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Abstract—The paper answers a fundamental question: can the
accuracy of Wi-Fi based localization be significantly increased
by fusing information from alternate sources like LTE signals
and magnetometers, collected through software defined radios
and smart-devices? Further, it aims to eliminate dependency
of well established localization techniques on only Wi-Fi access
point (AP) positions, and instead, proposes a diversity-leveraging
architecture called as the Wireless Locator (Wi-LO) framework.
Wi-LO is a client-server paradigm for indoor localization that
achieves precision by pattern-matching the collected signal sam-
ples with a priori references for each transmitter type, thus
giving a stand-alone decision for these diverse sensing modes.
The novelty of the paper is fusing these decision outcomes and
resolving mis-matches (for e.g., Wi-Fi and LTE suggest different
locations) in a seamless manner, and also identifying the best
source to use at each location based on its spatial resolution.
Wi-Lo is rigorously evaluated on a test-bed, with the proposed
scheme of combining Wi-Fi, LTE and magnetometer performing
better localization than the classical Wi-Fi-only approach in both
urban (+8%) and rural (+25%) scenarios.

I. INTRODUCTION

Location-Aware Services (LAS) based on GPS have become

extremely popular thanks to increasing adoption of smart

devices. An exciting domain within LAS is identifying virtual

boundaries, so called geofencing within indoor environments.

From business (e.g., proximity advertisements and in-store

analytics) to emergency communications (e.g., building evacu-

ation), several scenarios may leverage indoor LAS. As a result,

many techniques for indoor localization has been proposed,

highly heterogeneous in terms of technologies, complexity and

cost, as summarized in [1].

Recently, Wi-Fi fingerprinting techniques based on the

received signal strength (RSS) have gained considerable atten-

tion, justified by the lack of reliable GPS indoors but also by

the high density of access points (APs). Radio fingerprinting

algorithms typically work in offline or online phases [2] [3].

During the offline phase, a radio-frequency (RF) map of the

target environment is built by sensing the Wi-Fi channels at

pre-decided reference points (RPs). During the online phase,

the RSS signal is sampled at the unknown location, and then

compared with the stored data in order to infer the current

user location. Well-known localization systems like RADAR

[4] and FreeLoc [5] are based on Wi-Fi radio fingerprinting.

There have been additional efforts to speed up the offline phase

through crowdsensing [6] [7] [8] and using pattern matching

schemes, often employing machine learning (ML) [9] [10].

However, most of these localization techniques are highly

dependent on specific topologies and on the location of the

APs [11] [12]: a limiting situation on rural or suburban areas

that typically have low density of APs.

Our proposed approach is motivated by the capabilities

within software defined radios and smart-devices that are

equipped with multiple radio interfaces and several embedded

sensors, like the accelerometer and the gyroscope. The latter

can be used to detect movement and then track the user’s

trajectory [13] [14]. Multiple radio technologies (e.g., LTE,

Wi-Fi and Bluetooth Low Energy or BLE) have been used

to create richer RF maps, demonstrated previously for static

localization [15] [16]. In this paper, we use this second

approach as our starting point, i.e., we study whether radio

fingerprinting techniques based on the concurrent utilization

of all the radio interfaces typically present in a smart device

(WiFi, LTE and BLE), in addition to the magnetometer (MAG)

can enhance the localization accuracy in both high- and low-

density of APs.

There are three main contributions in this paper:

• First, we investigate the impact of AP density and of the

training parameters, such as number of samples and RPs on the

overall localization performance. We use extensive simulations

over varying network topologies, and then average the results

over thousands of trials in order to infer general properties.

• Second, we describe a client-server paradigm called WIreless

LOcator (Wi-LO) that extracts radio fingerprints from Wi-Fi,

LTE, BLE and MAG signal samples, applies pattern matching

individually on each data source, and then merges the results

to detect the user location. As opposed to the data-fusion

scheme proposed in [17] [21], our scheme measures the signals

from each source in isolation, and then combines the hard

decisions. As a result, Wi-LO is extensible in the sense that it

can be augmented with different fingerprint patterns unique to

emerging wireless technologies. In the present implementation,

Wi-LO aims at quantifying the signal features at each RP

and for each source of samples. This is used to formulate

the metrics that can appropriately weight the sources during

the fusion process.

• Third, we evaluate the performance of three different pattern

matching and three fusion schemes, and we show that the

selective weighting and fusion in Wi-LO can enhance the
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accuracy of localization compared to pure Wi-Fi in both urban

(+8%) and rural (+25%) scenarios.

The rest of the paper is structured as follows. Section II

reviews the state of art of indoor localization techniques,

focusing on data-fusion approaches. Section III illustrates the

performance of Wi-Fi radio fingerprinting by a simulation

study. Section IV describes the architecture of the Wi-LO

software. Section V evaluates different pattern matching and

fusion algorithms on a real test-bed. Conclusions follow in

Section VI.

II. RELATED WORKS

Wi-Fi-based fingerprinting is a well-known indoor localiza-

tion technique, used by RADAR [4] and FreeLoc [5]. Despite

the intuitive conceptual idea, its implementation may present

several challenges, as surveyed in [2] [3]. One major issue in

simplistic extension to other radio interfaces is the dependence

of the localization accuracy on specific hardwares and wireless

standards, even if they are incorporated in today’s commercial

smart devices [2].

Current research on radio fingerprinting addresses both

the phases of radio map training and matching. [6] and [7]

investigate the utilization of crowdsensing for the RF map

building in the offline phase. Similarly, [8] proposes automatic

update strategies by using static mobile devices. In [11],

Welch’s t-test is used to detect significant changes in the Wi-Fi

links for triggering a map update. The pattern matching algo-

rithm responsible for comparing the stored and sensed radio

fingerprints is a key function in the online phase. [9] compares

several different machine learning algorithms, and shows that

the K∗ algorithm gives the best performance in terms of

localization accuracy. [10] compares classical Bayesian-based

matching schemes with non Bayesian approaches based on the

Dempster-Shafer framework.

Data-fusion schemes combine Wi-Fi radio fingerprints with

external data provided by the additional hardware available on

modern smartphones. We distinguish among three classes of

data-fusion approaches: multimedia enhanced, multi-sensors

and multi-radio. An example of first class is the WAIPO

system [18], which combines Wi-Fi and MAG signals along

with a photo-matching feature using the camera of the smart

device. Multi-sensor approaches exploit the readings of the

accelerometer/gyroscope in order to track the trajectory of

mobile users [13] [14]. Our paper belongs to multi-radio

approach, as it performs data-fusion of radio fingerprints

gathered by heterogeneous wireless technologies. A multi-

modal localization system integrating Wi-Fi and digital TV

measurements is described in [15]. In [16], the authors show

that the positioning error can be decreased by a factor equal

to three by using both LTE and Wi-Fi radio fingerprints. In

[17], MAG measurements are analyzed in order to create a

sparse RF map where field anomalies are identified as location-

specific signatures. The most similar works to our paper are

[20] and [21], since they combine all the radio interfaces

available on smart devices (Wi-Fi, BLE and LTE). In [20],

three localization techniques are designed based on a cascade
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Fig. 1. The CDF of the number of Wi-Fi APs in the downtown area of
Bologna, Italy.

approach. In [21] the heterogeneous radio fingerprints are

merged by using kernel matrices. The proposed Wi-LO system

provides the following novelties compared to the existing lit-

erature: (i) it treats each source in isolation, so that it is highly

customizable based on smart device hardware characteristics

and user’s preference; (ii) it considers the different spatial

resolution provided by different sources (e.g. LTE and Wi-

Fi), while gaining maximum benefit from the presence of

identifiable signatures on each RF map.

III. WI-FI ONLY LOCALIZATION

In this Section, we study the performance of Wi-Fi radio

fingerprinting techniques and motivate the need of multi-radio

data-fusion approaches such as [19]. Most indoor localization

schemes are based on Wi-Fi considering the significant den-

sity of Wi-Fi APs in highly populated urban environments.

Figure 1 shows the Cumulative Distribution Function (CDF)

of the number of APs in the city-center of Bologna, Italy,

which constitutes a densely inhabited area (around 2400

inhabitants/Km2). We averaged more than 1200 spectrum mea-

surements performed at different locations in the city center.

We notice that the number of APs typically exceeds 15 units

at each location. While this practical study shows that Wi-Fi

AP deployments are widespread, few works have analyzed

in depth the impact of AP density on the performance of

radio fingerprinting techniques, and the relationship between

the parameters used during the offline phase (e.g. number

of samples) that impacts localization accuracy. While several

test-beds and experimental works have been reported in the

literature, these results are strongly tied to the scenario and to

the specific location of the APs. Differently from theoretical

frameworks like [11] [12], we undertake a simulation study

with a large number of topologies. More specifically, we model

in NS2 a 3D square urban environment of side equal to Peside

meters 1. At the center, we place a target square building

1We use the notation Pvar to indicate the parameter var which can be
tuned during the online/offline phase.
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of Pnfloor floors and of side equal to Ptside. Each floor of

the target building is divided into square rooms of side equal

to Prside. We then consider a random deployments of Pnap

APs over the scenario. The APs can be located within the

target building or within any other neighboring buildings. The

software developed for this simulation study allows modeling

both the offline phase (i.e. map construction) and online phase

(i.e. user detection). During the offline phase, each floor of the

target building is divided into a grid of square cells, denoted

as Reference Points (RPs). Let Prpside be the cell size, i.e.

the RP granularity. Moreover, let Prp be the set of RPs in the

target building. Thus, we get: |Prp| = �( Ptside

Prpside
)�2·Pnfloor. At

each RP i, Poff samples of the Wi-Fi spectrum are obtained.

Let |AP off
i | be the set of APs detected at RP i. For each AP

j ∈ AP off
i , we store the following information:

Roff
ij =< BSSIDoff

j , RSSoff
ij , μoff

ij , σoff
ij > (1)

where BSSIDoff
j is the MAC address of AP j, RSSoff

ij

is the set of RSS samples, μoff
ij and σoff

ij are respectively

the mean and variance values over RSSoff
ij . The RSSoff

ij

values are obtained by extending the path loss model in

[22], and by taking into account the attenuation caused by

the distance, by indoor/outdoor walls, by internal floors and

the correlated shadowing at different locations, modeled as

a Gaussian variable with zero mean. Let Pσ denote the

maximum shadowing variance over all the RPs.

During the online phase, we randomly generate the user

position u within the target building; we then scan the Wi-

Fi frequency for Pon iterations, and build the correspond-

ing set |AP on
u |. Similar to (1), we store a record Ron

j =<
BSSIDon

j , RSSon
j , μon

j , σon
j >, ∀j ∈ AP on

u . The localization

process is performed by a pattern matching algorithm, which

compares the records Roff
ij and Ron

j , and determines the

RP (denoted as RP ∗) corresponding to the expected user

location. In this study, we consider the following pattern-

matching algorithms, which have been also implemented in

Wi-LO (Section IV) and evaluated on test-beds (Section V):

• BSSID Based (BB). The algorithm computes a score

function S(i) for each RP i defined as the number of APs

that have been detected in both AP on
u and AP off

i , i.e.

S(i) = |AP off
i ∩AP on

u |. The RP with the highest score

is returned as the expected location, i.e. RP ∗ = argmax
S(i), ∀i ∈ Prp. If there are multiple RPs with equal

highest score, a random one is picked and returned.

• Nearest Neighbour (NN). The algorithm computes a

score function S(i) for each RP i, defined as the Eu-

clidean distance between average RSS values at RP i and

at u, for all the APs that have been detected in both AP on
u

and AP off
i , i.e.:

S(i) =

√∑
j

(μoff
ij − μon

j )2, ∀j ∈ AP off
i ∩AP on

u (2)

Moreover, if |AP off
i | > |AP on

u |, we add to each S(i) an

extra penalty accounting for the BSSID-based error, i.e.

S(i) = S(i) + (|AP off
i | − |AP on

u |) · γ, with γ being a

constant value. The RP with the lowest error is returned

as the expected location, i.e. RP ∗ = argmin S(i), ∀i ∈
Prp.

• Likelihood Estimator (LE).The algorithm evaluates the

Gaussian Likelihood L(i, j) of the RSS samples for each

AP j that have been detected in both AP on
u and AP off

i .

The value of L(i, j) is computed as follows:

L(i, j) = Π
|RSSon

u |
l=0

1√
2πσoff

ij

· exp
{

(RSSon
u [l]− μoff

ij )
2

2 · σoff
ij

}

(3)

Then, the algorithm computes a score function S(i) for

each RP i, summing up all the L(i, j) values for the APs j
detected in both AP on

u and AP off
i , i.e. S(i) =

∑
L(i, j)

∀j ∈ AP off
i ∩ AP on

u . An extra penalty accounting for

the BSSID-based error is introduced, as for the NN algo-

rithm. The RP with the highest score is returned as the

expected location, i.e. RP ∗ = argmax S(i), ∀i ∈ Prp.

• Welch’s t-test (WT). The algorithm computes the

Welch’s t-test for each AP j that is detected in both

AP on
u and AP off

i . The WT allows taking into account

the similarity between the mean values, i.e. μoff
ij and

μon
j , when computed over populations of different sizes,

i.e. Pon �= Poff . We evaluate the null hypothesis H0(j)
where average RSS values are equal for AP j, i.e.

μoff
ij ≈ μon

j , ∀j ∈ AP off
i ∩AP on

u and i ∈ Prp. Then, the

algorithm computes a score function S(i) for each RP i,
defined as the number of APs satisfying the null hypothe-

sis, i.e. S(i) = |{j|H0(j) = true ∀j ∈ AP off
i ∩AP on

u }|.
Finally, the RP with the highest score is returned as the

expected location, i.e. RP ∗ = argmax S(i), ∀i ∈ Prp.

For space reasons, we report only a subset of the simulation re-

sults with the following setting of the parameters: Pnside=150

meters, Ptside=50 meters, Prside=5 meters, Prpside=5 meters,

Pnfloors=5, Pσ=6db. We consider an attenuation factor of

12dbm for each traversed outside wall, and 5dbm per each

indoor wall. Each data point is computed by averaging the

results of 10000 runs. Within each run, we randomly generate

the user position, the locations of the Pnap APs within the

scenario, and the shadowing variance (Pi,σ < Pσ) at each RP

i. We restrict the analysis to a 2D plane, i.e. we assume the

knowledge of the floor where the user is currently located.

This is in line with recent studies that show the elevation

from floor-level can be efficiently detected by the barometer

sensor without Wi-Fi radio fingerprinting [23]. Figure 2(a)

depicts the accuracy of RP detection, by varying the density of

APs in the scenario, for the four pattern matching algorithms

previously introduced. We can see that: (i) for Pnap < 10,

the RP detection accuracy is lower than 40% for all the

algorithms; (ii) the WT approach slightly outperforms the NN

and LE; (iii) the accuracy increases by adding more RPs till

a maximum value, after which adding more APs does not

produce significant gains. This aspects is also confirmed by

the heat-map of Figure 2(b), showing the average localization
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Fig. 2. Impact of radio fingerprinting parameters on the localization performance: AP density (Figure 2(a)), RP granularity (Figure 2(b)) and number of
detection samples (Figure 2(c)).

error (color of the cell) as a function of Pnap (x-axis) and

the RP granularity Prpside (y-axis), for the WT algorithm.

Reducing the Prpside reduces the average error, at the cost of

increasing the complexity of the training phase. At the same

time, fixing a specific Prpside value, there exists an optimal

minimum P ∗nap guaranteeing also the minimum localization

error. Finally, Figure 2(c) investigates the relationship between

the length of the duration phase (Pon on the x-axis) and the

localization error of the WT algorithm, for different values

of Pσ . Increasing the detection time (Pon) can reduce the

localization error, although adding to the localization lag.

Moreover, it might not always be possible in presence of user’s

mobility. The optimal value of Pon is clearly affected by the

propagation conditions, i.e. by Pσ . At the same time, given

Pσ , there is an optimal minimum detection time P ∗on, such

that increasing it does not improve the gain achieved in terms

of localization precision.

IV. SOFTWARE ARCHITECTURE

Based on our simulation study, we describe data-fusion

techniques that aim at coping with the variable density of Wi-

Fi APs at a given location. To this aim, we built a software

platform for indoor localization, called Wireless Locator (Wi-

LO), whose client-server architecture is depicted in Figure 3.

Wi-LO supports four different input sources of radio fin-

gerprinting: Wi-Fi, LTE, BLE, MAG, while the barometer

might be optionally employed to detect the user floor. The

choice of which input source to consider for the map building

during the offline phase, and which for localization during

the online phase, is left to the user through the GUI of the

mobile app. Let Ioff and Ion be the sets of selected input

sources, with Ion ⊆ Ioff . More in details, the client software

(implemented for Android devices) is in charge of performing

measurements at specific RPs, and transmitting them to the

server; here, the RF maps are aggregated and stored in a

NO-SQL Mongo-DB database. Moreover, the server side is in

charge of performing the localization process, by running the

selected pattern matching algorithms on each selected source

in Ion, then running the fusion scheme, and finally returning

Fig. 3. The Wi-LO software architecture.

the expected RP ∗ to the client. Again, pattern matching and

fusion algorithms are decided by the user through the Android

application running on the smart device. All the localization

algorithms have been implemented in PHP, by making large

utilization of class inheritance and interfaces, in order to

maximize the modularity and extendibility of the tool. During

the online phase, the client performs the following actions:

1) It gathers Wi-Fi and/or LTE and/or BLE and/or MAG

samples for Td seconds, based on the sources selected

in Ion. For each detected Wi-Fi AP and BLE beacon, it

builds the record from (1). For BLE and MAG measure-

ments, a single record is built without the BSSID field.

For the tri-axial MAG, a synthesized magnitude value

[24] is extracted, at a fixed frequency (1 value/sec).

2) Optionally, it also detects the current floor by sampling

the barometer sensor, and applying the technique de-

scribed in [23].

3) It then transmits the gathered data records to the server,

together with the floor location and the previous esti-
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mated RP (in case of trajectory tracking).

The server software processes the input and computes the

expected RP ∗ as follows:

1) First, it builds an initial set of candidate RPs Cini, based

on the floor location and the previous estimated RP, if

available. Otherwise, Cini = Prp.

2) Then, it applies the selected pattern matching algorithm

on each source. At present, we implemented the four

algorithms described in Section III. Each algorithm as-

signs a score Sk(i) to each RP i ∈ C and data source k.

Next, the ε-Best RP Selection module is executed, which

computes the maximum score Max(Sk), and populates

the candidate set Ck for source k ∈ Ion with all the

RPs including a relative score difference with Max(Sk)

lower than ε, i.e. Ck = { RP j s.t.|Sk(i)−Max(Sk)
Max(Sk)

| ≤ ε}.
We also define the confidence metric of source k (de-

noted as κ(k)) as the inverse of the cardinality of the

candidate set, i.e. κ(k) = 1
|Ck| .

3) If a single source k has been selected, than no data

fusion is applied, and the RP with score equal to

Max(Sk) is returned. Otherwise, we merge the results

of the candidate sets Ck. Let Uk(i) be the identity

function returning 1 if RP i ∈ Ck, 0 otherwise. The

Fusion Module of Figure 3 works by computing a Fusion

Score to each RP i ∈ Prp, based on this Equation:

FS(i) =

|Ion|∑
k=1

Uk(i) · ωk(i) (4)

where 0 ≤ ωk(i) ≤ 1 is the weight applied to the

decision of source k, and depends on the specific fusion

scheme selected for localization.

4) Finally, the Best Selection Module returns RP ∗ maxi-

mizing the FS function. A random selection is applied

in case of multiple choices for the maximum value.

In this paper, we focus on a specific novel fusion-scheme,

called diversity-based scheme, which is evaluated and com-

pared against two competing approaches, namely the majority

and weight-based algorithms. We briefly illustrate the three

fusion schemes in the following:

Diversity-based Approach. The rationale behind this algo-

rithm is that different sources might experience different spa-

tial resolution during the offline/online phases. For instance,

it is well known that LTE RSS samples at different indoor

locations can exhibit smaller differences than Wi-Fi RSS

samples: moreover, on several smart devices, the granularity

in the LTE RSS can be limited to a small range of values [15].

At the same time, there is the chance to observe significant

signal diversities which can be exploited as location-specific

signatures. Based on such intuition, we compute a Diversity

Metric value (DM) between each couple of RPs of the sce-

nario, for each source. The DMk(i, j) value between RP i
and j is defined as follows:

DMk(i, j) =
|Sk(i)− Sk(j)|

|max(Sk(i), Sk(j)))| (5)

where Sk(i) is the score function applied by the selected

pattern matching algorithm (i.e. BB, NN, LE, WT) on source k
and for RP i. Details on how the Sk(·) values are computed for

each specific pattern matching algorithm have been provided

in Section III. We just remark here that the DM metric: (i) is

agnostic of the specific pattern matching algorithm in use, (ii)
assumes values in range [0,1]. We then define the Diversity

Metric of RP i on source k, i.e. DMk(i), as the average

DM(i, j) considering all the other RPs j of the scenario, i.e.:

DMk(i) =
1

|Prp|
Pnrp∑

j=1,i �=j

DMk(i, j) (6)

Then, we compare the DM values of different sources, and we

assign the ωk(i) values proportionally to DMk(i), i.e.:

ωk(i) =
DMk(i)∑|Ion|
l=1 DMl(i)

(7)

The ωk(i) values are pre-computed at the end of the training

phase, and stored within the database on the server, together

with the RF maps. In Section V, we provide further insights

about the behaviour of the Diversity-based scheme, by plotting

the ωk(i) values at different locations of a test-bed scenario.

Majority-based. This scheme does not introduce any differ-

ence between the sources, i.e. ωk(i) = 1 ∀k ∈ Ion. As a result,

the RP ∗ indicated by more sources as the expected location

is returned to the user.

Confidence-based. This scheme assigns weights to each

source based on the confidence computed by the ε-Best

Selection Module, i.e. ωk(i) = κ(k) ∀k ∈ Ion. The rationale

here is that the sources exhibiting less uncertainty about the

user’s localization should gain more trust.

V. EXPERIMENTAL RESULTS

In this section, we provide experimental results on the in-

door localization capabilities provided by Wi-LO. We consider

two buildings for testing, located at two different geographical

areas, and characterized by different AP densities: (i) an urban-

scenario, where the number of APs detected at each RP is

always between the 15 and 25 units; and a (i) a rural-scenario,

where the number of APs detected at each RP is always

below the 3 units. In both the scenarios, the indoor area is

approximatively equal to 225 m2. Although supported by Wi-

LO, we did not consider BLE among the localization sources

used for our tests. This is because we were interested in

understanding the possibility to localize an user relaying on

the infrastructures available on site (e.g. external APs and

cellular network), without any cost for the set-up; clearly,

the deployments of BLE beacons within the target scenario

might increase the system performance. For each scenario

and algorithm, we executed over 30 tests, and then computed

the average accuracy in detecting the RP where the user is

located. Figures 4(a), 4(b) and 4(c) refer to the configuration

with Prpside=5 meters. More specifically, Figure 4(a) and 4(b)

show the average accuracy of different sources and pattern

matching algorithms, for the urban (Figure 4(a)) and rural
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Fig. 4. The RP detection accuracy for the urban and rural scenarios are shown in Figures 4(a) and 4(b), respectively. The weight distribution at different RPs
for the Diversity-based fusion scheme is depicted in Figure 4(c).
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Fig. 5. The RP detection accuracy for different scenarios, RP granularity and fusion schemes.

scenarios (Figure 4(b)). Both the figures confirm that Wi-Fi

radio fingerprinting is -on average- more accurate than the

LTE and MAG equivalents, although its performance strongly

decreases from the urban to the rural scenario (while the LTE

and MAG are slightly affected). At the same time, the figure

shows that the NN pattern matching scheme outperforms the

LE and WT, for all sources and in both scenarios. This can

be explained in several ways: (i) for LTE and MAG sources,

the RSS variance at a specific RP might not be significant,

since the signal might present no fluctuations over time (LTE),

or fluctuations might be limited in magnitude (MAG); (ii)
for the Wi-Fi sources, the assumption of normality of signal

distribution may not completely hold at each RP, or a long

number of samples should be gathered during the online phase.

Next, we investigate the possible gain achieved by data fusion

approaches combining hard decisions of Wi-Fi, MAG and

LTE radio fingerprinting schemes. Figure 5 shows the average

localization accuracy for the three fusion schemes described

in Section IV for the urban and rural scenarios, where we

also vary the RP granularity (Prpside=5 meters and Prpside=2

meters). All the fusion schemes employ the NN as pattern

matching scheme on each source, since it has been shown to

provide the best performance in both scenarios. In Figure 5,

we also report the accuracy of the Wi-Fi radio fingerprinting

scheme without data fusion (basically the Wi-Fi NN bars

of Figures 4(a) and 4(b)). It is remarkable to notice that

the Majority and Granularity-based fusion scheme perform

similarly, and in most cases worse than the pure Wi-Fi scheme;

this can be justified since we have previously shown that -on

average- the MAG and LTE sources are less accurate than the

Wi-Fi. We can conclude that merging the hard decisions of

different sources does not lead automatically to a performance

increase. At the same time, Figure 5 shows that the Diversity-

based approach overcomes both the pure Wi-Fi and the other

fusion schemes, in all the configurations tested. This is due

to Equation 7, which accounts for the utilization of Wi-Fi,

MAG and LTE sources based on their effectively ability to

recognize a radio fingerprint at a specific location. To this

aim, Figure 4(c) depicts the values of ωk for the Urban

scenario and Prpside=5, at different RPs (on the x-axis). We

can see that the weights ωk change from location to location,

although the Wi-Fi source always gets the highest values

in accordance with Figure 4(a). Averaging over the Prpside

values, the Diversity-based scheme achieves a performance

gain of +8% on urban scenarios, and +25% on rural scenarios,

compared to the pure Wi-Fi scheme. Finally, we conclude by

reporting the average localization lag over the Rural scenario,

for different algorithms. The localization lag is defined as
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TABLE I
LOCALIZATION LAG

Algorithm Average time (seconds)
NN, Wi-Fi only 0.439
WT, Wi-Fi only 0.416
LE, Wi-Fi only 0.515
Diversity-based 0.591

the time required for computing and returning the expected

localization output (i.e. RP ∗) to the client device; it includes

the overhead involved by the client-server communication and

by the data processing and algorithm execution at the server

side, but it does not include the detection sampling time (Ton),

since this parameter is decided by the user. We see that the

Diversity-based scheme does not introduce much significant

overhead to the localization process, since most of the time

delay depends from the client-server communication.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have addressed the problem of indoor

localization of smart devices through the design, implemen-

tation and evaluation of a software paradigm called Wi-LO,

which maximally exploits all the available radio interfaces.

Wi-LO fuses information from multiple sources (i.e. Wi-

Fi, LTE, BLE and MAG), supports several different pattern

matching algorithms (BB, NN, LE and WT) on each source,

and hard fusion schemes combining the decisions of each

source. We have experimentally evaluated the performance

of fusion and no-fusion algorithms for two scenarios, char-

acterized by different density of external APs. Results show

that the fusion schemes based on simple voting schemes

might not improve the localization performance, because of

the different resolution of the Wi-Fi, LTE and MAG radio

maps. At the same time, a diversity-based scheme taking into

account the reliability of each source can effectively improve

the performance of the localization process, compared to a

pure Wi-Fi scheme. Future works include: the integration

within Wi-LO of dead-reckoning techniques based on smart

device’s embedded sensors (i.e. accelerometer/gyroscope), the

design of additional mechanisms for the automatic selection of

pattern matching and fusion algorithms, the testing in multi-

floor scenarios.
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