
Ad Hoc Networks xxx (2013) xxx–xxx
Contents lists available at SciVerse ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier .com/locate /adhoc
TFRC-CR: An equation-based transport protocol for cognitive
radio networks
1570-8705/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.adhoc.2013.04.007

⇑ Corresponding author.
E-mail addresses: al-ali.a@husky.neu.edu (A.K. Al-Ali), krc@ece.neu.edu

(K. Chowdhury).

Please cite this article in press as: A.K. Al-Ali, K. Chowdhury, TFRC-CR: An equation-based transport protocol for cognitive radio ne
Ad Hoc Netw. (2013), http://dx.doi.org/10.1016/j.adhoc.2013.04.007
Abdulla K. Al-Ali ⇑, Kaushik Chowdhury
Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
a r t i c l e i n f o

Article history:
Received 20 November 2012
Received in revised form 2 April 2013
Accepted 4 April 2013
Available online xxxx

Keywords:
Transport protocol
Cognitive radio
Congestion control
Equation-based
Sensor networks
Rate control
a b s t r a c t

Reliable and high throughput data delivery in cognitive radio networks remains an open
challenge owing to the inability of the source to quickly identify and react to changes in
spectrum availability. The window-based rate adaptation in TCP relies on acknowledg-
ments (ACKs) to self trigger the sending rate, which are often delayed or lost owing to
intermittent primary user (PU) activity, resulting in an incorrect inference of congestion
by the source node. This paper proposes the first equation-based transport protocol based
on TCP Friendly Rate Control for Cognitive Radio, called as TFRC-CR, which allows immedi-
ate changes in the transmission rate based on the spectrum-related changes in the network
environment. TFRC-CR has the following unique features: (i) it leverages the recent FCC
mandated spectrum databases with minimum querying overhead, (ii) it enables fine
adjustment of the transmission rate by identifying the instances of true network conges-
tion, as well as (iii) provides guidelines on when to re-start the source transmission after
a pause due to PU activity. TFRC-CR is evaluated through an extensive set of module addi-
tions to the ns-2 simulator which is also released for further investigation by the research
community.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Cognitive radio (CR) networks enable opportunistic use
of available licensed spectrum to reduce the pressure on
the unlicensed ISM bands in the 2.4 GHz and 5 GHz range.
While the main functional blocks of spectrum sensing,
switching, and sharing have experienced rapid strides over
the past decade [1], work on higher layers of the protocol
stack, such as the transport layer that is essential for real-
izing large scale practical deployments, remains in a nas-
cent stage.

To date, the work on CR transport protocols has been
based on the TCP window behavior, where the acknowl-
edgment packets (ACKs) sent by the receiver determine
the state of congestion within the network [2,15,21]. This
self-clocking mechanism of TCP is highly susceptible to
the observed round trip time. With periodic interruptions
caused by the primary user’s (PU) appearance or large scale
bandwidth fluctuations, this mechanism by itself is unable
to distinguish true congestion from PU induced spectrum
changes. These works that directly adapt TCP for CR net-
works rely on comprehensive information from the under-
lying layers, as well as the intermediate nodes of the data
path route. While there are distinct merits in a cross-layer
approach, such a design violates the traditional end-to-end
paradigm associated with the transport layer.

In window-based transport protocols, the problem of
reliance on ACK timing is exacerbated in CR networks be-
cause nodes pause their transmission when they are en-
gaged in sensing or channel switching. This, in turn,
results in varying round-trip time estimates (in the case
of TCP) rendering the self-clocking nature ineffective. The
frequency and reliance on the ACKs for window based
transmissions also lead to reverse path performance
tworks,

http://dx.doi.org/10.1016/j.adhoc.2013.04.007
mailto:al-ali.a@husky.neu.edu
mailto:krc@ece.neu.edu
http://dx.doi.org/10.1016/j.adhoc.2013.04.007
http://www.sciencedirect.com/science/journal/15708705
http://www.elsevier.com/locate/adhoc
http://dx.doi.org/10.1016/j.adhoc.2013.04.007

2 A.K. Al-Ali, K. Chowdhury / Ad Hoc Networks xxx (2013) xxx–xxx
impact on the forward DATA path. In TCP, this can amount
to 10–20% of the data stream rate as demonstrated in [4].
This paper presents a fresh perspective on the design of
CR-specific protocols using an equation-based approach,
wherein the concept of the congestion window in classical
TCP is eliminated, and instead, an equation is devised as a
function of the effective packet loss rate. This equation is
not dependent on the time variance of the returning ACKs,
and hence, the source transmission rate is less impacted by
temporary disruptions in the flow.

The authors of [4] also report that CSMA/CA at the link
layer results in bursty end-to-end flows when coupled
with TCP at the transport layer. We independently verify
this in Fig. 1 for a three node network where no congestion
is introduced. The observed increase in TCP throughput
may not only cause a potential adverse impact to the CR
network through congestion, but also to the PUs by inter-
fering with their packet delivery performance. Instead,
the equation based TCP Friendly Rate Control (TFRC), a rep-
resentative of the broader class of equation based transport
protocol [3], remains stable, and in the absence of any
other external stimulus, avoids the bursty transmissions
seen in TCP.

Our approach towards transport protocol design for CR
follows a new direction of using an equation based control,
hitherto unexplored in the current literature. For this, we
use the TFRC as the departure point. We not only adapt
the state-action behavior of TFRC, but also modify the ac-
tual rate control equation leading to our new design for
CR that we name as TFRC-CR. The main features of this
new protocol are as follows:

� It allows the TCP source to integrate with designated
spectrum databases, as mandated by the FCC in a recent
ruling [5]. This limited (and required) interaction with
the database totally removes any need of feedback from
the intermediate nodes or from the underlying layers.
Thus, TFRC-CR reverts back to the classical end-to-end
paradigm associated with the transport layer.
� It intelligently polls the spectrum database only when

needed, by identifying a possible PU arrival event based
on the observed trend in packet losses, i.e., it does not
consume the back-end system resources used for inter-
acting with the database. Current regulations from FCC
specify database polling at least once every 60 s for
 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 10 20 30 40 50 60 70 80 90 100

Th
ro

ug
hp

ut
 (k

bp
s)

time (seconds)

TFRC vs TCP throughput
TCP Throughput

TFRC Throughput

Fig. 1. Throughput comparison between TCP and TFRC in a 3-hop chain
ad hoc network.

Please cite this article in press as: A.K. Al-Ali, K. Chowdhury, TFRC-CR: A
Ad Hoc Netw. (2013), http://dx.doi.org/10.1016/j.adhoc.2013.04.007
Mode I devices (more on that in Section 5), and our
aim is to increase the access frequency only when a crit-
ical need is detected.
� It enhances the speed of response by distinguishing

between spectrum change and true congestion. Hence,
the transmission rate is almost never penalized unless
the need is justified. Likewise, the rate of increase in
the transmitted segments when new spectrum becomes
available is much higher than that possible in the clas-
sical window based TCP, owing to the immediate effect
of the rate equation.
� It modifies the TFRC rate control equation by changing

the definition of the loss-event interval. This change
allows the protocol to utilize the bandwidth more effi-
ciently by having a higher and more accurate sending
rate and throughput.

The rest of this paper is organized as follows: Section 2
gives the related works in the area of transport protocol
design for CR. The preliminary background of TFRC and
the motivation for adapting it for CRs is described in Sec-
tions 3 and 4. In Section 5, we describe the proposed pro-
tocol (TFRC-CR) in detail. Section 6 gives results from our
comprehensive simulation study, and finally, we con-
clude our paper in Section 7 with pointers to future
research.
2. Related work

While transport layer research in wireless networks has
received considerable attention over the past decade, pro-
tocols focused specifically on CR networks are still in a nas-
cent stage.

By minor modifications of the information contained in
the feedback acknowledgments (ACKs) sent by the destina-
tion, such as by falsely advertising a receive window of 0 in
Freeze TCP [6] when an impending hand-off is detected,
the TCP source can be prevented from transmitting. The
single end-to-end connection can be split into the wired
(sender to base station or BS, when such an infrastructure
support exists) and wireless (BS to the wireless node)
planes, as shown in WTCP [7]. In Addition, some protocols
explore tuning the sender’s transmission rate through ex-
plicit notifications (TCP EFLN) [8] and via selective retrans-
missions of lost packets (TCP SACK) [9]. While each of
these approaches have merits, they were not originally de-
signed with the aim of licensed or primary user (PU) pro-
tection, sudden large-scale bandwidth fluctuations, and
periodic interruptions caused by spectrum sensing and
channel switching.

More specific to cognitive radio, various measurement
studies have demonstrated the need for a new transport
protocol for cognitive radio networks (CRNs) [13–15]. In
particular, the suitability of TCP for CR networks, given
its widespread use, has been explored in [13–17]. The work
in [15] proposes modifications to TCP and introduces three
different protocols: cogTCP, cogTCPE and cogTCPW. The
knowledge module common to all of the above is linked to
the transport protocol that leverages information from
the link and physical layer such as sensing times and esti-
n equation-based transport protocol for cognitive radio networks,

http://dx.doi.org/10.1016/j.adhoc.2013.04.007

Fig. 2. Method of sample collection in TFRC: the first dropped packet after
an RTT concludes a sample. A received packet is denoted by an arrow and
a dropped packet by x.

A.K. Al-Ali, K. Chowdhury / Ad Hoc Networks xxx (2013) xxx–xxx 3
mated bandwidth. This family of protocols is designed for
single hop scenarios.

Other protocols that leverage cross-layer information
[18–20,22] also exist in literature. DSAsync [20] is a frame-
work that modifies the base station’s link layer that con-
nects the outer wired network to the inner cognitive
radio environment. It uses information from the link layer
to explicitly pause the source and destinations’ TCP
streams, and is focused on a centralized (1-hop) topology
between the CR nodes and the BS. Similarly to DSASync,
[22] proposes modifications to the Base Station that con-
nects TCP over the internet to a Cognitive Radio network
by modifying the Base Station by two proposed methods:
(a) Local loss recovery by base station and (b) Split TCP
connection. The CR network is a one-hop network and
the proposal restricts its modifications to the base station
and not the transport protocol layer in the cognitive radio
nodes. TP-CRAHN uses a window based approach similar
to TCP, relies on intermediate node feedback and uses a
cross-layer approach in each node involved [2]. TCP-CReno
[21] modifies TCP Reno so that it pauses and resumes the
data when the node is performing sensing. This informa-
tion is retrieved from the MAC layer.

Protocols that change lower network layers to improve
throughput at the transport layers were also investigated
[18,19,23]. In [18], Luo et al. optimize the throughput of
TCP by using an algorithm to decide which channel to
use. Optimization at the physical, MAC, and link layer such
as sensing times, access decision, modulation and coding
scheme, and link layer frame size were also done in [19].
In [23], changes to the sensing and transmission times of
the CR nodes were done to improve the throughput at
TCP. These frameworks do not propose a new transport
protocol, but improve the throughput by changing lower
network layer parameters.

Different from all of the above, our aim is to design a
transport protocol that is rate based, does not use informa-
tion from underlying layers, operates through the end-to-
end paradigm, and can work efficiently over multiple hops.
These features allow the protocol to operate only at the
source and destination. To the best of our knowledge, this
is the first attempt at transport protocol design for cogni-
tive radios with these specific goals. We are hopeful that
will help in future practical deployment.
3. Discussion on rate control in TFRC

TFRC employs equation based congestion control in uni-
cast traffic. We use this as the platform to build our proto-
col because it aims at providing a stable throughput, as
opposed to the sudden fluctuations caused by the additive
increase multiplicative decrease behavior of TCP. Given
that TFRC is rate based, we also have finer grain control
over the sending rate. We begin by describing the classical
rate control equation in TFRC.

Let xi be the number of consecutive packets delivered to
the destination in the ith sample. The counting of these
packets for the calculation of xi continues till the first loss
occurs, after the completion of the round trip time (RTT).
Fig. 2 shows this procedure for two samples i and i � 1.
Please cite this article in press as: A.K. Al-Ali, K. Chowdhury, TFRC-CR: A
Ad Hoc Netw. (2013), http://dx.doi.org/10.1016/j.adhoc.2013.04.007
Next, this step is repeated n times, obtaining xi, . . . , xn in
this process. Now, the loss event rate (p) at the receiver is
defined as the inverse of the weighted average of all xi,
i = 1, . . . , n. TFRC, by default, averages the last 8 samples
(i.e., n = 8) which gives an approximate snapshot of how
the traffic flow changed over the last n RTTs. The weights
wi that are used to scale the xi values are obtained as
follows:

wi ¼
1; i < n

2 ;

1� i� n
2�1ð Þ

n
2þ1 ; otherwise:

8<
: ð1Þ

As an example, if n = 8, then the values of the weights are:
{1,1,1,1,0.8,0.6,0.4,0.2}. These weights are then used to
calculate the weighted average loss interval (Imean) of the
last n samples x1, . . . , xn as:

Imean ¼
Pn

i¼0xi �wiPn
i¼0wi

: ð2Þ

Finally, the loss event rate value (p) is obtained as 1
Imean

and
informed to the sender through ACK packets. The sender
changes the transmission rate through the Eq. (3) that esti-
mates TCP’s average sending rate (to achieve fairness with
TCP):

Xbps ¼
s

RTT �
ffiffiffiffiffiffi
2bp

3

q
þ tRTO � 3

ffiffiffiffiffiffi
3bp

8

q
� p � ð1þ 32p2Þ

�� � ; ð3Þ

where Xbps is TCP’s average transmit rate in bytes per sec-
ond, s is the packet size in bytes, RTT is the round-trip time
in seconds, p 2 [0,1], tRTO is TCP’s retransmission timeout
value in seconds, and b is the maximum number of packets
acknowledged by a single TCP ACK. By default, b is set to 1
and tRTO is set to 4 � RTT. This choice is beyond the scope of
our discussion and is discussed in detail in [3].

4. TFRC-CR design goals

In this section, we shall identify the specific features of
classical TFRC that we target in our design of the transport
layer protocol for CR networks.

4.1. Low utilization of available bandwidth

TFRC reduces the sending rate at the source whenever
packets are dropped in the sending sequence. This simplis-
tic approach is sufficient for wired networks, where pack-
ets are only dropped due to congestion, but not in CR
networks where drops can happen due to multiple factors.
We explain the mechanism as follows, and identify possi-
ble ways to adapt this situation.
n equation-based transport protocol for cognitive radio networks,

http://dx.doi.org/10.1016/j.adhoc.2013.04.007

4 A.K. Al-Ali, K. Chowdhury / Ad Hoc Networks xxx (2013) xxx–xxx
Eq. (3) can be reduced to:

Xbps ¼
s

RTT � f ðsÞ ;

where

f ðsÞ ¼
ffiffiffiffiffiffi
2p
3

r
þ 12 �

ffiffiffiffiffiffi
3p
8

r
� p � ð1þ 32þ p2Þ:

ð4Þ

When tRTO = 4 � RTT and b = 1, these are approximated to
equal TCP’s sending rate [3].

From Eq. (4), the two contributing factors to the sending
rate are RTT and p, the loss event rate. As explained earlier
p is the inverse of the weighted average of the samples xi

(see Eq. (2)). In wireless networks, the sample xi values
tend to be smaller than in wired networks. This is because
TFRC assumes that dropped packets occur due to conges-
tion only (when intermittent losses are possible owing to
channel errors). As soon as a single dropped packet is
encountered at the receiver after an RTT has elapsed, the
sample round i is completed, the value of xi is logged and
computation for xi+1 begins immediately. Fig. 2 describes
this situation. The overall effect of this behavior is that
for wired networks, this leads to relatively equal sample
lengths, i.e., x1 � � � � � xn values. However, and particularly
in CR networks, the disparity in the samples xi is wider, as
PU activity, spectrum availability changes, among other
factors contribute to occasional packet losses. Fig. 3 shows
this divergent behavior for wired and wireless cases. Be-
cause of this discrepancy in sample lengths in cognitive
radio networks, TFRC’s sending rate is fluctuating even
when no stress events are introduced in the network. Our
aim is to equalize the sample lengths by introducing a
time-based sample collection method. This will produce
equal lengths when the network is in normal condition
and will also adapt in size as the network’s available band-
width changes.

4.2. Low transmission rate after PU departure

Classical TFRC is unable to use the maximum allocated
bandwidth after a PU vacates the spectrum due to the
transmission source’s low rate that is caused by timeout
events when a CR node ceases transmission or due to inter-
ference caused by PU activity. Instead, TFRC-CR is designed
to neglect the last n loss event rates after a prolonged idle
state due to PU activity. This prevents the pitfall of resum-
ing the transmission with a false p which leads to less than
 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 10 12 14 16 18 20 22 24
 0

 10

 20

 30

 40

 50

 60

m
os

t r
ec

en
t s

am
pl

e
si

ze
 (w

ire
d)

m
ost recent sam

ple
 size (w

ireless)

time (seconds)

TFRC (Wired vs Wireless sample values)
Wired

Wireless

Fig. 3. Wired vs. wireless most recent sample (xi) size over a two-hop
network topology.

Please cite this article in press as: A.K. Al-Ali, K. Chowdhury, TFRC-CR: A
Ad Hoc Netw. (2013), http://dx.doi.org/10.1016/j.adhoc.2013.04.007
optimal throughput. Note that classical TFRC will recover
to the maximum transmission rate after at least n samples
have been recorded. This takes at least n RTTs to achieve.

4.3. Slow recovery and ramp up

After an extended period of packet losses that limit
TFRC’s sending rate to the minimum rate, the protocol
starts polling for changes in bandwidth over large intervals
of time. This polling interval is a function of the current
transmission rate. For example, during PU Activity, classi-
cal TFRC’s nofeedback timer expires multiple times which
leads to reduction in the effective rate by half each time
until the minimum rate of s

tmbi
is reached. Here, s is the

packet size and tmbi is set to 64 s in the default implemen-
tation. This means that TFRC will poll the network once
every 64 s, which can cause an equivalent delay for the
CR network to resume transmission again after a PU depar-
ture. Thus vital spectrum opportunity is wasted in this ex-
tended downtime for the CR network. Our goal is to speed
the resurgence of the data flow by integrating the transport
protocol with the FCC database which can inform the send-
ing node in advance the time at which the current PU
activity ends.

4.4. Buffer overload and interference

TFRC may send multiple packets during the duration of
the PU activity as part of its regular rate control which
causes additional interference with the PU. This serious
problem multiplies at the link layer, where typically the
medium access control protocol attempts several rounds
of transmission per packet before reaching the maximum
retry limit. Moreover, the added processing tasks as well
as the consumption of buffer space by these additional
packets that cannot be transmitted on the same channel
contribute to the overhead. While the CR network can be
designed to seek out and immediately leverage alternate
channels, this feature is not known at the source in ad-
vance (owing to lack of inter-layer communication). By
relying on the FCC database to inform the sender of possi-
ble disruptions due to PU activity, this problem can be alle-
viated; the sender will pause the data flow based on that
information which will lessen the stress on the intermedi-
ate nodes’ queues.
5. Design and Implementation of TFRC-CR

We first present the modified finite state machine for
TFRC-CR which we will refer to as we describe the overall
functions related to spectrum management and PU avoid-
ance. Then, we discuss how to change the rate equation in
TFRC-CR such that the connections utilize the maximum
allocated bandwidth.

Note about FCC database and connectivity: In [5], the FCC
has recently allowed different devices to use a centralized
database to infer PU activity. Devices that are allowed to
use the channels are categorized in three modes: Mode I,
Mode II and sensing mode. Mode II are geolocation capable
devices that are required to access the database directly at
n equation-based transport protocol for cognitive radio networks,

http://dx.doi.org/10.1016/j.adhoc.2013.04.007

A.K. Al-Ali, K. Chowdhury / Ad Hoc Networks xxx (2013) xxx–xxx 5
least once per day before utilizing any channel, Mode I de-
vices needs to connect to Mode II devices directly or a
fixed-based station, and are required to refresh their local
database information once every minutes. Sensing mode
nodes need to be certified by the FCC and can then sense
and use what they perceive as vacant spectrum. In the de-
sign of TFRC-CR, we are only interested in spectrum aware-
ness at end locations and do not involve the intermediate
nodes. This still maintains the end-to-end sense of the
transport protocol. In any case, we do not rely on the
knowledge of specifically ‘‘where’’ or ‘‘at which node’’ PU
activity occurred in the connection, but that it occurred
somewhere in the connection. Similar assumptions on
rough estimations of a region of interest have been made
in earlier works on routing (see Ref. [10] for example).

5.1. TFRC-CR spectrum management

This section covers the following key features of our
proposed protocol: (i) ensuring that connection immedi-
ately becomes active after the PU leaves the impacted re-
gion, (ii) striking a balance between polling the network
too frequently by the source, an action that may itself
cause interference with the PU, and conversely, reacting
too slowly to spectrum change, and (iii) estimating the
available bandwidth as soon as possible after the PU va-
cates the spectrum. These changes are explained below
using a finite state machine diagram, shown in Fig. 4.

5.1.1. Normal state
This is the default state of TFRC-CR. The protocol re-

turns to this state whenever the source infers the connec-
tion to be free of spectrum outages. We describe in detail
how the equation governing the sending rate (and hence,
congestion control) in this state is modified in Section 5.2.
Recall that when a packet is dropped, the no feedback timer
expires in the absence of the ACK. From here onward, our
protocol’s operation diverges from classical TFRC: To dif-
ferentiate congestion from possible PU activity at this
timer expiry, the source queries the FCC mandated
I

K

S

met?

Are
conditions

PU

Resume

Paused

Normal

Start
Slow

ACK T
im

eo
ut

Rec
eiv

ed
 a

pa
ck

et

n average ACK inter−arrival

No ACK Received

ACK Received

No AC

PU Exits

& N
o A

CK
low start ACK received

Detected

No
Yes

PU Exits

Fig. 4. TFRC-CR finite state machine. Shaded states involve rate modifi-
cations discussed in Section 5.2.

Please cite this article in press as: A.K. Al-Ali, K. Chowdhury, TFRC-CR: A
Ad Hoc Netw. (2013), http://dx.doi.org/10.1016/j.adhoc.2013.04.007
spectrum database to check if a PU arrived on any of the
feasible channels. Note that the source has no knowledge
of the location of the nodes in the connection except the
destination, nor the specific channels used by any of these
nodes. However, a sudden arrival event of the PU (as indi-
cated by the database) and the resulting timeout are trea-
ted as correlated events. If the database affirms the PU
presence, the protocol enters into the PU detected state,
and if not, the ACK loss is interpreted as a case of network
congestion and is handled by the standard TFRC rate con-
trol which cuts the sending rate in half. In the normal state,
the protocol continues to calculate the average ACK inter-
arrival time (denoted as In), and the standard deviation of
the round-trip time (denoted as RTTstddev). These values
are used in the subsequent states to influence the rate con-
trol mechanism.

Please note that our reliance on the ACK timer expiry to
query the FCC database and infer PU activity here is differ-
ent than congestion inference that is typically used in win-
dow-based transport protocols; TFRC-CR’s end-destination
periodically generates ACKs for the sender, whether or not
(i) there is true network congestion, and (ii) packet arrival
to the destination. Thus, the rate control is decoupled from
the frequency of returning ACKs, which is the typical meth-
od used in window-based protocols. In TFRC-CR, if a sender
does not receive an ACK, then it signals a larger event, such
as a total disruption on the link. In this state, we use this
scenario to map a PU appearing which renders the link
unusable.

5.1.2. PU detected state
This intermediate state is implemented as an additional

measure to verify that the last ACK timeout in the normal
state was in fact due to PU activity. Upon entering this
state, the source waits for a period (the average inter-arri-
val time during normal state or In) for any incoming ACK,
while continuously polling the spectrum database. If no
subsequent ACKs are received, and the database reveals
that the PU is still present, then the protocol transitions
into the paused state where the source must wait for the
PU activity to get completed. On the other hand, if an
ACK does arrive in that time period, then the protocol re-
turns to the normal state as this implies that the intermedi-
ate nodes are not affected by the PU activity. In such a case,
the ACK timer expiry was due to random channel errors or
congestion.

5.1.3. Paused state
In this state, TFRC-CR determined that the PU is present

and assumed that it is responsible for disrupting the con-
tinuous data stream. The challenge now is to identify when
the transmission rate can revert back to a higher value and
this is obtained by polling the connection with an occa-
sional packet. When a portion of the spectrum is occupied
by a PU, the link layer algorithms on the node pair on the
affected link may either pause the transmissions alto-
gether, or immediately try and identify an alternate spec-
trum for that link. Note that the source has no idea
which of these options is selected as no intermediate node
feedback is allowed. Additionally, simple monitoring of the
spectrum database, even if it indicates the presence of a
n equation-based transport protocol for cognitive radio networks,

http://dx.doi.org/10.1016/j.adhoc.2013.04.007

 0

 50

 100

 150

 200

 250

 0 25 50 75 100 125 150 175 200 225 250 275

kb
ps

time (seconds)

TFRC vs TFRC−CR Throughput
TFRC

TFRC−CR

A

C

B

C
B

Fig. 5. Throughput (kbps) vs. Time for 3-hop (long PU activity).

6 A.K. Al-Ali, K. Chowdhury / Ad Hoc Networks xxx (2013) xxx–xxx
PU, does not reveal any corrective action by the nodes in
the connection. Thus, determining when the connection
is active again is a non-trivial task.

By increasing the transmission rate too early, the source
risks added interference to the PU before it vacates the
spectrum. Also, by delaying the rate increase, the source
is unable to efficiently use the available bandwidth of the
connection if the PU vacates the spectrum earlier or the
nodes in the connection transition to a new channel. We
have undertaken a substantial set of simulations and
empirically identify the optimal polling rate as
Xbps ¼ s

RTTavgþð4�RTTstdÞ
(Section 3), i.e., the source will send a

packet every time the Retransmission Timeout (RTO) value
of TCP [12] expires whether or not the nodes have
switched the channel. In comparison, TFRC reduces the
rate after each ACK timer expiry in half, until it reaches a
rate of s

64 (see Section 4.3), which sends out a packet every
64 s. This leads to slow reaction to both the sudden reduc-
tion in bandwidth when the PU starts affecting the connec-
tion, and to the higher available bandwidth once the PU is
out of the vicinity.

If an ACK is received in the paused state due to the poll-
ing packets that the sender transmitted, the protocol en-
ters into the resumed state. TFRC-CR perceives this ACK as
an indication that the intermediate nodes have moved to
a vacant spectrum and allows the rate to adapt accord-
ingly. If no feedback packets are received during this peri-
od, indicating that the nodes have not switched the
spectrum, TFRC-CR will enter the slow start state immedi-
ately after the PU leaves the spectrum. The PU exit time
is known by querying the aforementioned spectrum
database.

5.1.4. Resumed state
During PU activity and while the protocol is in the

paused state, the intermediate nodes may either switch to
a vacant spectrum or remain in the occupied channels. If
the intermediate nodes have switched spectrum and the
link is no longer disrupted, the sender will receive an
ACK from the destination. TFRC-CR will then enter the re-
sumed state and initiate slow-start (see Slow start state be-
low for details). This is done to adjust the sending rate
based on the new channel characteristics that the nodes
have switched to. Please note that the rate control at this
state is modified according to the discussion that will fol-
low in Section 5.2.

The protocol stays in this state until the PU exits, at
which time it runs an algorithm to see whether another
slow-start is required. Notice that TFRC-CR does not yet re-
Please cite this article in press as: A.K. Al-Ali, K. Chowdhury, TFRC-CR: A
Ad Hoc Netw. (2013), http://dx.doi.org/10.1016/j.adhoc.2013.04.007
turn to the normal state because the ACK that was received
in the paused state could be due to an intermediate node
falsely misdetecting the PU presence; a realistic outcome
considering the existing state-of-the-art sensing
algorithms.

If the nodes never misdetect the PU presence and have
not switched to a vacant spectrum, then the protocol will
not enter this state because it will remain in the paused
state. The protocol runs Algorithm 1 when the current ac-
tive PU exits the vicinity. This time is scheduled based on
the query results from the integrated FCC spectrum data-
base which is known at the sender. Finally, the average
ACK inter-arrival time IPU is calculated in the duration of
this state for use in Algorithm 1.

5.1.5. Slow start decision box
The goal in this algorithm is to determine whether a

slow-start is required or not. TFRC-CR slow-starts if the
rate at the time of the PU exit is relatively low in compar-
ison to the rate recorded during the last normal state. In
other words, the ACK received during the paused state
was a result of a sensing error and a slow-start to probe
for new bandwidth is required. Otherwise, the protocol
immediately returns to the normal state because the inter-
mediate nodes have found a vacant spectrum and resumed
transmission. The decision whether to slow-start is made
based on the results obtained in Algorithm 1.

Algorithm 1. is slow start required
n e
let In be the average inter-arrival of ACKs at the sender
in the normal state

let IPU be the average inter-arrival of ACKs at the
sender during the paused state

let current time = t
let tPU time last ACK received during paused state
1: if IPU > (2 � In) OR t � tPU > (3 � In) then
2: return true
3: else
4: return false
5: end if
In summary, Algorithm 1 checks if either of the follow-
ing is true based on empirical observations to correctly
determine whether the packet received during slow-start
was in error and TFRC-CR should therefore slow-start:
quation-based transport protocol for cognitive radio networks,

http://dx.doi.org/10.1016/j.adhoc.2013.04.007

A.K. Al-Ali, K. Chowdhury / Ad Hoc Networks xxx (2013) xxx–xxx 7
� Case I: If the average inter-arrival of ACKs during the
paused state (IPU) is larger than twice the average
inter-arrival of ACKs during normal state (In).
� Case II: If the time elapsed (t � tPU) since the last ACK

received during an ongoing PU activity is larger than 3
times the average inter-arrival time (In) of ACKs during
normal state. This is necessary because the average ACK
inter-arrival time (In) is calculated online, and if there
are two consecutive ACKs that arrive due to a PU misde-
tection, In will be small. The second condition is
designed to catch these exceptions.

5.1.6. Slow start state
TFRC-CR enters slow-start if the rate during resumed

state was slow according to Algorithm 1 or if the previous
state was the paused state, i.e., no ACKs were received in
the paused state. Slow-start is used to quickly probe the
new vacant spectrum for the maximum available band-
width. TFRC-CR slow-starts by resetting the weights and
variables of TFRC. This is done by having the source flag
the next packet as a slow-start request packet (SSREQ).
When the destination receives this packet, it resets its
own loss rate p calculations (see Section 3) and sends back
a slow-start acknowledgement packet (SSACK) immedi-
ately. During slow start, the nofeedback timer is set to
RTTavg + 4 � RTTstddev [12] where RTTavg and RTTstddev are
the average and standard deviation of the round-trip-time.
We use this as a more accurate result than TFRC’s default
static 2�packetsize

300 .
Once the SSACK packet is received at the source, TFRC-

CR returns back to the normal state, thus completing the
cycle.
5.2. Sending rate adaptation

As explained in Section 3, TFRC ends the collection of
each sample whenever it encounters a dropped packet.
However, in wireless networks susceptible to random er-
rors [4], this leads to sub-optimal and small sample (xi) val-
ues that are far from the correct ones that allow for full
utilization of the available bandwidth in the wireless
network.

Due to the random nature of these dropped packets, our
protocol cannot rely on them to determine the correct size
of the samples. Instead, we propose to look at a time-based
window for incoming packets (see Fig. 6). This way, our
protocol ends sample collection after a given period of time
instead of when it encounters the first dropped packet.
This method is further explained by identifying how to se-
lect the interval for collecting the samples, and how to
scale the observed samples in that interval as a function
of the connection length.
Fig. 6. Method of sample collection in TFRC-CR; instead of relying on the
first dropped packet, sample collection is based on a static time interval.

Please cite this article in press as: A.K. Al-Ali, K. Chowdhury, TFRC-CR: A
Ad Hoc Netw. (2013), http://dx.doi.org/10.1016/j.adhoc.2013.04.007
5.2.1. Collection time interval
The collection time interval needs to strike a balance

between being prohibitively high, and therefore reacting
slowly to network condition changes (e.g. bandwidth in-
crease/decrease, PU activity, congestion), and too low such
that the collected samples do not represent the correct net-
work condition in terms of the amount of packets that ar-
rived and what percentage of those were dropped. In our
empirically obtained results for centralized networks
(where the source and destination are directly connected),
setting the collection time interval to 1.0 s displayed a
sound balance between having a good reaction speed to
condition changes and having enough packets in the sam-
ples (xi) to meet the transmission rate that would fully uti-
lize the spectrum’s available bandwidth.

Furthermore, we observed for larger connections, i.e.,
for 3-hops and more, the packets received in the 1.0 s dura-
tion were too few to correctly represent the correct send-
ing rate at the sender. Simply increasing the collection
time interval is not possible due to the adverse effect on
the speed of the response to traffic congestion or spectrum
related changes. Thus, we add an initialization phase that
precedes the slow-start phase of the connection, wherein
the source–destination pair send test packets to identify
a static multiplier M. This multiplier is a function of the
length of the connection that is unknown to the source
and must be empirically decided. In the actual operation,
the source scales the number of correctly transmitted sam-
ples in the 1.0 s duration with this value M before weight-
ing their average and determining the effective loss rate p.

5.2.2. Initialization phase for choice of multiplier
The choice of a multiplier is critical to have the best bal-

ance between having a very high sending rate, which can
adversely lead to higher RTT – This is because the increase
in queuing delay at the intermediate nodes may eventually
result in higher dropped packet rates when the sending
rate is significantly higher than the capacity of the connec-
tion – and conversely, having a very small multiplier value
leads to low throughput and under-utilization of the avail-
able bandwidth. Eq. (2) therefore becomes:

Imean ¼
Pn

i¼0xi �wi �MPn
i¼0wi

; ð5Þ

where M is the multiplier value.
Fig. 7 shows the effect of increasing the multiplier value

(The exact network parameters are discussed in details in
Section 6). As M increases, the RTT increases and eventu-
ally, the dropped packet rate increases when the buffers
overflow in the intermediate nodes. For the 3-hop scenario,
�190 is the best multiplier value, and any higher leads to
unnecessary increase in RTT (queuing delay), higher
dropped packet rate without any significant throughput
gain. Likewise, for a 4-hop topology, the correct value is
�390. Note the high dropped rate when the multiplier is
very low which is due to the very low throughput.

When TFRC-CR slow starts, we find the optimum M by
using Algorithm 2. This algorithm increments M until the
change in throughput increase is less than %10 (condition
TPnow
TPprev

> 1:1) while making sure that the dropped rate re-
n equation-based transport protocol for cognitive radio networks,

http://dx.doi.org/10.1016/j.adhoc.2013.04.007

M for 3 hops M for 4 hops
Optimal M

 0
 100
 200
 300
 400
 500

Th
ro

ug
hp

ut

(K

B/
s)

throughput − 3 hops
throughput − 4 hops

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

R
TT

 (s
ec

on
ds

)

RTT − 3 hops
RTT − 4 hops

 0
 5

 10
 15
 20

 0 100 200 300 400 500 600D
ro

pp
ed

 p
kt

. %

Multiplier (M)

Dropped % − 3 hops
Dropped % − 4 hops

Fig. 7. Optimal multiplier M value for a 3 and 4-hop topologies.

41 2 3

Region
PU

5

6

Fig. 8. 3-Hop chain and PU region.

8 A.K. Al-Ali, K. Chowdhury / Ad Hoc Networks xxx (2013) xxx–xxx
mains below %10 (condition dropped_rate < 0.10). This will
give us the highest possible throughput while maintaining
a low dropped rate. The while loop (lines 5–8) are traversed
once every time a new ACK is received at the source.

Algorithm 2. Finding optimum M
1: Let TPnow be throughput at current time
2: Let TPprev be the previous throughput
3: Let dropped_rate be the dropped packets’ rate
4: M = 1 and TPprev = 1
5: while dropped_rate < 0.10 and TPnow

TPprev
> 1:1 do

6: M + =1
7: TPprev = TPnow

8: end while

This optimal value of M is retained for all future scaling
during the protocol operation.
6. Performance evaluation

In our simulation, we use the Cognitive Radio Ad-Hoc
Network (CRAHN) framework from [13], and expand it sig-
nificantly to support the transport layer operations. The re-
vised simulator which incorporates TFRC-CR can be
downloaded from the link in [24] where instructions to
compile and integrate it with existing ns-2 installations
can be found. In Sections 5.1 and 5.2, we simulate TFRC-
CR over a multihop chain in ns-2 as depicted in Fig. 8. This
topology is best suited to evaluate our protocol under the
following different scenarios: (a) single and multihop sim-
ulations where node 4 is the sink and the sending node can
vary from node 1 to node 3, (b) create a bottle neck at node
3 either due to spectrum bandwidth change, or (c) due to
congestion (when node 5 has a second active connection
to node 6).

In the simulation setup, nodes ignore incoming RTS
packets if they sense any PU activity within their immedi-
ate vicinity. This leads to an increase in queued packets at
the node immediately preceding the nodes in the active PU
region and eventually dropped due to retries or timeouts.
Each node has a 0.1 probability of misdetecting the PU
Please cite this article in press as: A.K. Al-Ali, K. Chowdhury, TFRC-CR: A
Ad Hoc Netw. (2013), http://dx.doi.org/10.1016/j.adhoc.2013.04.007
activity. In these cases, the nodes that misdetect, transmit
data concurrently with the PU causing interference. We set
our sensing period to 0.1 s and transmission period to 3 s
[11]. The transmission rate at the link layer is set to
11 Mbps using 802.11b specifications. The nodes in this
simulation do not switch to another spectrum when the
PU is detected; they wait until the PU exits the spectrum
to start transmitting again. This is done to clearly demon-
strate how the source correctly detects, pauses and re-
sumes the transmission. All nodes pick from 10 available
spectrum bands at random at the beginning of the simula-
tion. Each node will have two different interfaces: one for
receiving packets and one for sending. The authors of clas-
sical TFRC in [3] recommend setting b, the number of pack-
ets that are acknowledged by a single ACK, to 1 and n, the
number of weights to average, to 8. The authors advise
against setting n to a higher number owing to the slow
reaction to congestion conditions that this would ensue.
We follow these recommendations throughout this
section.

We will first illustrate our spectrum management
changes (Section 5.1) followed by our rate adjustment
evaluation (Section 5.2). Lastly, we evaluate our protocol
in high density node and PU scenarios in Section 6.3. Our
simulation compares TFRC-CR against TCP and default
TFRC as the baseline window and equation based transport
protocols, respectively. To the best of our knowledge, there
are very limited existing transport protocols specifically
targeting cognitive radios (for e.g., TP-CRAHN [2], cogTCP
[15] and TCP-CReno [21]). Unfortunately, comparisons
with them are not viable due to (i) completely different
window-based and rate-based implementations, (ii) exten-
sive feedback from the underlying layers and intermediate
nodes that is required in them, but specifically avoided in
our approach, and (iii) the fact that some of proposed pro-
tocols (e.g. cogTCP [15]) are designed for a centralized
wireless transmission topologies while our protocol is de-
signed to work in multihop scenarios as well.

6.1. Spectrum management

In this section, we omit our changes to the rate control
in order to showcase the state machine control algorithm
(Section 5.1). Fig. 5 shows us the throughput difference be-
tween these two protocols in one simulation run. Areas in
n equation-based transport protocol for cognitive radio networks,

http://dx.doi.org/10.1016/j.adhoc.2013.04.007

A.K. Al-Ali, K. Chowdhury / Ad Hoc Networks xxx (2013) xxx–xxx 9
gray denote PU activity regions. Throughput regions A, B
and C are of interest. This simulation is run over a 3-hop
chain (i.e. Node 1 sends to node 4 while nodes 5 and 6
are deactivated in Fig. 8).

� Region A: In this region, TFRC-CR is in the Normal state.
We observe that the protocol’s throughput matches that
of TFRC.
� Region B: We see that immediately following the PU

activity region that ends at time 150 s and 200 s,
TFRC-CR slow-starts immediately because it utilizes
the information received from the spectrum database.
Due to the rate reduction that happens in TFRC during
the PU activity time, the data stream resumes later.
The longer the PU activity, the slower the rate which
leads to longer delays.
� Region C: In this region, the PU is active but we notice

the spikes in throughput. The spikes occur more fre-
quently at the beginning of the PU activity region due
to the long time it takes TFRC to reduce the rate (i.e.
with every ACK timeout, it reduces the rate by half).
This problem is exacerbated when the nodes surround-
ing the PU region (nodes 3 and 4 in Fig. 8) misdetect the
PU activity, which occurs with a probability of 0.1. To
clearly demonstrate the effects of our paused state
adjustment, however, one must look at the sending rate
during this time, and not the throughput at the receiver.
This is discussed in the next section.

6.1.1. Sending rate during paused state
Fig. 9 plots the sending rate in the first PU region from

Fig. 5. We observe that a) TFRC-CR reduces the rate to the
paused state polling rate (i.e., s

RTTavgþð4�RTTstdÞ
) when the PU is

affecting the region, and b) how the sending rate slow-
starts immediately after. This is in contrast with the slow
decay that happens in TFRC, followed by the slow resump-
tion of the rate after the PU exits.
6.2. TFRC sending rate adjustment

In this section, we illustrate the advantages of our rate
adjustment (Section 5.2) by comparing the throughput,
interference with PU and queue lengths of the affected
nodes.
 0

 50

 100

 150

 200

 250

 100 125 150 175

Se
nd

in
g

ra
te

 (k
bp

s)

time (seconds)

TFRC vs TFRC-CR Sending rate
TFRC

TFRC-CR

Fig. 9. Sending rate Xbps during PU activity region.

Please cite this article in press as: A.K. Al-Ali, K. Chowdhury, TFRC-CR: A
Ad Hoc Netw. (2013), http://dx.doi.org/10.1016/j.adhoc.2013.04.007
6.2.1. Throughput with variable PU on time and number of
hops

First, we look at how the throughput changes as we
modify the PU on time in centralized and in multihop (2
and 3 hop) scenarios. For each data point, we run the sim-
ulator using 20 different seeds and compute the average
throughput. The PU on and off time follows an exponential
distribution and the average value are denoted by the x-
axis. The topology follows that of Fig. 8, where node 4 is al-
ways the receiver and the role of the sender alternates
from nodes 1 to 3, depending on the hop count.

Centralized system: Fig. 10 compares TCP, TFRC and
TFRC-CR in a centralized (1-hop) network. Interestingly,
TCP and TFRC perform well in such topologies due to less
random channel errors and dropped packets. We can see
that TFRC-CR’s performance is relatively close to that of
TCP and TFRC. When the PU on activity is small, TFRC-CR
performs worse due to the spectrum management control
where TFRC-CR pause the rate every time it detects PU
activity and resumes afterwards. Meanwhile, TFRC and
TCP do not pause during these periods, and because the
PU activity is small, the nodes that are immediately af-
fected by the PU queue the incoming packets at the MAC
layer and send them out once PU activity seizes. We do no-
tice also that TFRC-CR outperforms TCP and TFRC as the PU
on time increases.

Multiple (2 and 3) hops: Fig. 11 gives us the average
throughput for both TCP and TFRC in 2 and 3 hop scenarios.
We notice the low throughput for both protocols, which
further degrades to 0 as PU on time increases. TFRC-CR’s
2-hop and 3-hop implementations are plotted in Fig. 10,
due to the large difference in scale. We can clearly see
the advantages of using a time-based window to compute
the loss event rate p. In the 2-hop scenario with an average
PU on time of 1 s, we see that TFRC-CR’s average through-
put is 100KBps while TFRC averages at 8 KBps and TCP at
12 KBps. This is about a 10 times improvement over both
traditional protocols. This example clearly demonstrates
the ineffectiveness of existing transport protocols for mul-
tihop end-to-end CR scenarios.

6.2.2. Throughput performance under different stress events
Fig. 13a and b compare the three transport protocols

under different stress events. The three stress events are
(a) congestion: node 5 sends to 6 in our topology (Fig. 8)
 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 K

B/
s

PU on time (off time = 11 - on time)

PU Duration vs Throughput (Centralized)
TCP - Centralized

TFRC - Centralized
TFRC-CR - Centralized

TFRC-CR - 2 hop
TFRC-CR - 3 hop

Fig. 10. Throughput comparison as PU on time increases for different
number of hops.

n equation-based transport protocol for cognitive radio networks,

http://dx.doi.org/10.1016/j.adhoc.2013.04.007

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 K

B/
s

PU on time (off time = 11 - on time)

PU Duration vs Throughput (2 and 3 Hops)
TCP - 2 hop

TFRC - 2 hop
TCP - 3 hop

TFRC - 3 hop

Fig. 11. Throughput comparison as PU on time increases for 2 and 3 hop
scenarios (TCP & TFRC).

10 A.K. Al-Ali, K. Chowdhury / Ad Hoc Networks xxx (2013) xxx–xxx
using the same transport protocol, (b) bandwidth increase:
we set the hop from node 3 to 4 to be a bottle neck by set-
ting its bandwidth to 5 Mbps, and (c) bandwidth decrease:
we set the bandwidth of the aforementioned hop to
1 Mbps.

This simulation is run for a 2-hop scenario (i.e. node 2
sends to node 4 in our topology). Twenty different simula-
tions are run and averaged for each bar. The three stress
scenarios are introduced at second 100 in the simulation
run and the network returns to normal at second 200.
The results are averaged in that stress interval (second
100 to 200).

Though TFRC-CR’s throughput outperforms TFRC and
TCP in all scenarios, however this comes at a cost: the
queue length at node 3 (the node immediately before the
sink node) is higher for TFRC-CR than TFRC or TCP
(Fig. 13b) with the exception of the bandwidth increase
scenario where it compares similarly to TCP. The increase
in queue lengths is expected as this is a direct result of hav-
ing a larger throughput at the bottleneck node leading to
accumulated packets at the queue when these stress
events are introduced.

6.2.3. Interference with the PU
This performance analysis compares the three trans-

port protocols in regards to interference with the PU.
We calculate the interference percentage with the PU
activity by measuring the sum of time it takes to transmit
 0

 0.5

 1

 1.5

 2

 2.5

On = 2 seconds, off = 20 On = 10, off = 5

Pe
rc

en
ta

ge
 o

f i
nt

er
fe

re
nc

e

Interference with PU
TFRC-CR

TFRC
TCP

(a)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

On = 2 seconds, off

Th
ro

ug
hp

ut
 (B

/s
)

Thro

Fig. 12. The interference, throughput and goodput compa

Please cite this article in press as: A.K. Al-Ali, K. Chowdhury, TFRC-CR: A
Ad Hoc Netw. (2013), http://dx.doi.org/10.1016/j.adhoc.2013.04.007
RTS, CTS, ACK and DATA packets during PU activity di-
vided by the total PU activity time period. For each trans-
port protocol, a 2-hop scenario is simulated 20 times and
averaged with the variable PU on rate indicated by the x-
axis.

TFRC-CR’s interference is notably higher than TFRC and
TCP (Fig. 12a). This is attributed to the much higher
throughput for TFRC-CR (Fig. 12b) in the same simulation
runs: when the sending rate is high, the node immediately
before the PU vicinity (node 3) queues packets that are on
route and then sends them out when it misdetects PU
activity which we set at a probability of 0.1. This happens
regardless of how the sender pauses the sending rate. A
solution to this problem is to lessen the probability of mis-
detection by having more accurate sensors or to immedi-
ately empty the queue if a PU is encountered. This
involves changing the MAC layer protocol which is beyond
the scope of this paper.

Note that although the interference bars look high for
TFRC-CR, the percentage is well below 3% even for the
worse case (low PU on time).
6.2.4. Goodput
Goodput is measured as totaldatapacketsreceived

totaldatapacketssent � 100. We can
see from Fig. 12c that for the same simulation runs as
those of Fig. 12a and b, the goodput of TFRC-CR is 95%
when PU activity is small (PU time is 2 and 20 for on
and off times) and better than TFRC and TCP when PU
activity is high (10 and 5 s for PU on and off time, respec-
tively). This is an improvement especially considering
that TFRC and TCP had little to no throughput in the high
PU activity scenario. TFRC-CR’s higher goodput rates at
high PU activity scenarios is a direct result of having
TFRC-CR slow the sending rate in the paused state (i.e.,
when PU is active). By slowing down immediately, it
avoids the excess, and eventually lost, packets that are
sent in TCP and TFRC.
6.3. High density nodes and PUs

In the following simulation, we place 25 nodes in a
5 � 5 grid and we vary the number of end-to-end streams
and PUs. Our purpose is to simulate a high density node
 = 20 On = 10, off = 5

ughput
TFRC-CR

TFRC
TCP

(b)

 65

 70

 75

 80

 85

 90

 95

 100

On = 2 seconds, off = 20 On = 10, off = 5

G
oo

dp
ut

 %

Goodput
TFRC-CR

TFRC
TCP

(c)

rison are provided in (a), (b), and (c), respectively.

n equation-based transport protocol for cognitive radio networks,

http://dx.doi.org/10.1016/j.adhoc.2013.04.007

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

Normal
Congestion

Bandwidth inc.

Bandwidth dec.

Th
ro

ug
hp

ut
 (K

B/
s)

Throughput comparison
TFRC

TCP
TFRC-CR

(a)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

Normal
Congestion

Bandwidth inc.

Bandwidth dec.

Pa
ck

et
s

in
 q

ue
ue

Queue length comparison
TFRC

TCP
TFRC-CR

(b)

Fig. 13. Throughput and queue length (for node 3) comparisons under
different stress events: none, congestion, bandwidth increase and band-
width decrease.

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30 35 40

Th
ro

ug
hp

ut
 (K

B/
s)

No. of streams

Throughput vs # of streams

TFRC-CR
TFRC

TCP

(a)

 0

 10

 20

 30

 40

 50

 60

 8 12 16 20 24 28 32 36 40

Th
ro

ug
hp

ut
 (K

B/
s)

No. of PUs

Throughput vs # of PUs

TFRC-CR
TFRC

TCP

(b)

Fig. 14. Throughput as the number of streams and PUs change,
respectively.

A.K. Al-Ali, K. Chowdhury / Ad Hoc Networks xxx (2013) xxx–xxx 11
and PU environment. The on and off times for the PUs is
set as an exponential distribution with averages 10 and
5 s, respectively. The x and y coordinates of the PUs are
selected at random, and so is the source and destination
node for each data streams. We study the impact of the
number of active streams in Fig. 14a, with the number
of PUs fixed at 15. In the second study, the number of
streams is fixed at 10 in Fig. 14b, while the number of
PUs is progressively increased. The rest of the parameters
are identical to those discussed in the beginning of Sec-
tion 6. In Fig. 14a and b, we can see that TFRC-CR pro-
vides higher throughput even as the density of the
nodes and PUs increase.
7. Conclusion

We presented an equation-based transport protocol,
TFRC-CR, which is geared to meet the demands of CR net-
works and presents a fundamentally different control
mechanism compared to the typically used TCP-based
schemes. TFRC-CR was demonstrated to perform signifi-
cantly better than its classical counterparts TFRC and TCP
with respect to both PU protection and transmission effi-
ciency in a dynamically changing spectrum environment.
Our protocol does not assume any cross-layer feedback
or input from intermediate nodes, which aligns it with
the traditional end-to-end paradigm in the evolving space
of transport layer research for multihop CR networks.
Please cite this article in press as: A.K. Al-Ali, K. Chowdhury, TFRC-CR: A
Ad Hoc Netw. (2013), http://dx.doi.org/10.1016/j.adhoc.2013.04.007
Acknowledgment

The authors thank Qatar University for the PhD. schol-
arship that is awarded to Abdulla Al-Ali. This material is
based upon work supported by the US National Science
Foundation under Grant No. CNS-1265166.
References

[1] I.F. Akyildiz, W.Y. Lee, K.R. Chowdhury, CRAHNs: cognitive radio ad
hoc networks, in: Elsevier Ad Hoc Networks, vol. 7(5), July 2009.

[2] K.R. Chowdhury, M. Di Felice, I.F. Akyildiz, TP-CRAHN: a transport
protocol for cognitive radio ad-hoc networks, in: IEEE INFOCOM
2009, April 2009.

[3] S. Floyd, M. Handley, J. Padhye, J. Widmer, Equation-based
congestion control for unicast applications, in: Proc. of ACM
SIGCOMM, August 2000.

[4] K. Sundaresan, V. Anantharaman, H.Y. Hsieh, R. Sivakumar, ATP: a
reliable transport protocol for ad hoc networks, in: IEEE Trans. on
Mob. Comput., vol. 4 (6), November–December 2005.

[5] FCC, Second Memorandum Opinion and Order, ET Docket No. 10-
174, September 2010.

[6] T. Goff et al., Freeze-TCP: a true end-to-end TCP enhancement
mechanism for mobile environments, in: Proc. IEEE INFOCOM,
March 2000.

[7] P. Sinha, T. Nandagopal, N. Venkitaraman, R. Sivakumar, V.
Bharghavan, WTCP: a reliable transport protocol for wireless
wide-area networks, in: Wireless Networks, vol. 8 (2–3), March
2002.

[8] G. Holland, N.H. Vaidya, Analysis of TCP performance over mobile ad
hoc networks, in: Wireless Networks, vol. 8 (2–3), March 2002.

[9] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP selective
acknowledgment options, RFC 2018 (October 1996).

[10] Y.B. Ko, N. Vaidya, Location-aided routing (LAR) in mobile ad hoc
networks, in: Wireless Networks, vol. 6 (4), September 2000.

[11] W.Y. Lee, I.F. Akyildiz, Optimal spectrum sensing framework for
cognitive radio networks, in: IEEE Trans. on Wireless Comm., vol. 7
(10), October 2008.

[12] V. Jacobson, Congestion avoidance and control, in: SIGCOMM
Comput. Commun. Rev., vol. 18 (4), August 1988.

[13] M. Di Felice, K.R. Chowdhury, W. Kim, A. Kassler, L. Bononi, End-
to-end protocols for cognitive radio networks: an evaluation
study, in: Elsevier Performance Evaluation, vol. 68 (9),
September 2011.

[14] A.O. Bicen, O.B. Akan, Reliability and congestion control in cognitive
radio sensor networks, in: Elsevier Ad Hoc Networks, vol. 9 (7),
September 2011.

[15] D. Sarkar, H. Narayan, Transport layer protocols for cognitive
networks, in: Proc. of IEEE INFOCOM on Comp. Commun.
Workshops, March 2010.

[16] H. Xiao, K.C. Chua, J.A. Malcolm, Y. Zhang, Theoretical analysis of TCP
throughput in adhoc wireless networks, in: Proc. of IEEE GLOBECOM,
December 2005.

[17] A.M.R. Slingerland, P. Pawelczak, R.V. Prasad, A. Lo, R. Hekmat,
Performance of transport control protocol over dynamic spectrum
access links, in: Proc. of IEEE DySPAN, April 2007.

[18] C. Luo, F.R. Yu, H. Ji, V. Leung, Optimal channel access for TCP
performance improvement in cognitive radio networks, in: Springer
Wireless Networks, vol. 1 (2), February 2011.

[19] C. Luo, F.R. Yu, H. Ji, V. Leung, Cross-layer design for tcp performance
improvement in cognitive radio networks, in: IEEE Trans. on
Vehicular Technology, vol. 59 (5), June 2010.

[20] A. Kumar, K.G. Shin, Managing TCP connections in dynamic
spectrum access based wireless LANs, in: Proc. IEEE SECON, June
2010.

[21] X. Wang, X. Sun, C. Zhao, Z. Zhou, TCP-CReno – TCP enhancement
using cross-layer for cognitive radio networks, in: Proc. AIAI, October
2010.

[22] F. Amjad, C. Zou, B. Aslam, Transparent cross-layer solutions for
throughput boost in cognitive radio networks, in: Proc. IEEE CCNC,
January 2013.

[23] N. Bapat, V.R. Syrotiuk, Adapting sensing and transmission times to
improve throughput in cognitive radios ad hoc networks, in: IEEE
WoWMoM, June 2012.

[24] <https://github.com/abdulla-alali/TFRC-CR/tree/CRAHN>.
n equation-based transport protocol for cognitive radio networks,

http://dx.doi.org/10.1016/j.adhoc.2013.04.007

Hoc Networks xxx (2013) xxx–xxx
Abdulla K. Al-Ali graduated with BS in Com-

puter and Electrical Engineering from Uni-
versity of Miami, FL, USA. He received his MS
in Computer Software Engineering from
Northeastern University, Boston, MA, USA. He
is currently a PhD candidate in Computer
Engineering at Northeastern University. His
research interests include transport layers
specific to cognitive radio, developing and
expanding modules in ns-2 and wireless data-
stream optimization in Android. He is a reci-
pient of the Qatar University PhD scholarship.

12 A.K. Al-Ali, K. Chowdhury / Ad
Please cite this article in press as: A.K. Al-Ali, K. Chowdhury, TFRC-CR: A
Ad Hoc Netw. (2013), http://dx.doi.org/10.1016/j.adhoc.2013.04.007
Kaushik R. Chowdhury is Assistant Professor
in the Electrical and Computer Engineering
Department at Northeastern University, Bos-
ton, MA. He graduated with BE in Electronics
Engineering with distinction from VJTI, Mum-
bai University, India, in 2003. He received his
MS in Computer Science from the University of
Cincinnati, OH, in 2006, and PhD from the
Georgia Institute of Technology, Atlanta, GA in
2009. His MS thesis was given the outstanding
thesis award jointly by the ECE and CS
departments at the University of Cincinnati. He

won the best paper award in the Ad Hoc and Sensor Networks symposium
at the IEEE ICC conference in 2009, and currently serves on the editorial
board of the Elsevier Ad Hoc Networks and Elsevier Computer Communi-

cations journals. His expertise and research interests lie in wireless cog-
nitive radio ad hoc networks, energy harvesting, and multimedia
communication over sensors networks. He is a member of the IEEE.
n equation-based transport protocol for cognitive radio networks,

http://dx.doi.org/10.1016/j.adhoc.2013.04.007

	TFRC-CR: An equation-based transport protocol for cognitive radio networks
	1 Introduction
	2 Related work
	3 Discussion on rate control in TFRC
	4 TFRC-CR design goals
	4.1 Low utilization of available bandwidth
	4.2 Low transmission rate after PU departure
	4.3 Slow recovery and ramp up
	4.4 Buffer overload and interference

	5 Design and Implementation of TFRC-CR
	5.1 TFRC-CR spectrum management
	5.1.1 Normal state
	5.1.2 PU detected state
	5.1.3 Paused state
	5.1.4 Resumed state
	5.1.5 Slow start decision box
	5.1.6 Slow start state

	5.2 Sending rate adaptation
	5.2.1 Collection time interval
	5.2.2 Initialization phase for choice of multiplier

	6 Performance evaluation
	6.1 Spectrum management
	6.1.1 Sending rate during paused state

	6.2 TFRC sending rate adjustment
	6.2.1 Throughput with variable PU on time and number of hops
	6.2.2 Throughput performance under different stress events
	6.2.3 Interference with the PU
	6.2.4 Goodput

	6.3 High density nodes and PUs

	7 Conclusion
	Acknowledgment
	References

