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Abstract—The broadcast nature of the wireless spectrum
necessarily implies the possibility of eavesdropping, as well as
malicious modification of waveforms through inexpensive, widely
available software-defined radios (SDRs). This paper proposes a
method for covert wireless communications that can be used to
authenticate a device or exchange private information between
devices. Our approach, called Impairment Shift Keying (ISK),
introduces small yet controlled modifications to the radio trans-
mitter hardware, which distorts regular standards-compliant
waveforms, such as WiFi, with only 1% increase in bit error rate.
A deep convolutional neural network (CNN) is trained to learn
these overlay signal variations, which serves as a low-overhead
classifier returning a binary 0 or 1 per detected impairment
pattern. By mapping device-specific injected impairment patterns
to signal variations, ISK validates device IDs with only few in-
phase (I) and quadrature (Q) samples. Furthermore, through an
experimental testbed, ISK is shown to be resilient to channel and
SNR level variations, allowing a throughput of 93-1500 Kbps on
the covert channel that is undetected by other receivers.

I. INTRODUCTION

The broadcast nature of wireless channel makes communi-
cation vulnerable to eavesdropping, message modification or
device impersonation. Given recent instances of malicious ac-
tions [1], we aim to add an overlay layer that can transfer con-
fidential information, and also ensure robustness to software-
based ID-spoofing. In classical network architecture, informa-
tion is encrypted using cryptographic techniques. However,
with this approach, the devices themselves must be capable of
performing computationally involved operations, which may
impact deployment in low-cost sensors [2], [3]. Secondly, even
if information cannot be decoded, the device MAC ID can be
forged to impersonate a different device. These observations
motivate our desire for realizing a new paradigm of completely
covert communication, with many potential applications in the
space of consumer IoT and military operations.

• Limitations of existing approaches: Some prior work
on covert channel design leverages prior knowledge of the
underlying wireless standard. For example, [4] embeds infor-
mation in the unused padding bits in the physical layer data
units of WiFi frames. Other works create covert channels by
encoding information on top of unused subcarriers [5], [6], the
training sequences of WiFi [7], and the cyclic prefix of WiFi
OFDM symbols [8]. The authors in [9] create side channel by
changing the spatial position of almost blank subframes within
a standard LTE frame, whereas a concurrent data and energy
transmission is proposed in [10]. The main challenge in these
approaches are that they are tailored to specific protocols (i.e.,
WiFi, Bluetooth), and thus not generalizable for new/emerging

standards. Moreover, all of them require modifications to the
protocol with additional transmitter-side signal processing.

When specific modulation schemes for the transmitted
waveform are known a priori, the constellation diagram can
be distorted in a controlled manner. In [11], the authors hide
symbols by replacing existing constellation points with addi-
tional “dirty” constellation points. A pseudo-noise asymmetric
shift keying (PN-ASK) modulation scheme is proposed in [12],
where overlay symbols are added to an existing waveform
by shifting the original symbol amplitudes. In [13], authors
encode covert information by introducing an additional fading-
like effect using a filter at the transmitter. While the above
works are not dependent on a specific standard, they do require
pre-decided in-phase/quadrature (IQ) constellation features
(such as, the modulation must be m-PSK). These methods are
also dependent on channel conditions as amplitude changes
within constellation points cannot be reliably predicted or
replicated in future unseen channel conditions.

To address the limitations of existing work, this paper
proposes a novel technique of embedding a covert side-
channel in a regular signal transmission in a method called
impairment shift keying (ISK). The core concept of ISK is
simple yet effective: it injects a series of so called impairments
at the transmitter’s side, such as DC offset and IQ imbalance,
which in turn introduces controlled changes in the resulting
transmitted signal constellation. Note that ISK can work for
any protocol supporting m-PSK or m-QAM based modulation
scheme, giving greater flexibility over [12]. Our approach
ensures that general receivers that hear the modified signal
do not observe any discernible increase in the BER owing to
the constellation distortion. Additionally, while our approach
is agnostic of the wireless standard, we demonstrate results on
802.11a WiFi links in an experimental testbed.

• ISK approach: ISK leverages tiny process imperfections
within mass-produced transceivers. Wireless circuits present
within the analog components (e.g., digital-to-analog convert-
ers, band-pass filters, frequency mixers and power amplifiers)
that compose a typical transmission chain have different tol-
erances and exhibit age-related performance degradations that
compose a unique signature of a device. Fig. 1 indicates an
example scenario of two impairments, namely IQ imbalance
and non-linear distortion of the amplifier for a 16-QAM con-
stellation. The red circles indicate the ideal constellation points
formed by the I (x-axis) and Q (y-axis) components of a given
sample, and the black crosses indicate actual constellation
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Figure 1: Effect of RF impairments a) IQ Imbalance b) Amplifier
Non-linear Distortion on 16-QAM modulated symbols.

points that are shifted. These shifts form a unique signature
and have been exploited as fingerprints for radio identifica-
tion [14]. ISK takes this one step forward: it leverages them
to secretly embed covert information within WiFi frames by
first minimizing the device imperfections through calibration
and then intentionally re-introducing the artificial impairments
on the transmitter through USRP Hardware Driver (UHD)
software API commands. At a high level, these impairments
introduce similar effects as a fading channel. Standard re-
ceivers and wireless standards are designed to cope up with
such variations in the signal, and hence their performance
does not significantly decrease when additional information
is embedded through impairments.

In ISK, the receiver first determines a set of feasible impair-
ments, such that when they are introduced at the transmitter
side, the BER observed by a regular (here, WiFi) receiver is not
impacted. The transmitter then selects pairwise impairments
{Ik, Il} as a feasible set and then maps a binary covert
data to the chosen impairment tuple as: {0 → Ik, 1 → Il}.
These imbalances and offsets are then intentionally introduced
at the transmitter. In order to thwart spoofing attacks from
an adversary that may learn these impairments, the receiver
changes the pairwise impairments after every successful packet
transmission.

• Using ISK with deep learning for covert channel:
Deep learning techniques have shown great promise in image
and speech identification problems, and are steadily gaining
traction in applications within the wireless domain [15]. As
such, ISK leverages a convolutional neural network (CNN)
architecture for device fingerprinting [14], [16]. Other works
have used different deep CNN for modulation [17] and proto-
col identification [18]. We train the CNN a priori to detect the
choice of the impairment made at the transmitter side from the
received IQ samples alone, even when every other parameter
is the same, including the same MAC ID. ISK requires the
receiver to predict a sequence of impairments –introduced
intentionally– at the transmitter, which provides the basis of
the covert channel.

We summarize the main contributions of this paper:
• First, we study the different causes of transmitter-side

signatures, and visualize their impact on the IQ constellation
space. We identify specific features that are amenable to fine
tuning by the receiver feedback using software APIs.

Figure 2: Image signal to quantify IQ imbalance through IMRR and
its effect on demodulated data for 2 IMRR values on 2 radios under
2 channel conditions.

• Then, we identify the feasible set of impairments that
are then trained using a CNN. This is a critical step towards
a ‘train once deploy anywhere’ paradigm that allows robust
learning and accurate prediction under realistic channel vari-
ations, near-perfect accuracy.
• Finally, we implement ISK on USRP X310 radios. Ex-

perimental results reveal that ISK achieves a throughput of 93
Kbps at 15dB SNR level, which can be improved up to 1500
Kbps under specific SNR conditions.

II. SELECTION AND LEARNING OF FEASIBLE
IMPAIRMENTS

In this section, we discuss the role of impairments in
generating unique pattern in demodulated data, and show that
the impairments (i) are independent of the environment, and
(ii) do not apply only in context of a specific transmitter-
receiver pair (as opposed to, say, relative phase offset). In
ISK, training process is designed so that the CNN can classify
the unique patterns generated by these controlled impairments,
irrespective of the radio that incorporates them.

A. SDRs and selection of feasible impairments

We first explain the use of self-calibration utilities provided
by National Instruments (the manufacturer of the SDRs used
in this paper) to introduce controlled impairments. We focus
only on IQ imbalance owing to space constraints, though
our approach can be trivially extended for combination of
other impairments, such as DC offset. IQ imbalance causes
interference in the signal by generating its image at a mirror
frequency. It is quantified by measuring the power of the
image with respect to the desired signal, also called as Image
Rejection Ratio (IMRR), as shown in Fig. 2.

While many theoretical time and frequency domain
methods allow compensation for the IQ imbalance,
we use the Ettus-provided UHD calibration utility
uhd_cal_tx_iq_balance. At runtime, the UHD
software automatically applies the correction, typically a
single complex factor, to the transmit chain of the RF
daughterboard. We modify the calibration utility to record the
correction factor (CF) and corresponding IMRR.



Figure 3: Our proposed CNN architecture with 8 convolution 1D and 2 fully connected layers.

ISK intentionally introduces IQ imbalance for the desired
IMRR in the transmitter SDR by selecting the correspond-
ing CF from a pre-recorded table and applies them using
the set_iq_balance GNU radio function. The level of
intentional introduction of IQ imbalance is controlled so that
the signal acquires unique characteristics that are robust to
channel- and device-variations. To demonstrate this, consider
the demodulated signals captured from two USRP X310 SDRs
over air and cable in Fig. 2. The left plot shows a unique
pattern of demodulated data, when ISK sets IQ imbalance with
IMRR of −80dB by selecting CF of −0.45−0.09j in the same
transmitter radio for two channels, i.e., cable and air. The right
plot shows demodulated data obtained when ISK introduces
IQ imbalance of IMRR -78dB using CF −0.27 − 0.63j for
two different radios under the same channel conditions. Thus,
we note that adding the same level of IQ imbalance results in
virtually the same pattern in each case, ensuring repeatability
and robustness under channel- and device-variations.

Among many IMRR values of IQ imbalance, ISK auto-
matically selects feasible impairment values that produce IQ
sample constellation points that are significantly different from
each other, while minimizing the influence on the BER for the
transmitter. This step allows ISK to pre-train on impairment
patterns, which are shown in Fig. 2 to be both device and
channel agnostic. We refer the steps proposed in Sec. V-B of
our earlier work [14] to identify feasible set of impairments.

B. CNN classifier using transmitter-side impairments
ISK uses a deep Convolutional Neural Network (CNN) to

identify an unique pattern of demodulated IQ symbols. We use
one-dimensional (1D) convolutions to capture the local tempo-
ral relations within IQ symbols, which carry subtle identifying
information of impairments. Since we rely on only those
hardware impairments that do not vary over time, their effect
on the transmitted signal can be identified in different local
portions of the entire received waveforms. Indeed, 1D CNNs
are particularly effective at these kind of tasks, i.e., identifying
features from fixed-length segments of the complete dataset
when the location of such features within the segment are not
highly correlated. ISK operates 1D convolutions along the time
axis and uses I and Q data as two distinct channels of the 1D
sequence.

The main building block of the proposed CNN model
consists of two 1D-convolution layers, each with 128 filters of
size 7 for the first layer and 5 for the second one. These two

convolutional layers are followed by a Max Pooling layer, used
to provide (a) shift invariance and (b) reduce the dimensional-
ity of the output feature maps of the preceding convolution
layer, while retaining the most important information. We
then stack 4 of such building blocks, followed by a set of
2 Fully Connected (FC) layers, composed of 256 and 128
neurons respectively, and a Softmax classifier layer. In order
to overcome overfitting, we set the dropout rate to 50% at the
FC layers. For training, we choose a sliding window approach
to partition the input signals into overlapping sequence of
samples, referred as slices. This enhances the shift invariance
of the features learned by the CNN. Note that all IQ samples
for training are collected over the cable, i.e., we remove the
influence of wireless channel so that the CNN can learn the
pattern generated solely by hardware impairments.

ISK deliberately introduces random noise by modifying the
original data to augment the initial dataset before it is given
as input to the classifier. Since low SNR of the received
samples results in scattering around the ideal constellation
point location within the IQ plane, the noise is modeled as
a Gaussian variable.

III. DESIGN OF COVERT CHANNEL

The ISK scheme (i) encodes covert information by mapping
binary data to pairwise impairments that are intentionally in-
jected in the WiFi transmitter; (ii) authenticates the transmitter
by matching stored and received copies of a random binary
pseudo-noise identification key; and (iii) prevents ID-spoofing
by changing the identification key and pairwise impairments
after every successful packet transmission.

A. ISK’s phase-wise operation

First, we discuss an overview of ISK organized into three
successive phases.
Phase-1: Authentication via a random PN binary sequence:
An authorized transmitter-receiver pair uses a linear-feedback
shift register (LFSR) to produce a sequence of pseudo-random
binary numbers known at both sides of the link. This can be
achieved by exchanging a starting seed for the LFSR prior to
deployment in the field, so that the transmitter and receiver
operate in a lock-step fashion. Alternately, in real-time, the
receiver can share the coefficients of the LFSR through a
secure channel. Thus, the receiver uses this sequence as an
‘identification key’ to authenticate the transmitter. Consider



Table I: Pairwise Impairments

Index 0 → Ik 0 → Il

0 I1 I4
1 I4 I3

...
...

...

7 I2 I1

Figure 4: Linear Feedback Shift
Register (LFSR)

‘0011110’ as the LFSR output sequence that will be used for
the rest of this discussion.

Phase-2: Covert data transmission through Impairment
Shift Keying (ISK): The set of feasible impairments I =
{I1, I2, . . . , IK} is chosen so that any element of this set,
when applied at the transmitter side, does not degrade the BER
of the transmitted waveform beyond a pre-set threshold. The
measured SNR at the receiver plays a critical role in selecting
this set, and hence, is created at the receiver side. The receiver
first determines the upper bound on the impairment level, say
IS by measuring the SNR for a given transmitter that just
satisfies the BER constraint. After determining IS , the receiver
first randomizes the ordered set of allowed impairments,
[I1, I2, ..., IS], where BERI1 < BERI2 < · · · < BERIS ,
and then chooses pairwise permutations from this set.

Thus, it creates a subset of tuples {Ik, Il} from the set of
all possible impairments, wherein there is a direct mapping of
the binary representation as follows: {0 → Ik, 1 → Il}. This
mapping is sent to the transmitter and then utilized at the latter
to alter the transmitted waveform of each bit, by modifying
the symbol constellation through the chosen impairment. This
intentional ‘distortion’ of the symbol constellation may appear
as an arbitrary channel effect to a potential eavesdropper,
though it is anticipated at the authorized receiver, as it shares
the same mapping table with the transmitter. After every
successful packet transmission, the transmitter and receiver
change the pair of impairments in a synchronized fashion to
further ensure secrecy and resilience to playback attacks.

For example, assume that the transmitter supports a maxi-
mum impairment level up to I4. The receiver first randomizes
the ordered set [I1, I2, I3, I4] and finds the 2V = 8 permutation
pairs listed in Table I, where V =

⌊
log2(

4P2)
⌋
= 3. Out of

total permutations of SP2, the receiver selects the first 2V

permutations, where V =
⌊
log2(

SP2)
⌋

to generate a table.
Each row in the table is a pair of impairments {Ik, Il} to
be used to represent a binary 0 and 1, respectively, and this
selection is constant for the entire ISK packet transmission.

Note that each transmitter can have a different table due
to different upper bounds on impairment level IS , and due
to randomized permutations giving the pairwise impairments.
This further enhances the security of our covert communica-
tion, while guaranteeing the BER constraint for the regular
WiFi transmitter radio.

Each ISK encoded packet has three fields: ‘Preamble’,
‘ID’ and ‘Covert Data’. ISK uses a fixed-length bi-
nary ‘Preamble’ sequence for synchronization, whereas the
‘identification key’ obtained in Phase-1 is used as ‘ID’. The
receiver uses ‘ID’ to identify and authenticate the sender of

the packet. ‘Covert Data’ is the last field in the packet
and carries a secret information intended for the target re-
ceiver. For each binary value 0 or 1 in the ISK packet, the
transmitter maps the impairments as: {0 → Ik, 1 → Il} for
a fixed number of baseband symbols. ‘Preamble’ is always
conveyed with a pair of fixed impairments {I1, I2}, where
BERI1 , BERI2 < BERIj for j > 2.

After every successful packet transmission, the transmitter
selects the first V bits of ‘ID’, which is the binary sequence
output of the PN generator towards selecting the next pair of
impairments. For e.g., for the ID ‘0011110’, the transmitter
selects {I4, I3} as the next pair of impairments from Table
I based on the first V = 3 bits of ‘ID’. The receiver also
chooses the same pair of impairments to decode the packet.

Phase 3: ISK packet decoding at the target receiver:
The receiver uses ISK’s trained CNN classifier described in
Sec. II-B to determine the sequence of impairments used
by the transmitter. A CNN classifier uses an input slice
of demodulated symbols to get the prediction probabilities
over all feasible impairments. Since the receiver knows the
pair of impairments used by each transmitter radio, it uses
prediction probabilities of those specific impairments {Ik, Il}.
The receiver first synchronizes with impairment pair {I1, I2}.
It later uses {Ik, Il} to decode ‘ID’ and ‘Covert Data’. For
authentication, the receiver extracts the binary sequence within
‘ID’ and matches with the binary sequence output from its
own PN generator specific to that particular transmitter radio.
After successful identification, the receiver decodes the covert
message in the same way.

After successful identification and data decoding (commu-
nicated implicitly through a regular link layer ACK), both the
transmitter and receiver generate a new binary sequence to
create a different identification key. This in turn changes the
pair of impairments that will distort the transmitter-signals,
as described in Phase 2. ISK allows the impairment-based
fingerprinting to scale to thousands of radios requiring a
minimum of just two impairments. Additionally, switching the
identification key and the pair of impairments on a per-packet
basis makes it hard for the adversary to learn the pattern and
perform spoofing attack. Thus, we claim ISK based covert
communication is scalable as well as secure.

B. ISK throughput analysis

This section studies the throughput of ISK’s covert channel,
defined as the number of bits correctly decoded per unit time.
First, we provide calculation of maximum throughput for IEEE
OFDM based 802.11 a/g/n/ac standards.

Consider N as the FFT size of an OFDM system and Nd

is the number of subcarriers used for data communication. In
IEEE 802.11 a/g/n/ac, N = 64, whereas Nd = 48 in 802.11
a/g and Nd = 52 in 802.11 n/ac. Each data subcarrier is in-
dependently modulated with M -QAM or M -PSK modulation
scheme. If the receiver sampling rate is Rs Msps, the useful
symbol duration is tu = N

Rs
. If tg is the Guard Interval (GI),

then single ODFM symbol duration is t = tu + tg . Since ISK



Slice Size Tmax in Kbps
802.11a/g

Tmax in Kbps
802.11n/ac

128 93.75 101.56
64 187.5 203.12
32 375 406.25
16 750 812.5
8 1500 1625

Table II: Maximum throughput of ISK’s covert channel for different
slice size
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Figure 5: Classification accuracy (a) over air in-indoor environment;
(b) over air in open recreation area

modulates each binary data in nslice baseband data symbols,
ISK’s maximum throughput is Tmax =

Nd

t×nslice
bps.

To illustrate this, consider 802.11a WiFi OFDM system
with N = 64, Nd = 48, Rs = 20 Msps. Therefore, useful
symbol duration tu =

20×106

64 = 3.2µs. Assuming GI interval
tg = 0.8µs, then OFDM symbol duration is t = 4µs. If ISK
modulates a binary data in nslice = 128 number of baseband
symbols, the maximum throughput is Tmax =

48
4×10−6×128

=

93.75 Kbps. Table II shows the maximum throughput of ISK
for different slice size for two types of WiFi standards.

The observed throughput, however, will depend on the
symbol error rate (SER) and can be calculated as Tobs =
Tmax × SER.

IV. PERFORMANCE EVALUATION

In this section, we present the performance of ISK showing:
(1) the impairments classification accuracy is not influenced
by variation in wireless channel conditions (Sec. IV-A); (2)
it achieves a throughput of ∼ 93 Kbps for SNR> 15dB with
potential increase up to 1500 Kbps without compromising on
the BER performance of a WiFi receiver (Sec. IV-B).
Experiment setup: We first identify a set of 16 impairments
which generates unique patterns as discussed in Sec. II-A.
Next, we collect demodulated data from WiFi packets that are
transmitted over a cable from a single radio, after introducing
these impairments through GNU Radio API. We replicate
and augment demodulated data by adding a random Gaussian
noise of power -13dB. Finally, we train the classifier with
the augmented dataset using the same CNN architecture as
described in Sec. II-B.

A. Classification accuracy with different channel conditions

We test the performance of the trained CNN classifier with
NI X310 SDRs introducing 16 impairments. To do so, we
first collect samples from the radio for all 16 impairments
through cable, one pre-set impairment at a time. ISK easily

distinguishes impairments that are intentionally introduced by
achieving a classification accuracy of 99.76%. This indicates
that our pre-trained classifier is able to identify the hardware
impairments accurately.

Next, we evaluate the performance of ISK with data col-
lected over the wireless channel. To show robustness to
variation in channel conditions, we conduct the experiments in
two different locations: (1) our lab, which represents a typical
in-indoor environment and (2) a more open recreation area
which has fewer reflections, with Tx-Rx separation distance
of 8ft in both locations. The confusion matrix of classification
accuracy is shown in Fig. 5a and Fig. 5b respectively. In
general, in both environments ISK can achieve higher than
99.5% accuracy, which proves that the unique patterns created
by the impairments can be detected even with random noise.

B. Covert communication using ISK

We evaluate symbol-error-rate (SER) and throughput per-
formance of our proposed ISK based covert channel with
the data collected over the air for X310 radio in-indoor
environment. In our experimental evaluation, the radio sup-
ports all 16 impairments satisfying the BER constraint of
10−4. For the transmitter radio, a receiver first randomizes
these 16 impairments and then finds 16P2 = 240 different
permutations. It selects the first 2V = 128 permutations where
V =

⌊
(log2(

16P2)
⌋
= 7 to generate a table where each entry

is a pair of impairments to be used to convey binary 0 or 1.
We assume the receiver shares this table along with a unique
generator polynomial, initial seed and a initial impairment
pair to be used over a secure feedback channel. We perform
10, 000 trials to evaluate the performance. In each trial, the
transmitter generates ISK packet with binary ‘Preamble’
sequence of length 17, a PN binary sequence (‘ID’) of length
31 and random ‘Covert Data’ of 100 bits. The transmitter
uses a shared generator polynomial and random initial seed to
produce a PN binary sequence, that is exactly identical to a
sequence generated by the receiver.

The transmitter refers its pairwise impairment table to map
each binary value 0 or 1 in the ISK encoded packet to the
impairment as: {0 → Ik, 1 → Il} for a nslice number of
baseband symbols. We generate a new pairwise impairments
table in each trial. We choose the value of nslice same as
the input slice length used by ISK’ CNN classifier. The
receiver uses trained classifier described in Sec. II-B to obtain
the sequence of impairments, which are then demapped to
a binary sequence. After detecting start of the packet by
correlating with Preamble sequence, the receiver extracts
the binary sequence in ID and matches with the output of its
own PN generator to authenticate the transmitter. Only after
successful authentication, the receiver decodes the Covert
Data. In each trial, we repeat the process 10 times, where
the transmitter creates a new ISK packet and changes its ID
by generating new PN binary sequence.

We evaluate the SER of covert channel against normalized
signal-to-noise (SNR) ratio Es

N0
with the data collected in-

indoor location, where we fixed the energy per symbol to
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Figure 6: (a) Symbol error rate as a function of SNR Es

N0
for slice size

of 128 b) Covert channel throughput as a function Es

N0
for slice size of

128 c) ISK’s CNN classification accuracy as a function of slice size
d) Throughput as a function slice size nslice for fixed Es

N0
= 15dB.

Es = 1J and varied N0 from 0 to 30dB. Results were averaged
over 10000 independent trials. As shown in Fig. 6a, ISK
achieves SER < 10−4 for SNR> 25dB. To improve the
SER, we propose a simple repetition technique, in which the
transmitter introduces the same impairment for nrep × nslice
number of baseband symbols, where nrep is the number of
repetitions. With nrep = 3, the SER drops significantly.

Fig. 6b depicts the throughput of ISK’s covert channel
as a function of Es

N0
. With increase in Es

N0
, the achieved

throughput also increases as expected. The throughput of
repetition scheme is simply calculated as Trep = T

nrep
. Al-

though throughput achieved with repetition scheme is very
low compared to no repetition, the scheme performs well in
low SNR region.

Fig. 6c shows ISK’s classification accuracy for different
length of input slice size. This is to show that input of a
smaller slice size can enable communication if we introduce
artificial impairments. Fig. 6d shows the throughput for fixed
Es

N0
= 15dB as a function of slice size nslice. It is evident

that ISK can increase throughput by using shorter slice size
nslice. However, with increase in number of impairments, the
classification accuracy of identifying correct impairment will
drop, motivating the need of longer slice size. Therefore, the
choice of slice size is determined by the number of feasible
impairments. Even though, communication requires only two
impairments, the more number of pairwise impairments will
lead to better security. Therefore, there is a tradeoff between
the desired throughput and security while selecting the nslice.

V. CONCLUSIONS

We have presented ISK, a technique that embeds a covert
information in a regular WiFi transmission by introducing

controlled impairments to the radio transmitter. We have
proposed deep CNN architecture that is trained to decode
binary 0 or 1 acting as a low-overhead classifier. We have
extensively evaluated ISK’s performance on a experimental
testbed of X310 radios. Experimental results have shown that
ISK achieves throughput of ∼ 93 Kbps for SNR > 15dB that
can be improved up to 1500 Kbps with smaller slice sizes.
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