run an event during this time slot even though
many of the boards are active.

A. The (M + 1)kN states model
Firstly, we focus on how the system changes from one state

to another with respect to the battery life. In figure 1, we
show the Markov chain for the (M +1)kN model in the case
of M = 2 and k = 3, with the transition probabilities from
the states having the same energy n. Each horizontal row of
states corresponds to a number of active boards (hence, we
have three rows for M = 2), while the vertical columns are
energy sub-states, with three columns (k = 3) between the two
residual energy state n and n+1. Let δi,j be the probability of
j harvesters active in the future state if i harvesters are active
in the current one.
For example, if we are in state with residual energy n and

1 active board (2nd row, 4th col.) and an event occurs, the
node will consume E at the same time that harvests 1

3E, so
the future state will have a residual energy equal to n − 2

3 .
Then, 3 possible transitions may occur depending on the future
number of active boards, described by δ1,j . For the states
corresponding to the special cases of the battery completely
full or empty, the transition probabilities are slightly different
to the ones presented, and discussed later in this section.

B. The (M + 1)N states model
To create the simplified (M + 1)N model, every k energy

levels will be merged into one. For example, the first k states
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Fig. 2. (M+1)N states model, M=2, generic k focused in n

in terms of battery life, called 0, 1
k , . . .,

k−1
k ; will be merged in

a single state representing the residual energy 0. From figure
1 we can formally define the transition probabilities pa,b/i,j ,
where a is the current energy level, b the future energy level,
and the number of current and future active boards is given
by i and j, respectively:

• pn,n−1/i,j = pk−i
k δi,j

• pn,n/i,j = [(1 − p)k−i
k + p i

k ]δi,j
• pn,n+1/i,j = (1 − p) i

kδi,j
Note that from an arbitrary state n we can only reach

another state with a battery level that differs by a single unit,
i.e., only states with battery level equal to n−1, n and n+1 are
possible, with other transition probabilities set to 0. Moreover,
if an event happens in state n we will not be able to reach the
state n + 1 (higher energy). Similarly, n − 1 (lower energy)
can only be reached if an event occurs. In figure 2 we can see
the Markov chain for the (M + 1)N model for M = 2 and a
generic k with the transition probabilities from the states with
energy n represented. Again, the two boundary states with
energy level 0 and N − 1 will have different probabilities for
the following cases:

• p0,0/i,j =
k−i
k δi,j

• p0,1/i,j =
i
k δi,j

• pN−1,N−1/i,j = [(1− p) + p i
k ]δi,j

In order to obtain δi,j , i.e., the probability of j harvesters
being active from an earlier total number i, we take into ac-
count all the possible combinations of active-inactive changes
that may happen. We observe that there are two possibilities:
First, when j ≤ i, i − j boards need to change their state

from active to inactive while the rest remain in the same state.
However, many other possibilities can occur because some
other currently active boards can switch to inactive if the same
number of inactive boards switch as well. Similarly, when j
is bigger than i, we have to take into account the different

combinations, all of which have finite occurrence probability.
Owing to space constraints, we directly state the expressions

for δi,j for the above two cases i < j and j ≤ i, which
are obtained through straightforward but tedious analytical
derivations:

• 0 ≤ j ≤ i:

δi,j =
min(M−i,j)

∑

l=0

(

i

j − l

)(

M − i

l

)

(1 − r)j−l

ri−(j−l)(1− w)M−i−lwl (2)

• i < j ≤ M :

δi,j =

min(M−j,i)
∑

l=0

(

i

l

)(

M − i

M − j − l

)

(1 − r)i−l

rl(1− w)M−j−lwj−(i−l) (3)

Once these state transition probabilities are calculated, the
MAKERS model is completely represented. Next, we describe
a simplified version of this model, which shall help in obtain-
ing closed form equations about the performance of the device.

C. Simplified N states model
Here, the state only denote the battery status, from 0 to N−

1, individual boards’ states do not appear in the state definition.
In every energy level, the case of having any arbitrary number
of active boards is considered. Recall that the probability of
a board to be active, given by equation 1, the probability of
having i active boards, φi, is:

φi =

(

M

i

)

µi(1− µ)M−i (4)

The sum of transition probabilities from one energy state
to another, or to the same state (states defined in terms of
energy level alone) remain the same as the general MAKERS
model in Section III-B. Hence, we only take into account the
number of active boards in the current state, which leads us
to a very simple model. We define α, a variable that we use
subsequently, as follows:

α =
M
∑

i=0

i

k
φi (5)

From figure 3, we can express the new transition probabili-
ties, pa,b, where a is the current energy level, b the future one,
as follows:

• pn,n−1 = p(1− α)
• pn,n = (1− p)(1 − α) + pα
• pn,n+1 = (1− p)α

Using this simplified expression, we can now compute the
closed form expression of the probability of event-loss.

IV. PROBABILITY OF EVENT-LOSS
An event is lost (i.e. is not sensed and reported), if a node

lacks sufficient energy E to process it. This probability, PL,
can be found solving the equation system defined by Pπ = P
and

∑N−1
n=0 π(n) = 1, where P is the transition probability
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Fig. 3. Simplified N states model

matrix, π is the vector of the steady probabilities for each state,
from 0 to N − 1; being PL = π(0), the loss probability. The
simplified Markov chain model allows us to derive a closed
form solution analyzing the equilibrium equations for different
states. We begin from the state 0, which can be written as:

π0α = π1p(1− α) (6)

We continue with state 1:

π1(p(1− α) + (1 − p)α) = π0α+ π2p(1− α) (7)

If we replace π0 using equation 6, we find:

π1 =
p(1− α)

(1− p)α
π2 (8)

Hence, for an arbitrary state n, 1 < n < N − 1:

πn(p(1−α)+(1−p)α) = πn−1(1−p)α+πn+1p(1−α) (9)

This time, we analyze it in the case of n = 2:

π2(p(1− α) + (1− p)α) = π1(1− p)α+ π3p(1− α) (10)

Now, we use equation 9 to substitute π1, therefore:

π2 =
p(1− α)

(1− p)α
π3 (11)

Notice that expression for π2 is similar to 8, for π1.
Continuing the analysis for state N − 1:

πN−1p(1− α) = πN−2(1− p)α (12)

Observing the similar pattern as seen in earlier equa-
tions 8, 11 and 12, we express πn+1, 1 ≤ n < N − 1, as:

πn+1 =
(1− p)α

p(1− α)
πn (13)

We define γ as follows, to simplify future equations:

γ =
(1− p)α

p(1− α)
(14)

Combing the equation 13 and the one for state 0, eq. 6, we
rewrite πn, 1 ≤ n ≤ N − 1, as:

πn =
γn

(1− p)
π0 (15)

The last step is to find π0, or PL. We know that the sum of
all the steady state probabilities must be equal to 1. Therefore,
we can re-write 6 as follows:

π0(1 +
∑N−1

n=1
γn

(1−p) ) = 1

π0(1 +
(1−γ)

(1−p)(1−γ)

∑N−1
n=0 γn − 1

(1−p) ) = 1
(16)

We could insert the following form for the series in the
previous equation 16, with the constrain 0 < γ < 1, so 0 <
(1− p)α < p(1− α).

(1 − γ)
N
∑

n=0

γn = 1− γN+1 (17)

Finally, we will have two cases for PL depending on the
constraint stated in the last equation:

PL =







(1−p)(1−γ)
1−γN

−p(1−γ) (1− p)α < p(1− α)
1

1+ 1

1−p

∑N−1

n=1
γn

(1− p)α > p(1− α)
(18)

Returning to the (M + 1)N model with its steady state
probabilities, Πn,i, where n is the energy level and i the
number of active boards for 0 ≤ n ≤ N − 1 and 0 ≤ i ≤ M ,
we compute:

Πn,i = φiπn (19)

We observe that these close forms are much simpler that
the ones presented in [7], which account for the case of k = 1
and only one source of energy harvested.

V. MODEL FOR MANY DIFFERENT SOURCES

In our harvesting model, energy from different sources can
be obtained by the same node. Therefore, we introduce a
modification of MAKERS in order to work with boards with
different features, in terms of average rate of energy harvested
and probabilities to switch their state. We first address a
simplified case of two different sources, to then discuss how
can be extended further.

A. Model for two different sources
For the two source model, following the analysis in Sec-

tion III with the same notation, we have:
• Board A: ρA, rA, wA, µA = wA

rA+wA

• Board B: ρB , rB , wB , µB = wB

rB+wB

We define ρB as ρB = bρA, where b is a real positive
number. We keep the definition of the parameters of the model,
but with one new constraint of b+ 1 ≤ k. Applying this new
model, the parameter α is re-visited, giving a new form that
will let us compute the derived formulae:

α =
1

k
µA(1− µB) +

b

k
(1− µA)µB +

b+ 1

k
µAµB (20)

Here, the first term of the summation represents the case
when only board A is active, the second when only board B is
active, and finally, the third term gives the case for both boards
being active. This expression can be trivially extended using
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different energy harvesting rates ρi for a board i, assuming that
ρi is a multiple of the base rate ρA, i.e., ρi = ψρA, ψ > 0 .
Along the same lines, α is easily adapted to consider all the
cases of each of the combination of boards being in the active
state, as shown in the two board example in eq 20.

VI. RESULTS
Monte-Carlo continuous-time simulations are undertaken in

MATLAB to evaluate our approach. The values for ta, ti and
tp are randomly generated through exponential distributions
with means Ta, Ti and Tp, respectively. The values of these
parameters are mentioned in the individual figures.
Figure 4 compares the event-loss probability obtained from

theory, Eq. 18, with those obtained from the simulations. Every
harvesting board has its own parameters following exponential
distributions, with the same mean time for the state durations,
assuming they have the same features. In this figure, we
compare the results by varying k. Owing to space constraints,
we show the case for M = 2.
Figure 5 compares the probability of event-loss PL, depend-

ing on p, between theory and simulations, for the case of dif-
ferent sources. Simulations points are not plotted for very low
values of p i.e., p < 0.035, as we did not observe a statistically
significant number of missed events, given the simulation time
and the values assumed for the other parameters. However, we
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Fig. 6. Loss Probability (N) for M=2, p=0.02

observe a good match in other scenarios.
Figure 6 presents the PL, eq. 18, versus N , for different

k, w and r. Our model could identify battery specifications,
depending on desired loss probability we want to achieve and
the other device-specific parameters of the system.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented MAKERS, a Markov based
model for multiple-sources energy harvesting nodes in WSNs.
It considers both the number of the harvesting boards attached
to the node, as well as the remaining energy of the battery
to determine the state of the node. A closed form solution
for the event-loss probability has been derived. The results
of our simulations are in good agreement with the derived
closed for these parameters, thereby verifying the accuracy
of our approach. Through our prediction models, the network
designer can set the requirements for sensor nodes with many
EH-boards, such as the battery capacity. Our future work will
be focused on practical comparisons with real sensors with
multiple boards with the predictions of the MAKERS model.
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