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Abstract—Advances in wireless technology have resulted in
pervasive deployment of devices of a high variability in form fac-
tors, memory and computational ability. The need for maintaining
continuous connections that deliver data with high reliability
necessitate re-thinking of conventional design of the transport
layer protocol. This paper investigates the use of Q-learning in
TCP cwnd adaptation during the congestion avoidance state,
wherein the classical alternation of the window is replaced,
thereby allowing the protocol to immediately respond to previ-
ously seen network conditions. Furthermore, it demonstrates how
memory plays a critical role in building the exploration space,
and proposes ways to reduce this overhead through function
approximation. The superior performance of the learning-based
approach over TCP New Reno is demonstrated through a
comprehensive simulation study, revealing 33.8% and 12.1%
improvement in throughput and delay, respectively, for the
evaluated topologies. We also show how function approximation
can be used to dramatically reduce the memory requirements of
a learning-based protocol while maintaining the same throughput
and delay.

Keywords—TCP; IoT; Q-learning; function approximation;
Kanerva coding;

I. INTRODUCTION

Current trends point to large scale deployments of wireless
technology, such as in the case of Internet of Things (IoTs),
where pervasively deployed sensors report critical data to a
centralized server for analysis. Thus, not only must the network
deliver this data with the highest possible throughput, but it
must also minimize both the delay in transferring the data
to the end server for immediate interpretation, and carry the
returning acknowledgements (ACKs) to the source nodes. TCP
is the de facto choice for the transport layer for reliable end
to end delivery of packets, and thus, a clear starting point in
the design of such protocols. In this paper, we propose a new
technique for TCP cwnd adaptation based on Q-learning [1]
that sets the optimal control parameters from historically
observed network conditions. We then describe two variations
on this approach based on CMAC [2] and fuzzy Kanerva-
based function approximation [3]. We evaluate these three
approaches and characterize their performance, quantified in
terms of delay and throughput, and their memory requirements.

Classical TCP flavors, such as New Reno, rely on a probing
operation (additive increase) of the cwnd, where it slowly
increases the number of segments that can be transmitted
by the source at a given time. When network conditions
change suddenly, even if they follow a recurring pattern of
bandwidth variations, New Reno must continue to explore
the best setting for cwnd every time. This process involves

progressively increasing the cwnd by 1 for each round trip time
(RTT) in which the ACKs are received and sharply cutting
the window by half or down to 1 (multiplicative decrease).
Not only does this result in a lower network utilization,
but it also impacts situations when the available bandwidth
changes in short intervals, leaving insufficient reaction time.
This motivates our approach of using techniques from machine
learning where certain network conditions are observed and
captured in terms of state-action pairs. When similar network
situations are observed during operational time, a modified
cwnd setting algorithm can immediately scale to meet the
bandwidth availability. One of the key outcomes of this work is
exploring the impact of system memory on TCP enhanced with
learning. Towards this end, we study three different learning
approaches — Q-learning, which incurs considerably higher
memory consumption, CMAC which uses tiles to generalize
and Q-learning coupled with fuzzy Kanerva-based function
approximation. Both CMAC and fuzzy Kanerva-based Q-
learning use function approximation technique to reduce the
amount of memory needed to store the algorithm history. The
latter approach is very useful for wireless nodes with very little
memory, such as IoTs.

The overall operation of the protocol is explained as
follows: We retain the slow start phase of New Reno, and
enter into the learning-based adaptation only during the linear,
or congestion avoidance stage. Based on the observed utility,
measured as a weighted difference of the end to end throughput
and delay, the cwnd is probabilistically changed by a scalar
quantity. At each such instant, the network state and the
expected utility is logged for later use, thereby creating a
rapidly expanding table of network behavior, which is later
leveraged in making the TCP window setting decisions.

The main contributions of our work are as follows:

• We propose a self-learning and unsupervised TCP
cwnd adaptation technique based on Q-learning that
can appropriately scale the cwnd as per previously
seen network conditions.

• We analyze the impacts of function approximation on
throughput and delay in CMAC and Fuzzy Kanerva-
based TCP Q-learning. In both approaches, the mem-
ory required to store the algorithm history can be
greatly reduced. With the reduction in memory, our
proposed algorithm, Fuzzy Kanerva-based TCP Q-
learning, achieves similar performance as pure Q-
learning while only using 1.2% of memory compared
to pure Q-learning. We then identify the optimal



conditions where one or the other technique may be
preferred.

• We demonstrate through packet level simulations in
ns-3 significant improvement over TCP New Reno for
the above approaches.

II. MOTIVATION AND PRACTICAL RELEVANCE

An IoT is a network of interconnected objects, uniquely
addressable through standard communication protocols. Such
a network has capabilities of environmental sensing, local
computation, wireless data transmission and may work coop-
eratively to satisfy a given goal, under the limitations posed
by their processor and memory. We survey next a sample of
IoT applications, and provide a high level description of these
resources of the nodes in Table I, which may influence the
choice of TCP protocol.

TABLE I: Examples of IoT applications

Application Computing Power Memory Sample Device
Personalized healthcare low low RFID

Environmental monitoring medium medium TMote Sky platform
Smart city high high Embedded PC

(1) Personalized healthcare: These applications involve
medical sensors on the body, or implanted inside that captures
the health condition of the subjects [4]. This kind of IoT
application transmits sparing amount data, and does not require
complex computation. Thus, the sensors are likely simple
devices, and very limited processor capabilities and memory
suffice for such applications.

(2) Environmental monitoring: Sensors may be deployed
around a target area to automatically collect and report data
on the various environmental effects (for e.g., seismic activity
around volcanos [5], structural integrity, among others). The
IoT devices in this case are embedded within the terrestrial
environment for long durations, requiring more memory (com-
pared to healthcare) to store the data. Also, they may need
higher computing power to perform local aggregation on site.

(3) Smart city: Some of the current smart city deployments,
such as CitySense project [6], rely on an embedded PC
with a more powerful CPU and comparative RAM than the
previous scenarios. Such sensors are not challenged in either
computation or memory.

In the rest of this paper, we describe learning-based ap-
proaches that address these limitations. For example, while
TCP with Q-learning has less computational needs, it does
impose requirements on system memory. When Q-learning is
coupled with function approximation within the TCP control
mechanism, the memory usage can be flexibly set, but each
iteration consumes large number of processor cycles. Thus
the choice and the operating points of TCP can be hardware-
dependent, and how these sensor-specific issues impact the
end-to-end performance becomes an important subject of this
paper.

III. RELATED WORK

TCP is a well explored topic in both classical wired and
wireless networking. For years many end-to-end congestion

control mechanisms have been proposed. For example, Cubic
uses a cubic function to tweak the cwnd, and is known for
its ability to aggressively search for spare bandwidth. Other
end-to-end congestion control approaches includes Vegas [7],
Westwood [8] and Fast [9]. While these protocols all have their
own unique properties, they share the similar idea of using
some fixed functions or rules to change cwnd to adapt to new
network conditions. One problem with this fixed-rule strategy
is that they cannot adapt to the complexity and rapid evolution
of modern data networks. They do not learn from experience
or history and are not able to predict the consequences of
each action taken. Even if an action reduces performance, the
algorithm will mechanically select the same action repeatedly.

To solve this problem, some new techniques have been
explored by the research community. Remy [10] comes close
in principle to machine learning approach. It uses off-line
training to find the optimal mapping from every possible
network condition to the behavior of the sender (increase
or decrease cwnd) with the goal of maximizing a utility
function. The utility function captures the tradeoff between
maximizing throughput and minimizing delay. Remy works
well when prior assumptions about the network given at design
time are consistent with the network situation in experiments.
Performance may degrade when real networks violate the
prior assumption [11]. The lookup table used in this approach
stores mappings that are pre-calculated, which, as with other
traditional TCP variants, cannot adapt to continuously varying
network environment. In Remy’s approach, the lookup table
must be recomputed when new network conditions apply.

PCC [12] is a recently proposed protocol that can rapidly
adapt to changing conditions in the network. It is an online
learning algorithm that chooses actions based on recently
observed results. However, the learning process does not
exploit memory of previous experiences and their outcomes.
PCC aggressively searches for better strategies that change
the sending rate in real time. It employs a gradient-ascent
learning method by which, in some cases, the exploration
could be trapped at a local optimum, making it hard to achieve
a globally optimal solution. Both Remy and PCC regard the
network as a black box and focus on looking for the change in
the sending rate that can lead to the best performance, without
directly interpreting the environment or making use of previous
experience.

There are few other works that apply machine learning
to help improve the performance of TCP. For example, [13]
builds a loss classifier using machine learning to differentiate
link loss and congestion loss, and [14] and [15] use machine
learning to better estimate RTT and throughput. None of these
techniques tune cwnd directly.

IV. Q-LEARNING-BASED TCP

Our proposed algorithm, TCPLearning, is a protocol based
on reinforcement learning. In reinforcement learning, the
learning agent interacts with the environment with no prior
knowledge, selects actions based on a learned policy, receives
positive or negative rewards, and then observes the next state
of the environment. The learning agent’s goal is to develop a
policy, a state space to action space mapping, that maximizes
the long-term discounted reward. Henceforth, instead of using



probes to detect the effect of different actions on performance
in PCC, TCPLearning uses the reinforcement algorithm Q-
learning to learn an optimal policy to make action choices in
each state directly by experience.

TCPLearning sender uses the normal slow start phase of
New Reno protocol. If slow start ends when cwnd exceeds
threshold, the congestion control process enters the congestion
avoidance phase and our learning algorithm takes over control-
ling cwnd. If slow start ends because congestion is observed,
the New Reno protocol continues and the learning algorithm
is not used. If packet loss is detected while in the congestion
avoidance phase, the learning algorithm halts and the New
Reno protocol is applied to implement fast retransmission and
fast recovery.

As in New Reno, the most important task of TCPLearning
is adjusting the size of the cwnd. During each time period,
usually one RTT, our algorithm collects throughput and RTT
values by processing the ACK information, and then combines
them into a single utility function U . The utility function
increases as throughput increases and delay decreases. The
algorithm’s goal is to learn how changes in the size of the
cwnd can increase the value of the utility function.

The learning algorithm uses Q-learning to learn a policy to
choose actions and achieve its goal. Q-learning uses a simple
value iteration update process. At time t, for each state st
and each action at, the algorithm calculates an update to its
expected discounted reward, or action-value function Q(st, at)
as follows:

Q(st, at)← Q(st, at)+

αt(st, at)[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)] (1)

where rt+1 is an immediate reward at time t + 1, αt(st, at)
is the learning rate such that 0 ≤ αt(st, at) ≤ 1, and γ
is the discount factor such that 0 ≤ γ < 1. Q-learning
stores Q(st, at) values in a table, called the Q-table. The time
complexity to update the value of Q(st, at) is O(|A|) where
|A| is the number of actions.

The state of the system is represented by four state
variables and the values of state variables are partitioned by
discretization:

• A moving average of the inter-arrival time between
newly received ACKs, discretized into 10 intervals.

• A moving average of the inter-arrival time between
packets sent by the sender, discretized into 10 inter-
vals.

• The ratio between current RTT and the best RTT found
so far, discretized into 10 intervals.

• The slow start threshold, discretized into 10 intervals.

TABLE II: cwnd modification options

Change in cwnd Extent of change (bytes)
Reduce -1

No change 0
Increase +5
Increase +10
Increase +20

The available actions for changing the cwnd are summa-
rized in Table II.

The reward function is based on the changes in the value of
the utility function: U = loge(throughput)− δ× loge(delay)
where δ expresses the relative importance of delay over
throughput. In our experiments, δ is set to 1.

The reward function is equal to:

• +2, if the utility increases after time period t

• -2, if if the utility decreases after time period t

where t is set to 0.1s (one RTT in our experiments).

V. FUZZY KANERVA-BASED TCP Q-LEARNING

The requirement that an estimated value be stored for every
state-action pair limits the size and complexity of the learning
problems that can be solved. The Q-table is typically large
because of the high dimensionality of the state-action space,
or because the state or action space is continuous. While
discretization can be used to map a continuous state or action
space onto a discrete set of values [16], it may still need a
relative large discretized state-action space to achieve good
learning performance. Therefore, function approximation may
be needed to store an approximation of the entire discretized
table to further reduce the memory cost while maintaining the
same good learning performance [17] .

Many function approximation techniques exist, including
coarse coding [18], tile coding (also known as CMAC) [2]
and radial basis function networks (RBFNs) [19].

The Cerebellar Model Articulation Controller (CMAC), or
Tile Coding, is a computationally-efficient function approxima-
tion technique [18]. In CMAC, k tilings are selected, each of
which partitions the state-action space into tiles. The receptive
field of each feature corresponds to a tile, and a θ-value is
maintained for each tile. A state-action pair p is adjacent to
a tile if the receptive field of the tile includes p. The Q-value
of a state-action pair is equal to the sum of the θ-values of
all adjacent tiles. In binary Tile Coding, which is used when
the state-action space consists of discrete values, each tiling
corresponds to a subset of the bit positions in the state-action
space and each tile corresponds to an assignment of binary
values to the selected bit positions.

Using small tiles can improve the precision of a learned
policy since the finer grained state space makes it easier to
select unambiguous actions. However, small tiles increases the
learning time by making it harder to generalize between similar
but different states. By using multiple overlapping tilings,
CMAC maintains the ability to generalize while achieving high
resolution. Using relatively large tiles in each tiling to provide
coarse grain generalization and introducing a number of tilings
to provide fine grain generalization, CMAC can consume
less memory while maintaining comparable performance than
TCPLearning algorithm mentioned in previous section.

Traditional Kanerva coding [18] can also be used to reduce
the memory needed to store the state-action value table. The
state here is described by a sequence of state-variables of the
domain and each state-variable can take on a range of values.
A state-action pair is represented as a combination of one



state and one action. In Kanerva coding, a collection of k
prototype state-action pairs, (prototypes) is selected. Given a
state-action pair s and a prototype pi, ||s− pi|| represents the
number of state-variables whose values differ between them,
plus 1 if the action values differ. A state-action pair s and
a prototype pi are said to be adjacent if ||s − pi|| ≤ 1. We
define the membership grade µi(s) of state-action pair s with
respect to prototype pi to be equal 1 if s is adjacent to pi, and
0 otherwise. A state-action pair’s membership vector consists
of its membership grades with respect to all prototypes. A
value θ(i) is maintained for the ith prototype, and Q̂(s), an
approximation of the value of a state-action pair s, is then
the sum of the θ values of the adjacent prototypes. That is
Q̂(s) =

∑
i θ(i)µi(s).

If two state-action pairs have the same membership vector,
that is, the same membership grades over all prototypes, a
prototype collision is said to have taken place. Kanerva coding
works best when each state-action pair has a unique mem-
bership vector. If prototypes are not well distributed across
the state-action space, many state-action pairs will either not
be adjacent to any prototype, or adjacent to identical sets of
prototypes that may cause prototype collisions. Such prototype
collisions reduce the quality of the results because the solver
cannot distinguish distinct state-action pairs, and the estimates
of their Q-values will be equal.

An advantage of this approach is that each prototype
contains information about all dimensions of the state-action
space. The performance of a reinforcement learner with Kan-
erva coding depends largely on the number of prototype state-
action pairs and the size of the target state-action space [19].
Dynamically selecting prototypes can improve the performance
of function approximation [19], [20].

A more flexible and powerful approach is to allow a
state-action pair to update θ-values of all prototypes, not
only neighboring prototypes. Instead of being binary values,
membership grades vary continuously between 0 and 1. Such
fuzzy membership grades are larger for closer prototypes and
smaller for more distant ones. Since prototype collisions occur
only when two state-action pairs have same real values in all
elements of their membership vectors, collisions are less likely.

In fuzzy Kanerva coding [3], the membership grade is
defined as follows. Given a state-action pair s, the ith prototype
pi, and a constant variance σ2, the membership grade of s with

respect to pi is µi = e−
||s−pi||

2

2σ2 . A value θ(i) is maintained
for the ith prototype and an approximation Q̂(s) of the value
of a state-action pair is Q̂(s) =

∑
i θ(i)µi(s). The effect of

an update ∆θ to a prototype’s θ-value is now a continuous
function of the place difference ||s− pi||.

Algorithm 1 describes our fuzzy Kanerva-based TCP Q-
learning algorithm (Fuzzy TCPLearning). A vector ~p of pro-
totypes is selected randomly, and a corresponding vector of θ
values ~θ is initialized to zero.

For each prototype pi, the algorithm calculates an update
to its expected discounted reward, θ(pi) for all prototypes as
follows:

θ(pi)← θ(pi)+µi(s, a)αt[r+γmax
a′

Q(s′, a′)−Q(s, a)] (2)

Algorithm 1: Fuzzy Kanerva-based TCP Q-learning

Input: ~p: a set of prototypes, ~θ: a set of θ-values, each
associates with one prototype pi

Output: cwnd: changed by the selected action
1 Procedure Main()
2 Choose a set of prototypes ~p and initialize corresponding

θ-values to 0
3 for each new ACK received in congestion avoidance

mode in TCP New Reno do
4 if observe updated utility then
5 Fuzzy-Kanerva(pre_s, pre_a, ~p, ~θ)
6 else
7 Take action pre_a and apply to cwnd
8 Procedure Fuzzy-Kanerva(pre_s, pre_a, ~p, ~θ)
9 Observe reward r, get current state s

10 ~µ(pre_s, pre_a) = e
(− ‖(pre_s,pre_a)−~p‖2

2σ2
)

11 Q(pre_s, pre_a) =
∑

i µi(pre_s, pre_a) ∗ θ(i)
12 for each action a′ under current state s do

13 ~µ(s, a′) = e
(− ‖(s,a

′)−~p‖2

2σ2
)

14 Q(s, a′) =
∑

i µi(s, a
′) ∗ θ(i)

15 δ = r + γ ∗maxa′Q(s, a′) −Q(pre_s, pre_a)

16 ∆~θ = ~µ(pre_s, pre_a) ∗ αt ∗ δ
17 ~θ = ~θ + ∆~θ
18 if randomly generated probability > ε then
19 a = argmaxa′Q(s, a′) where

Q(s, a′) =
∑

i µi(s, a
′) ∗ θ(i)

20 else
21 a = random action
22 Take action a and apply to cwnd
23 pre_s = s
24 pre_a = a
25 return cwnd

where r is an immediate reward, s′ is the next state, αt is
the learning rate such that 0 ≤ αt ≤ 1, and γ is the discount
factor such that 0 ≤ γ < 1. An ε-greedy approach is used to
select the next action to take. For some value of ε, 0 ≤ ε ≤ 1, a
random action is selected with probability ε, and an action that
gives the largest Q-value for state s is selected with probability
1 − ε (lines 18-21). µi(s, a) has the effect that the value
θ(pi) is updated most if the state-action pair is identical to
the prototype pi and is changed less if the difference between
the state-action pair and prototype pi become larger.

The algorithm begins by randomly generating a set of
prototypes and initializing the θ-value of each prototype.
Whenever receiving a new ACK in congestion avoidance
mode, the learning procedure changes the cwnd if the value
of the utility function is updated in each time period t (one
RTT in our experiments). Otherwise, the previously chosen
action takes effect and changes the cwnd (lines 3-7). When
encountering a state-action pair and its accompanying reward,
the learning procedure updates each prototype’s θ-value based
on the received reward and differences between the prototype
and the state-action pair using Equation 2 (lines 9-17). All
updated prototypes’ θ values would contribute to varying
degrees to the Q-value of each encountered state-action pair.
The time complexity to update θ values of all prototypes is
O(|A||S||P |) where |A| is the number of all possible actions,
|S| is the number of state variables and |P | is the number of
prototypes. The space complexity is O(|P |). All prototypes
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Fig. 1: (a) Single sender/receiver topology and (b) Dumbbell
network topology.

and θ value of each prototype should be stored in memory.

VI. PERFORMANCE EVALUATION

We use ns-3 based packet level simulations to evaluate the
performance of TCPLearning, CMAC and Fuzzy TCPLearning
in varying bandwidth conditions by comparing with TCP New
Reno. We begin with a single-bottleneck network shown in
Fig. 1(a) and later extend the evaluation to a more complex
multi-flow network shown in Fig. 1(b) for fairness-related stud-
ies. We use these topologies to demonstrate the characteristic
features of learning in controlled environments and show the
impact on throughput and delay. The bottleneck bandwidth (on
the router-receiver link) switches alternately between 7.5Mbps
and 2.5Mbps every 800s. The network RTT is set to 100ms
and the buffer size is set to BDP, which is 50 packets in our
simulation. We conduct 8 experiments using each algorithm
and report the average throughput and delay. The standard
deviation of values is shown using error bars.

A. TCPLearning without Function Approximation

In this scenario, we disable function approximation and
set the exploration rate ε for TCPLearning to 0.1. The initial
learning rate α is set to 0.3, and it is decreased by a factor of
0.995 after each 10s. The total simulation time is set to 6400s.

1) Average Throughput and Delay: Fig. 2(a) compares
the average throughput achieved by TCP New Reno and
TCPLearning as the bottleneck bandwidth switches between
7.5Mbps and 2.5Mbps every 800s. The results show that
TCPLearning significantly outperforms TCP New Reno as the
bottleneck bandwidth fluctuates. We observe that at bottleneck
bandwidth of 7.5Mbps, the average throughput of TCPLearn-
ing is 6.72Mbps while the average throughput of TCP New
Reno is 4.46Mbps. At bottleneck bandwidth of 2.5Mbps, the
average throughput of TCPLearning is 2.27Mbps while the
average throughput of TCP New Reno is 2.26Mbps. We note
that since the default buffer size is optimal under a network
RTT of 100ms and bottleneck bandwidth of 2.5Mbps, TCP
New Reno fully uses the buffer and TCPLearning achieves
equally good performance.

Fig. 2(b) compares the average RTT achieved by TCP New
Reno and TCPLearning under the same network settings. The
results show that at bottleneck bandwidth of 7.5Mbps, the
average RTT of TCPLearning is 111ms, while the average
RTT of TCP New Reno is 109ms. At bottleneck bandwidth
of 2.5Mbps, the average RTT of TCPLearning is 114ms while
the average RTT of TCP New Reno is 154ms.

TCPLearning, under either bottleneck bandwidth, outper-
forms TCP New Reno in term of average throughput. Fig. 2(a)
demonstrates that TCPLearning increases the average through-
put by 33.8% in this high bandwidth fluctuating network.
When considering the delay shown in Fig. 2(b), although
TCPLearning performs slightly worse, 1.8% degradation in
this case, at bottleneck bandwidth of 2.5Mbps, it outperforms
TCP New Reno 26% at bottleneck bandwidth of 7.5Mbps. On
average, TCPLearning achieves 12.1% reduction in delay.

We observe that the average throughput of TCP New Reno
is 4.46Mbps, which is much less than the bottleneck band-
width 7.5Mbps. This is because TCP New Reno’s predefined
congestion avoidance algorithm increases cwnd beyond what
the connection can support, and finally congests the network,
which ultimately results in a significant drop in cwnd and
throughput. Even worse, since the TCP New Reno algorithm
has no memory of past actions and the effect of those actions
on performance, it repeats the same behavior. Fig. 3 shows the
size of the cwnd as a function of time during a simulation of
TCP New Reno. The plot shows that the algorithm repeatedly
makes the same incorrect decision which reduces performance.

In addition, TCP New Reno takes a significant amount of
time to recover after each significant drop in cwnd since it has
to increase the cwnd linearly during the congestion avoidance
phase. However, TCPLearning overcomes this defect by learn-
ing from experience. Fig. 3 also shows the size of the cwnd as
a function of time during a simulation of TCPLearning. The
plot shows that as the learning process proceeds, TCPLearning
experiments with different actions that modify cwnd until
110s. After 110s, the learned action-value function Q(s, a)
converges to the optimal action-value function Q∗(s, a) . At
this time, TCPLearning finds an optimal action which fully
uses the buffer and does not trigger any packet loss. This
learned action makes the cwnd large enough to achieve good
performance, but slightly smaller than the upper bound beyond
which packet loss occurs. The resulting high throughput gained
by this optimal action remains stable until 800s after which the
bottleneck bandwidth switches.

2) Real-time Throughput: Fig. 4 shows the real-time
throughput of TCP New Reno and TCPLearning with the bot-
tleneck bandwidth switching between 7.5Mbps and 2.5Mbps
every 800s. The plot shows that when the bottleneck bandwidth
is 7.5Mbps (in the first 800s), TCP New Reno experiences
repeated packet loss that consequently results in low and
unstable average throughput. When the bottleneck bandwidth
switches to a much smaller value, 2.5Mbps after 800s, TCP
New Reno fully uses the buffer and gets high and stable
throughput. We observe that those scenarios with high fluc-
tuating bottleneck bandwidths effectively and severely reduce
throughput when using TCP New Reno. However, fluctuated
bottleneck bandwidths have little effect on the throughput
achieved by TCPLearning. As shown in Fig. 4, TCPLearning
takes 110s to learn the optimal policy at 7.5Mbps bottleneck
bandwidth, and remains high and stable throughput until 800s.
When the bottleneck bandwidth switches to 2.5Mbps after
800s, TCPLearning converges very quickly and still achieves
stable throughput until the bottleneck bandwidth switches
again.

3) Real-time RTT: Fig. 5 shows the real-time RTT of TCP
New Reno and TCPLeaning under the same bandwidth switch-



 0

 1

 2

 3

 4

 5

 6

 7

 8

New Reno TCPLearning CMAC Fuzzy TCPLearning

Av
er

ag
e 

Th
ro

ug
hp

ut
(M

bp
s)

bottleneck link 7.5 Mbps

4.46

6.72
6.48 6.53

bottleneck link 2.5 Mbps

2.26 2.27 2.26 2.27

(a) Throughput comparisons

 0

 30

 60

 90

 120

 150

 180

 210

 240

New Reno TCPLearning CMAC Fuzzy TCPLearning

Av
er

ag
e 

RT
T(

m
s)

bottleneck link 7.5Mbps

109 111
103 106

bottleneck link 2.5Mbps

154

114

153 153

(b) RTT comparisons

Fig. 2: Average throughput and RTT over TCP New Reno, TCPLearning,
CMAC and Fuzzy TCPLearning algorithms under fluctuating bottleneck
bandwidths

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0  50  100  150  200

Co
ng

es
tio

n 
W

in
do

w 
(b

yt
es

)

Time (second)

TCP New Reno
TCPLearning

Fig. 3: Real-time cwnd of TCP New Reno
and TCPLearning during simulation from 0s
to 200s

 0

 2

 4

 6

 8

 10

 0  50  100  150  200

Av
er

ag
e 

Th
ro

ug
hp

ut
(M

bp
s)

Time (second)

TCP New Reno
TCPLearning

(a) For duration from 0s to 200s

 0

 2

 4

 6

 8

 10

 750  800  850  900  950

Av
er

ag
e 

Th
ro

ug
hp

ut
(M

bp
s)

Time (second)

TCP New Reno
TCPLearning

(b) For duration from 750s to 950s

Fig. 4: Real-time throughput of TCP New Reno and TCPLearning under
fluctuating bottleneck bandwidths (7.5Mbps and 2.5Mbps), and throughputs
for both figures remain same between 200s to 800s

 0.1

 0.15

 0.2

 0.25

 0  200  400  600  800  1000  1200

RT
T 

(s
ec

on
d)

Time (second)

TCP New Reno
TCPLearning

Fig. 5: Real-time RTT of TCP New Reno
and TCPLearning under fluctuating bottleneck
bandwidths (7.5Mbps and 2.5Mbps)

ing scenario described above. We observe that TCPLearning
achieves more stable and lower RTT than TCP New Reno
under fluctuating bottleneck bandwidths.

B. TCPLearning with Function Approximation

We evaluate the performance of the CMAC algorithm
and the Fuzzy TCPLearning algorithm by applying both to
the same network topology shown in Fig. 1(a). The CMAC
algorithm partitions the state-action space into a set of different
tiles and creates a number of tilings to provide both coarse and
fine grain generalization in learning. In our experiment, we
use 5 tilings and each tiling has 3,125 tiles since we have 5
possible actions and 4 state variables, each of which is evenly
partitioned into 5 intervals. To learn the action values, we need
to store 15,625 θ-values whose amount equals to 3,125 tiles per
tiling multiplied by 5 tilings. Since each tiling has large tiles,
relatively little memory is needed to store all the θ-values. The
Fuzzy TCPLearning algorithm uses function approximation
combined with continuous membership grades to control and
significantly reduce the amount of memory needed to store
the learned values, Q-table in the case of TCPLearning, while
maintaining performance.

To run the experiments, we first randomly generate a set of
100 prototypes and initialize the corresponding θ-values. Then,
the θi-value of each prototype is updated by the Q-learning
process using Equation 2.

1) Average Throughput and Delay: Fig. 2 also compares
the average throughput and delay achieved by CMAC and
Fuzzy TCPLearning at two alternating bottleneck bandwidths.
We observe that both CMAC and Fuzzy TCPLearning out-
perform TCP New Reno in terms of throughput and delay at
two different bottleneck bandwidths. We note that both CMAC
and Fuzzy TCPLearning have slight degradations in throughput
compared to TCPLearning when the bottleneck bandwidth is
7.5Mbps. When the bottleneck bandwidth is 2.5Mbps, nearly
identical throughputs are observed. In addition, both CMAC
and Fuzzy TCPLearning achieve better performance than New
Reno, and worse performance than TCPLearning, in term
of delay at both bottleneck bandwidths. We conclude that,
on average, TCPLearning performs best in terms of both
throughput and delay. However, taking advantage of function
approximation techniques, CMAC and Fuzzy TCPLearning
significantly reduce memory usage while achieving compara-
ble performance.



2) Impact of Reduced Memory Use: The TCPLearning
algorithm allocates memory to store each of the 50,000 state-
action pairs that may be encountered. Since 4 bytes are
used to store the Q-value corresponding to one state-action
pair, 200KB of memory storage is used by TCPLearning. In
contrast, the CMAC algorithm only needs to store the θ-values
which can be much less than the number of state-action pairs.
The total number of θ-values used in our experiments is 15,625
and the final memory usage is 62.5KB which is less than 1/3 of
memory used by TCPLearning. Fuzzy TCPLearning algorithm
allocates storage for 100 state-action pairs. Since 20 bytes are
needed to store one state-action pair, and another 400 bytes
are used to store the θ-values of 100 prototypes, it only uses
2.4KB of memory, making it ideal for IoT applications.

C. Fairness Observations

We evaluate the fairness of TCPLearning algorithm by
evaluating its performance in the dumbbell network topology
shown in Fig. 1(b). The topology includes 2 senders and 2
receivers sharing the bottleneck bandwidth of 2.5Mbps with
100ms RTT. The bottleneck router buffer size is set to 100
packets. The transmission of data in the two flows starts
simultaneously. Table III shows the average throughput of the
two competing flows for TCP New Reno and TCPLearning.
We observe that the average throughput of both flows is nearly
identical using both TCP New Reno and TCPLearning, and
therefore both score equally in the Jain’s fairness index.

TABLE III: Fairness behavior of competing flows

Algorithm TCP New Reno TCPLearning
Average throughput of flow 1 1.14 Mbps 1.15 Mbps
Average throughput of flow 2 1.13 Mbps 1.12 Mbps

Average throughput of each flow 1.135 Mbps 1.135 Mbps
Jain’s Fairness Index 0.99 0.99

VII. CONCLUSION

Learning methods can be used to reconstruct and optimize
traditional TCP to better utilize available bandwidths in net-
work traffic. We described a novel Q-learning based TCP that
developed a policy to selects actions that adjust the cwnd size.
The policy converges quickly to a stable set of actions. Our
TCPLearning algorithm achieved better throughput and delay
performance than TCP New Reno in the presence of high
bandwidth fluctuations. To reduce the memory usage needed
in the learning process while still maintaining comparable
performance, we introduce function approximation techniques
to our learning algorithms. We describe the CMAC algorithm
that uses less than 1/3 of the memory required by TCPLearn-
ing. Furthermore, Fuzzy TCPLearning algorithm significantly
reduces the memory usage, using 1.2% of the memory needed
by TCPLearning. Fuzzy TCPLearning still outperforms the
TCP New Reno with respect to throughput and delay in
a network with large bandwidth fluctuations. This approach
can be sued to implement learning-based TCP on memory-
constrained wireless nodes.
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