
Reducing Processing Latency with a Heterogeneous
FPGA-Processor Framework

Jonathon Pendlum, Miriam Leeser, Kaushik Chowdhury
Dept. of Electrical and Computer Engineering

Northeastern University, Boston MA

Email: {jpendlum, mel}@coe.neu.edu, krc@ece.neu.edu

Abstract—Both Xilinx and Altera have released SoCs that
tightly couple programmable logic with a dual core Cortex A9
ARM processor. These SoCs show promise in accelerating appli-
cations that exploit both the FPGA’s parallel processing architec-
ture and the CPU’s sequential processing. For example, before
accessing a wireless channel, a cognitive radio does spectrum
sensing to detect channel occupancy and then makes a decision
based on spectrum policies. Spectrum sensing maps well to FPGA
fabric, while spectrum decision can be implemented with a CPU.
Both algorithms are highly sensitive to latency as a faster decision
improves spectrum utilization. This paper introduces CRASH:
Cognitive Radio Accelerated with Software and Hardware – a
new software and programmable logic framework for Xilinx’s
Zynq SoC targeting cognitive radio. We implement spectrum
sensing and the spectrum decision in three configurations: both
algorithms in the FPGA, both in software only, and spectrum
sensing on the FPGA and spectrum decision on the CPU. We
measure the end-to-end latency to detect and acquire unoccupied
spectrum for these configurations. Results show that CRASH can
successfully partition algorithms between FPGA and CPU and
reduce processing latency.

Keywords—FPGA; Heterogeneous Computing; Data Latency;
Software radio; Spectrum Sensing; Cognitive Radio; System on
Chip

I. INTRODUCTION

Many applications employ a mix of algorithms that require
both sequential and parallel processing. Previous research
has found that a heterogeneous computing system [1], [2]
can reduce computation time by partitioning algorithms to
processing units (CPU, GPU, or FPGA) best suited for the
particular workload. System-on-Chips from Xilinx and Altera
with both FPGA fabric and ARM processors on a single die
show promise in accelerating applications like cognitive radio
that utilize both parallel and sequential processing but have
tight timing requirements.

Sect. III presents the design of CRASH: Cognitive Radio
Accelerated with Software and Hardware, a framework that
addresses these challenges on Xilinx’s Zynq SoC. CRASH
provides the capability to partition designs between processing
blocks in the FPGA fabric and user programs running in Linux
on the ARM processors.

CRASH targets accelerating the key enabling functions of
cognitive radio, an emerging field concerned with alleviating
the congested wireless spectrum by using alternate licensed
frequencies. Since most cognitive radio functions, including
spectrum sensing and spectrum decision, are implanted in soft-
ware, inherent parallel structures that exist in their execution

chains can be easily exploited on FPGAs. Faster spectrum
sensing allows the cognitive radio to react quickly to changing
spectrum availability. Also, spectrum decision algorithms must
have a fast response time to prevent adverse interference with
licensed users. The CRASH framework on the Xilinx Zynq
SoC enables effective implementation of both these kinds of
processing.

This paper makes the following contributions:
• Introduction of the CRASH framework that exploits the
Xilinx Zynq’s heterogeneous computing characteristics to
enable low latency processing with both FPGA and CPU
resources.
• Implementation of spectrum sensing and spectrum decision
algorithms with CRASH.
• Quantification of the sources of latency, both with and
without CRASH.

II. BACKGROUND

A. Heterogeneous FPGA-CPU Devices

Xilinx and Altera have both released System-on-chips, the
Zynq SoC [3] and the Cyclone V SoC [4], that pair pro-
grammable logic with a dual core ARM Cortex A9 processor.
Both families of devices have similar capabilities in processor
speed and FPGA resources. Their processor and programmable
logic are interconnected via ARM’s Advanced Microcontroller
Bus Architecture (AMBA) using the Advanced eXtensible
Interface (AXI) [5]; an interface designed for high through-
put transfers between the CPU and peripheral devices. The
CRASH framework is implemented on the Xilinx Zynq SoC.
CRASH uses AXI ACP and a General Purpose AXI Port
for communication between the ARM processors and the
programmable logic.

B. Cognitive Radio

1) Software Functions and Hardware Platforms: The wire-
less spectrum is increasingly crowded as more devices gain
wireless connectivity. Cognitive radios seek to opportunisti-
cally use licensed frequencies without interfering with the
licensed or primary users of these frequency bands. This goal
is achieved by first measuring the activity on the licensed
channels, called as spectrum sensing, followed by selecting
which spectrum to use among the available options, called as
spectrum decision.

While various time-domain and frequency domain-based
spectrum sensing techniques exist, we focus on the latter,

2014 IEEE 22nd International Symposium on Field-Programmable Custom Computing Machines

978-1-4799-5111-6/14 $31.00 © 2014 IEEE

DOI 10.1109/.11

17

2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines

978-1-4799-5111-6/14 $31.00 © 2014 IEEE

DOI 10.1109/FCCM.2014.13

17

where a Fast Fourier Transform (FFT) is applied on the sample
data stream from the radio front-end [6]. This allows a fine-
grained analysis of spectrum usage, as compared to simple
energy measurements undertaken across a channel bandwidth.

Spectrum decision may use spectrum sensing data, network
topology and routing metrics, adaptive machine learning algo-
rithms, and regulatory policies to decide which vacant channel
should be ultimately used. Thus, this step can occur within the
front end using a simple metric like least used channel or a
complex high level policy that runs at the host computer.

Software defined radios serve as the building blocks of cog-
nitive radios, by moving as much signal processing as possible
from fixed hardware to software or reconfigurable hardware. In
this study, we specifically describe our implementation using
the Universal Software Radio Peripheral (USRP) [7] family
of software defined radios. The USRP contains the transmitter
and receiver circuitry along with a small FPGA to send and
receive sample data over Ethernet to the host computer. This
host performs the bulk of the processing through a software
framework such as GNU Radio.

2) Latency in Cognitive Radios: Spectrum sensing and the
spectrum decision involve finite computational time, and there
are additional delays introduced by the Ethernet communica-
tion between the USRP and the host computer. Any delay
in the spectrum decision process can cause poor spectrum
utilization and possible interference with other users.

C. The CRUSH Platform

The USRP uses the TCP/IP protocol over Ethernet which
adds additional header information to the data stream. This
overhead can add up to milliseconds of time. CRUSH [8]
reduces the interface latency with the USRP with a direct high
speed serial interface to a FPGA board using a custom circuit
board and a standard MICTOR cable. It allows the USRP
to stream its Analog to Digital Converter (ADC) samples
at full rate with no overhead, enabling spectrum sensing
with the FPGA fabric. CRASH extends CRUSH by adding
the capability to transmit as well as receive, and by adding
the capability to stream Digital to Analog Converter (DAC)
samples at full rate.

D. Related Work

Other works have targeted the Zynq for heterogeneous
computing. [9] pairs the USRP with the Zynq to make a
software defined radio. They port the SDR library Iris to the
ARM processor, and present methods to identify blocks for
potential acceleration in the Zynq’s programmable logic.

III. CRASH FRAMEWORK

CRASH runs under Linux on the ARM processor and uses
a kernel device driver to facilitate communication between
user programs and FPGA processing blocks. Fig. 1 shows an
overview of the CRASH framework.

HDL. CRASH allows the user to place processing blocks
in the FPGA fabric, connected to an common AXI-Stream
interconnect that can support up to 16 processing blocks in
a full crossbar. Each processing block can transfer data at
up to 1.2 GB/sec (150MHz x 64 bits). All blocks in the

Fig. 1. The CRASH Framework

FPGA fabric operate at 150 MHz. Each block’s interface
includes both the AXI port and an interface to memory mapped
I/O control and status registers, which are accessible by the
processor via a dedicated AXI slave port. Control and status
registers have an access time in Linux on the order of 100
– 200 ns. The Direct Memory Access (DMA) block shuttles
data from other blocks to the CPU over the AXI Accelerator
Coherency Port (ACP) bus. Transfers over AXI ACP can
directly read and write to the processor cache which maintains
cache coherency and avoids the latency of RAM access. User
programs in the ARM processor setup DMA transfers between
the programmable logic and CPU by configuring the DMA
block’s control registers. Once configured, the DMA block will
initiate memory reads and writes without further intervention.

CRASH sends and receives sample data with the USRP via
the USRP DDR interface block. The USRP’s ADC and DAC
both sample at 100 million-samples/sec and use complex data.
Since CRASH runs at a different clock rate than the USRP, this
block includes logic and FIFOs to synchronize data between
the clock domains, as well as programmable decimation and
interpolation filters for increasing or reducing the sample rate
of transmit and receive samples. Optional fixed to floating
point data conversion is also implemented here.

The Spectrum Sensing block implements spectrum sensing
and spectrum decision in single precision floating point. All
processing in this block is in single precision floating point.
Spectrum sensing uses a variable size FFT followed by magni-
tude calculation for frequency-domain based energy detection.
The spectrum decision algorithm consists of comparing the
output of spectrum sensing against a threshold. If the magni-
tude falls below the threshold, the block communicates to the
processor that a transmit decision has been reach.

Table 1 shows CRASH’s FPGA resource utilization on
a Zynq 7045, including spectrum sensing and USRP DDR
interface blocks.

1818

TABLE I. FPGA RESOURCE UTILIZATION OF THE CRASH
FRAMEWORK ON THE ZYNQ 7045

Resource Used Available Percent Used

Slice Registers 38,270 437,200 8%

Slice LUTs 29,772 218,600 13%

DSP48s 216 900 24%

Software. In CRASH, the ARM processors run Linux.
Linux based libraries such as GNU Radio can therefore be
easily run. Linux employs memory protection with virtual
memory, preventing unprivileged user programs from directly
accessing specific memory address. However, user programs
need such addressing capability to access the processing blocks
embedded in the FPGA fabric. CRASH uses a kernel driver
for communication between the user program and the FPGA
processing blocks. After kernel driver initialization, user pro-
grams can access control and status registers as an array in
memory. The driver provides contiguous memory buffers for
DMA transfers and handles interrupts from the FPGA fabric.

Hardware. The hardware used for this paper was: a Xilinx
ZC706 development board, USRP N210 used as the radio front
end, and the high speed serial interface to the USRP (Fig. 2).

Fig. 2. Hardware used with the CRASH Framework

IV. EXPERIMENTS: EVALUATING PROCESSING LATENCY

WITH CRASH

We implemented the Spectrum Sensing and Spectrum
Decision algorithms in three configurations:

Exp. 1: Spectrum Sensing and Spectrum Decision in
FPGA Fabric. In this experiment, the USRP DDR Interface
block receives samples and routes them via the AXI-Stream
interconnect to the Spectrum Sensing block, which performs
both spectrum sensing and the spectrum decision. When the
block determines the spectrum is unoccupied, it triggers the
USRP DDR Interface block to send a buffered transmit wave-
form to the USRP.

Exp. 2: Spectrum Sensing in FPGA Fabric, Spectrum
Decision in ARM. Here, sample data enters CRASH through
the USRP DDR Interface block and is transferred to the
Spectrum Sensing Block. However, the output of the FFT
and magnitude calculation pipeline is transferred to the ARM
processor via the DMA block for thresholding. This moves
spectrum decision to the ARM processor. After it is determined
that the spectrum is unoccupied, the ARM processor triggers
the USRP DDR Interface block to transmit the waveform.

Exp. 3: Spectrum Sensing and Spectrum Decision in
ARM. Here the FPGA fabric simply interfaces with the
USRP and performs filtering. This experiment provides data to
compare the processing time of spectrum sensing on the ARM
processor versus the FPGA fabric.

A. Measuring Processing Latency

We decided to treat the system as a black box and measure
the turnaround time between providing a spectrum hole and
the cognitive radio transmitting, as shown in the oscilloscope
display in Fig. 3. The turn around time has these qualities: 1.
It is a “black box” measurement independent of the experi-
ment configuration. 2. It is the aggregation of many latencies
including delay through the USRP, transferring data from the
USRP to CRASH, filtering in the USRP DDR Interface block,
spectrum sensing, the spectrum decision, and transferring data
from the FPGA fabric to the ARM processors. 3. It is a
valuable indicator of responsiveness of the cognitive radio.
Turnaround times of 10-30 μs indicates the system could meet
802.11 MAC layer timing requirements – a desirable trait in
a cognitive radio.

Fig. 3. Measurement of Turnaround Time

B. Measurement of Individual Latencies in CRASH

Three methods are used to breakdown the turnaround
time into the individual component latencies: Clock counting,
program timers, and RX/TX loopback. Clock counting uses
Xilinx’s Chipscope to observe internal FPGA signals and count
clock cycles of events within the FPGA fabric. . For processing
on the ARM, system timers are used to measuring execution
time. To determine the USRP delay, the receive sample data is
looped back to the transmit path and measured using the same
technique as the overall system delay.

V. RESULTS

For each of the three configurations, turnaround times were
measured while varying the FFT size. Fig. 4 plots the average
turnaround times. The standard deviation is an artifact of
the employed spectrum sensing algorithm: frequency-domain
energy detection. The signal generator in our experiment
transmits the RF pulse independently of CRASH’s FFT sample
window. Therefore, the sensed spectrum energy will vary
depending on when CRASH began buffering samples relative
to the RF pulse.

As shown in Fig. 4, as FFT size increases so does the
turnaround time. This agrees with theory, as the FFT execution
time grows at O(logN) in the parallel implementation and

1919

64 128 256 512 1024 2048 4096
1

10

100

1,000

FFT Size

A
v
er
a
g
e
T
u
rn
a
ro
u
n
d
T
im

e
(μ
s)

Exp. 1
Exp. 2
Exp. 3
Std. Dev.

Fig. 4. Average Turnaround Time for each Experiment

O(N log(N)) with sequential processing. Second, the latency
increases as less work is performed in the FPGA. Experiment
1 has the best performance – 120% faster than experiment 2
and 300-400% faster than experiment 3. Offloading spectrum
sensing to the FPGA fabric (experiment 2) versus executing
both algorithms in software (experiment 3) is approximately
120% faster. Finally, the larger turnaround time in the third
configuration relative to the other two illustrates the per-
formance degradation when performing spectrum sensing in
software versus reconfigurable hardware.

TABLE II. AVERAGE LATENCY OF INDIVIDUAL COMPONENTS FOR

EACH EXPERIMENT

Latency Component Exp. 1 Exp. 2 Exp. 3

USRP RX & TX Paths 0.6 μs 0.6 μs 0.6 μs

USRP - CRASH Interface 0.7 μs 0.7 μs 0.7 μs

Spectrum Sensing

64 Point FFT 2.6 μs 2.5 μs 13 μs

4096 Point FFT 149 μs 149 μs 747 μs

Spectrum Decision

64 Point FFT 0.8 μs 3.3 μs 2.0 μs

4096 Point FFT 28 μs 203 μs 121 μs

FPGA-CPU DMA Delay

64 Point FFT N/A 2.3 μs 2.2 μs

4096 Point FFT N/A 34 μs 41 μs

Total

64 Point FFT 4.7 μs 9.4 μs 19 μs

4096 Point FFT 178 μs 387 μs 910 μs

CRASH’s Effect on Latency. Table II presents a break-
down of the individual component latencies. The USRP RX
& TX Path delays show a lower bound of approximately
600 ns for turnaround time – where the RF input to the
USRP is looped back for immediate transmission. For the three
experiments, the majority of the overall delay (60-95%) comes
from spectrum sensing and spectrum decision. Conversely, in
experiments 2 and 3 the DMA transfers only contributes 5-
25%. This is a favorable outcome as we want to maximize the
time performing computations and minimize the time spent
transferring data. The performance of experiment 3 suffers
the most compared to the first two. Even with the use of
FFTW with optimizations, spectrum sensing in experiment 3
contributes an overwhelming 70-80% of the overall latency.
This exemplifies the need to accelerate certain functions in the
FPGA fabric. By offloading spectrum sensing, the time spent

spectrum sensing is reduced to 25-40%.

CRASH’s Performance as a Cognitive Radio A
turnaround time of less than 30 μs is desirable to meet 802.11
MAC layer timing requirements [11]. From Fig. 4, we can
see that all three experiments can meet that goal for a FFT
size of 64, but only experiments 1 and experiment 2 can
meet that goal for FFT sizes of 128 and 256. This shows
that a cognitive radio utilizing the CRASH framework could
implement a sophisticated spectrum decision algorithm in the
ARM processor and still make strict timing requirements.

VI. CONCLUSIONS AND FUTURE WORK

CRASH is a versatile heterogeneous computing framework
for the Xilinx Zynq SoC. Our experiments show that CRASH
can successfully segment two cognitive radio algorithms,
spectrum sensing and the spectrum decision, between the
Zynq’s FPGA fabric and ARM processors. More importantly,
turnaround times specified in the 802.11 specification can be
met while providing the designer with flexibility in implement-
ing important processing components.

The CRASH framework is generic enough to be used in
many applications requiring a mix of FPGA acceleration and
CPU processing. In the future we plan to exploit the platform’s
low latency processing capabilities to study Cognitive Radio
algorithms when operating with other 802.11 wireless devices.
We also plan to expand the platform to support easily moving
processing blocks between software and reconfigurable hard-
ware, possibly incorporating run-time reconfiguration.

REFERENCES

[1] M. Reichenbach, R. Seidler, and D. Fey, “Heterogeneous computer
architectures: An image processing pipeline for optical metrology,” in
Reconfigurable Computing and FPGAs (ReConFig). IEEE, 2012, pp.
1–8.

[2] P. Meng, M. Jacobsen, and R. Kastner, “FPGA-GPU-CPU heterogenous
architecture for real-time cardiac physiological optical mapping,” in
Field-Programmable Technology (FPT). IEEE, 2012, pp. 37–42.

[3] Zynq-7000 all programmable soc overview. Available at:
http://www.xilinx.com/support/documentation/data sheets/
ds190-Zynq-7000-Overview.pdf.

[4] Cyclone V device overview. Available at: http://www.altera.com/
literature/hb/cyclone-v/cv 51001.pdf.

[5] Xilinx axi reference guide. Available at: http://www.xilinx.com/support/
documentation/ip documentation/ug761 axi reference guide.pdf.

[6] T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for
cognitive radio applications,” Communications Surveys Tutorials, IEEE,
vol. 11, no. 1, pp. 116–130, 2009.

[7] Universal software radio peripheral n series product overview. Available
at: http://www.ettus.com/content/files/kb/Ettus Networked Series.pdf.

[8] G. Eichinger, K. Chowdhury, and M. Leeser, “Crush: Cognitive radio
universal software hardware,” in Field Programmable Logic and Appli-
cations (FPL), 2012 22nd International Conference on. IEEE, 2012,
pp. 26–32.

[9] J. van de Belt, P. D. Sutton, and L. E. Doyle, “Accelerating software
radio: Iris on the zynq soc,” in Very Large Scale Integration (VLSI-SoC).
IEEE, 2013, pp. 294–295.

[10] A. Filgueras, E. Gil, C. Alvarez, D. Jimenez, X. Martorell, J. Langer,
and J. Noguera, “Heterogeneous tasking on smp/fpga socs: The case
of ompss and the zynq,” in Very Large Scale Integration (VLSI-SoC).
IEEE, 2013, pp. 290–291.

[11] I. C. S. L. M. S. Committee et al., “Wireless lan medium access control
(mac) and physical layer (phy) specifications,” 2012.

2020

