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a b s t r a c t

In cognitive radio (CR) networks, a static activity model fails to capture the dynamic and
time-varying behavior of the licensed or primary users (PUs). In this paper, a distributed
scheme is proposed that allows mobile CR users to learn about the activity of the PUs,
and disseminate this information to the neighboring nodes that also function as informa-
tion repositories. In order to guarantee sensing precision and transmission efficiency, the
proposed method switches between time-intensive ‘‘fine sensing’’ and quick ‘‘normal sens-
ing’’. Our approach uses the maximum likelihood estimator to learn average busy and idle
periods in the fine sensing stage. These identified activity patterns are then used during
normal sensing, where the mean square error (MSE) value of PU on–off times is continu-
ously monitored to ensure that the estimation is sufficiently accurate. When PU activity
changes significantly, the MSE is considered as the indicator to re-start the fine sensing.
Simulation results reveal that our proposed method can efficiently track the dynamics of
the PU activity.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Cognitive radio (CR) is envisaged to support the increasing demand of spectrum for wireless communications, by allowing
CR users (i.e., secondary users, SUs) to operate on the vacant parts of the spectrum allocated to licensed users (i.e., primary
users, PUs) [1,2]. Here, SUs require frequent sensing to determine the state of the radio environment, and adaptively choose
transmission parameters for avoiding interfering with PUs [3,4].

Many sensing schemes require a priori knowledge of the statistical behavior of PUs. The exponential distribution model is
a common example for PU activity [5,6]. In [5], the authors model the channel usage through the semi-Markov process, but
do not point out how to leverage the detection history to improve the estimation of PU activity. In [7], a theoretical frame-
work was developed to jointly optimize the sensing and transmission periods with the aim of maximizing the spectrum effi-
ciency subject to interference avoidance constraints. However, the PU activity parameters, such as the statistical average idle
and busy periods, were assumed to be fixed and known a priori to SUs. Furthermore, there is a considerable body of work
relying on a constant PU activity statistical model to optimize the sensing in CR networks [8–12], without actually obtaining
or inferring them. In most of these papers, the fixed and known average idle and busy periods are vital in the calculation of
the detection probability and false alarm probability. Hence, it is advantageous to obtain the PU activity statistics during the
operation of the network, by collecting periodic measurements from the environment. Such a primary activity prediction
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approach can be found in [13], where the authors use frame structure and time slots, and activity prediction was limited to
estimating the remaining time of the idle period, but not the average busy and idle periods that together influence the choice
of the spectrum. Therefore, in our paper, PU activity parameters are assumed to be unknown to the SUs in advance, and our
objective is to estimate the average idle and busy periods and to track PU activity change.

The approach in [14] is most relevant to our scheme. Here, the authors not only utilize the ON/OFF spectrum usage model,
but also present an estimation technique to process the detection history and learn the traffic pattern of PUs. Nevertheless,
they assume that the SUs already have a set of PU usage pattern samples without detailing (i) how to collect these samples,
and (ii) how many samples should be enough to guarantee the sensing precision. In summary, in order to ensure that the
spectrum sensing schemes work accurately, deriving an accurate PU activity model is a key concern, which needs further
attention for the research community. Additionally, this model must be able to adapt to the changes of PU activity over time.

We would also like to point out the relevance of our approach in light of recent rulings by the FCC on spectrum sensing in
the TV whitespace [15]. The FCC ruling in 2011 states that local sensing (without geo-location and spectrum database access)
is only permitted for certified devices. This requirement necessitates revisiting the sensing models and new approaches that
are able to function without pre-conditions and location-specific assumptions. It is likely that CR devices using models that
do not capture the exact spectrum usage activity at the testing site will be unable to get the necessary permits for future
operation.

Recent results in [16] introduced a scheme to model the primary user activity. However, the authors focus on the bursty
and spiky traffic during short-term activity fluctuations. Each SU is required to monitor the spectrum band and send the ob-
served samples to the base station. A first-difference clustering and correlation scheme is used to capture the short fluctu-
ation transmission opportunities during the PU’s ON period, which can maximize the CR network performance. However, the
idle fluctuation time during ON period is very short and runs a greater risk of interfering with PU transmissions. Therefore,
the short-term fluctuation is not considered in this paper. In addition, we assume a CR mobile ad hoc network, in which there
is no base station.

CR ad hoc networks constitute additional challenges in estimating PU activity and modeling on account of node mobility
[2], not seen in static environments, such as [17]. In addition, many estimation schemes require considerable memory (in
case a history of measurements needs to be stored), which is difficult given the local hardware capability of a single node
[18].

Most aforementioned previous works assume a priori knowledge of activity distributions, and for such cases, the practical
channel usage statistics are very different when regions of overlap exist for the PUs. The final decisions based on such static
models in the overlapping regions are likely to be wrong. Different from this, in our proposed approach, we do not care about
a single PU’s distribution. Rather, we base estimate of the channel availability using current, real time measurements. If more
than one PU is present in the region, the distribution that we ‘‘learn’’ will be the combination of the two random variables
that determine their individual on (or off) times. Without loss of generality and for the simplicity, we consider SUs cooper-
atively detect one PU in the CR network [19].

In this paper, we make three important contributions for estimating the PU activity and tracking the PU activity change.

� We optimize the number of measurements needed to accurately estimate the PU activity, which will be used later to
tweak the performance of spectrum sensing algorithms. For this, we define two activity detection durations. The fine
sensing phase occurs in the early stages when the current estimates are totally absent or very coarse. The normal sens-
ing phase is during the continuous operation of the network, and serves to detect any changes in the existing levels of
PU activity. Based on mean square error (MSE), we devise stopping and restarting rules for the fine sensing, which allow
the SUs to switch between these two phases.

� We develop a cooperative weighted activity estimation scheme where SUs share their own locally obtained estimates
of the PU activity with neighboring SUs around the PU activity region. Thus, these prior measurements serve as a start-
ing point for the new SUs, which further contribute towards refining the estimate. Our scheme takes into account not
only the previous activity estimates derived by the predecessors, but also the number of samples and channel condi-
tions that may have contributed to errors in calculation of these earlier estimates.

� Finally, we also propose a distributed storage mechanism where the sensing data is saved in the local region of the PU,
thereby reducing memory requirements of each SU.

The rest of this paper is organized as follows: In Section 2, the CR system model is presented. Our proposed mobile sens-
ing model is described in Section 3. Section 4 presents the numerical and simulation results. Finally, Section 5 concludes the
paper.
2. System model

In our approach, the PU transmitter is operating on a licensed spectrum band modeled as an ON–OFF source, alternating
between ON (busy) and OFF (idle) periods. Assume ON and OFF periods follow exponential distribution, with the respective
averages of a and b [5]. Moreover, as the activity of the PU transmitter can change over time [20], a and b may also exhibit
long-term variations.



G. Ning et al. / Computers and Electrical Engineering 39 (2013) 1705–1716 1707
Further, we define the PU’s transmission region, called Ap, approximated as a circle around the PU transmitter (the circu-
lar white disc around the PU transmitter in Fig. 1), where the SUs must carefully choose transmission opportunities. The PU
activity estimation becomes important in this region Ap. The ON and OFF sample period measurements are gathered by the
SU as it moves through the activity region (see paths of SU2 and SU3), and on reaching the circular boundary, it disseminates
its own estimates to the surrounding nodes via broadcast messages. We assume that there is a common control channel
(CCC) for the information exchange between SUs [21]. Consider the shaded ring around the PU activity region, denoted
by As, which represents the area in which all SUs save and propagate the broadcast message of the last known activity esti-
mates. Thus, a new SU, entering the shaded ring As from outside at any point, can obtain the last few estimates of the PU
activity that were broadcast by its predecessors. In turn, this new SU will update the estimates and spread this knowledge
when it exits the region Ap at the other end of its path.

In the mobile CR network, only mobile SUs who enter the PU’s transmission region Ap can sense the licensed spectrum
band and broadcast the latest detected average �a and �b. The extent of the broadcast is limited to the other SUs within
the ring As. The SUs undertake two types of sample collections, which are fine sensing and normal sensing. If there is no infor-
mation about PU transmitter at all, or the MSE of detected average �a and �b is greater than a threshold, the sensing cycle must
be short and repeated often. This type of detection is called as fine sensing. If SU has considerably accurate mean busy period
and mean idle period, normal sensing will be used. In either case, the final estimates will be broadcasted at the boundary of
the regions As and Ap. Consider that g SUs have disseminated their detection packets including their detected mean estimates
in the region As, which are represented by �ai; �bi; i ¼ 1; . . . ;g, and also including the number of ON samples Ni and the number
of OFF samples Mi that were used for this estimation. Assume that the network has a ‘‘memory’’ of gs, i.e., a new SU entering
the region As can receive at most gs sets of the tuple f�ai; �bi;Ni;Mig.

The broadcast packet that disseminates the PU activity estimate contains the following fields: packet time-stamp, a sens-
ing status bit (0 or 1), final average ON period �a, final average OFF period �b, g (number of earlier SUs who have broadcasted
the average detection results and g 6 gs), g sets of f�ai; �bi;Ni;Mig, the maximum number of ON period samples (out of total
possible g), the actual number of combined ON period samples, all ON sample durations, the maximum number of OFF per-
iod samples, the actual number of combined OFF period samples, and all OFF sample durations. Here, packet time-stamp will
be used to avoid broadcast loop, �a and �b are computed by the g sets of f�ai; �bi;Ni;Mig. If the sensing status bit is set to 1, SUs
can perform normal sensing. Otherwise, fine sensing needs to be undertaken as the estimate is not accurate. If a SU obtains
very few samples, these samples will be inserted into the packet. Once the combined samples become large, they will be
used to compute the average periods, and then, they will be deleted from the packet.

Generally, false alarm and miss detection probabilities are used to analyse average interference time and lost spectrum
opportunity in the spectrum sensing [7]. In this paper, instead, we focus on the estimation of the ON/OFF average periods and
tracking the PU activity change, which precedes the normal operation of the network.
3. Proposed mobile sensing model

In this section, we focus on how to choose the durations of the fine and normal sensing, how to process and combine sam-
ples collected by SUs, how to stop and restart fine sensing, and the sharing of information among the SUs.

3.1. Sensing cycles and types

The probability of the period used by primary users is give as [4],
Fig. 1. Mobile CR ad hoc network.
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Pon ¼
a

aþ b
ð1Þ
And the probability of the idle period is
Poff ¼
b

aþ b
ð2Þ
In addition, the lost spectrum opportunity ratio TL is defined to indicate the expected minimum fraction of the OFF state unde-
tected by SUs, the maximum outage ratio TP is the maximum fraction of interference that primary networks can tolerate.

Assume that observation time ts in one sensing cycle is fixed. When PU transmitter is idle, transmission time in one sens-
ing cycle is denoted by tt, then the sensing cycle Toff

s in PU’s idle state is expressed as
Toff
s ¼ ts þ tt ð3Þ
where the maximum transmission time tt is bounded by [4]
tt 6 �l log 1� TP

Poff

� �
; l ¼minð�a; �bÞ ð4Þ
In previous works such as [4,9], only one sensing cycle is used in PU’s idle and busy states. However, when PU transmitter is
busy, a different sensing cycle Ton

s is defined in this paper, composed of observation time ts and quiet time tq, as follows:
Ton
s ¼ ts þ tq ð5Þ
where the maximum quiet time tq is bounded by
tq 6 �l log 1� TL

Pon

� �
; l ¼minð�a; �bÞ ð6Þ
If there are several licensed channels, the quiet time tq in a sensing cycle can be scheduled to detect other licensed channels
[7,14]. While our model can be easily extended in these scenarios, the multiple-channel estimation is out of scope of this
paper.

When a SU enters the range Ap and receives no information about PU, the SU must perform fine sensing, in which the
sensing cycles of Toff

s and Ton
s are same and fixed to a comparatively small value Tmin

s . This allows frequent sampling of the
environment by the SU in its initial entry into the PU activity region. Later, when the fine sensing phase ends (i.e., the PU
statistics are accurately known), Toff

s and Ton
s will be computed by Eqs. (3) and (5), respectively, which is defined as normal

sensing. In dynamic environments, however, if the final averages �a and �b deviate in accuracy from a and b beyond a certain
threshold as indicated by the following MSE, the sensing cycles will be reduced to Ton

s � c and Toff
s � c, where Ton

s and Toff
s are

also computed by Eqs. (3) and (5), and c e (0.5,1). This forces the SU to re-start the fine sensing and quickly gather additional
information about the environment.

3.2. Case I. Estimation for single user

When SU i first moves into the region Ap, it broadcasts a request message on the CCC to other neighboring SUs to inquire
about the PU’s operational characteristics, namely, the average ON period and OFF period. The neighboring SUs who have
this information will send back this PU activity information, including the sensing status bit and the last g estimates, to
the requesting SU. The SU will then select the latest information based on the packet time-stamp. According to the sensing
status bit, the SU can determine to perform either fine sensing or normal sensing.

During ongoing activity estimation in the area Ap, SU i records each detected ON period sample and OFF period sample.
Assume the number of ON period samples is Ni and the number of OFF period samples is Mi, which are the respective car-
dinality values of the sets of {ton(1), ton(2), . . . , ton(Ni)} and {toff(1), toff(2), . . . , toff(Mi)} (Fig. 2). Then, the maximum likelihood
estimator (MLE) is used to calculate the average ON period �ai and OFF period �bi [22,23].

The PU’s busy time and idle time can be modeled by the exponential distribution. The probability density function (PDF)
of ON state is
ON ONOFF OFF ON OFF

on
sT

on
sT

off
sT

ON

ton(1)

off
sT

toff(1) ton(2) toff(2) ton(Ni)toff(Mi)

Fig. 2. SU i detects the PU’s ON/OFF periods.
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pðton; aÞ ¼ 1
a

e�
ton
a ð7Þ
Then, the likelihood function is
Lðton;aÞ ¼
YNi

j¼1

1
a

e�
ton ðjÞ

a ¼ a�Ni e
�1

a

XNi

j¼1

tonðjÞ

¼ a�Ni e�
Ni Ton

a ð8Þ
According to MLE algorithm,
d ln LðTon;aÞ
da

¼
d �Ni ln aþ �NiTon

a

n o
da

¼ �Ni

a
þ NiTon

a2 ¼ 0 ð9Þ
Then the optimal mean busy period �ai of MLE can be calculated by,
�ai ¼ Ton ¼
1
Ni

XNi

j¼1

tonðjÞ ð10Þ
Similarly, the optimal mean idle period �bi is,
�bi ¼ Toff ¼
1

Mi

XMi

j¼1

toff ðjÞ ð11Þ
where jNi �Mij ¼ 0 or 1.
Intuitively, the numbers of ON and OFF samples are related to the length of PU’s true a and b, the SU’s speed and the travel

distance in the area Ap. If SU i obtains only a few samples, �ai and �bi may suffer from considerable deviation from the true a
and b. Therefore, if the set of samples is less than a threshold number Nt, SU can broadcast these samples instead of the aver-
age values alone, i.e., f�ai; �bi;Ni;Mig.

3.3. Case II. Estimation for multiple users

Assume that there are g mobile SUs broadcasting their individual estimations of PU activity. Generally, the arithmetic
mean approach, called as non-weighted average in the paper, can be used to estimate the final �a and �b with Eqs. (10) and
(11) in this case. However, since the numbers of ON and OFF period samples of various SUs should be different, we introduce
a weighted average approach to compute the final �a and �b for multiple SUs, as follows:
�a ¼
Xg

i¼1

�ai
NiPg
j¼1Nj

ð12Þ
�b ¼
Xg

i¼1

�bi
MiPg
j¼1Mj

ð13Þ
We assign a weight to the final estimation made by a SU as proportional to the numbers of ON and OFF samples it uses for the
calculation. Moreover, due to the dynamic nature of PU activity and the limited memory, the network only stores the latest gs

sets of f�ai; �bi;Ni;Mig.
When PU activity or SU mobility speed is high, then the number of collected samples for the estimation are few. In such a

case, multiple sets of samples from different SUs who are passing through the activity region in near-overlapping times can
be combined to compose a single set. Thus, if the ith SU gets a few samples, then these ON and OFF samples will be added
into the broadcast packet instead of the statistical values f�ai; �bi;Ni;Mig. After the next SU, i.e., the i + 1th SU, finishes its sens-
ing, its own samples are cumulatively considered for the analysis, along with the samples carried in the previous broadcast
packet of the ith SU. If the total number of samples now is larger than the threshold number Nt, then the i + 1th SU calculates
the average ON and OFF periods to generate the average set of f�ai; �bi;Ni;Mig. Henceforth, only these averages are included in
the broadcast packet, in place of the actual sample values. Conversely, if the total number of samples is less than the thresh-
old number Nt, then the new samples of i + 1th SU are also added into the broadcast packet.

3.4. Choosing start and stop conditions for fine sensing

In this section, we separately derive the start and stop conditions that allow the SU to switch between fine sensing and
normal sensing.
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3.4.1. Stop condition for fine sensing
The fine sensing can be stopped after the estimated mean of the PU activity converges to the true mean ON/OFF time. This

implies that with progressive rounds of broadcast of the estimated values and continued refinement undertaken by subse-
quent SUs, the MSE of the samples will decrease. We need to choose a MSE threshold Em for stopping the fine sensing process
(which is time consuming) and consequently, increase the transmission efficiency.

Assume there are g(6gs) sets of f�ai; �bi;Ni;Mig, the MSE ron of the mean ON period can be computed by
ron ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
g
Xg

i¼1
½�ai � Eð�aiÞ�2

s
ð14Þ
where Eð�aiÞ is the latest average busy period computed by Eq. (12). Similarly, we can derive the MSE roff of the OFF period,
which is given by
roff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
g
Xg

i¼1
½�bi � Eð�biÞ�2

s
ð15Þ
Only when both ron and roff are less than Em, the fine sensing terminates and the sensing status bit will be set to 1 signaling
the end of the fine sensing process.

3.4.2. Start condition for fine sensing
PU activity is dynamic and varies over time, possibly even with the time of the day. This requires periodically revising the

activity estimations. As a and b vary over time, our approach is able to detect the change and restart the fine sensing.
A trivial option here is to use the MSE for detecting the change in PU activity, i.e., MSE will increase if there is a change in

PU’s activity. However, this technique does not work efficiently in slow-varying environments [24]. Thus, in order to capture
the changes of PU spectrum usage efficiently and quickly, we introduce a new variable sr that exploits the variation of MSE.
Here, the current ron(t) and roff(t) will be compared with the previous MSE values of ron(t � 1) and roff(t � 1). We define
sron ðtÞ as:
sronðtÞ ¼
jronðtÞ � ronðt � 1Þj

ronðt � 1Þ ð16Þ
Similarly, sroff
ðtÞ can be derived as:
sroff
ðtÞ ¼ jroff ðtÞ � roff ðt � 1Þj

roff ðt � 1Þ ð17Þ
If sron ðtÞ or sroff
ðtÞ is larger than the threshold STH, the fine sensing will be restarted.

Once the fine sensing stops, the estimated �a and �b will not be changed until the next round of the fine sensing phase is
triggered. When a SU enters the PU’s transmission range Ap, it performs normal sensing because the sensing status bit is set to
1. Note that ron(t � 1) and roff(t � 1) can be calculated through the g sets of f�ai; �bi;Ni;Mig. After moving out from the range
Ap, the oldest set of f�a1; �b1;N1;M1g will be discarded if g = gs (i.e., the limit on the sample history is reached), and the SU’s
own estimated values will be stored as the latest set. Thus, the current ron(t) and roff(t) can be calculated followed by sron ðtÞ
and sroff

ðtÞ from Eqs. (16) and (17). If sron ðtÞ or sroff
ðtÞ is higher than the threshold STH, the sensing status bit will be set to 0. In

addition, only the current sensing results will be broadcasted by the SU. Other SUs who receive this broadcast packet will be
aware of the variation of PU’s activity, thereby individually re-starting their own fine sensing.

Finally, in case that SU cannot obtain any information from neighboring SUs, it then performs fine sensing with sensing
cycle Tmin

s . Otherwise, it uses �a and �b to calculate the sensing cycles Ton
s and Toff

s by Eqs. (3) and (5), respectively. The conse-
quent sensing procedures can be described as follows:

(1) If sensing status bit is 0, the SU will perform fine sensing with Ton
s � c and Toff

s � c. Once it moves out of Ap, the new ron

and roff will be computed. If ron and roff are less than Em, then sensing status bit will be set to 1.
(2) On the contrary, if sensing status bit is 1, the SU will perform normal sensing. After it exits the range Ap, sron and sroff

will
be calculated and compared with threshold STH. If sron or sroff

is larger than the threshold STH, the fine sensing will be
restarted.

The entire mobile cooperative sensing procedure is illustrated in the flowchart in Fig. 3.

4. Numerical and simulation results

In this section, we conduct simulation studies to evaluate the performance of our proposed PU activity estimation algo-
rithm. In the mobile CR network, there is only one PU operating on a licensed spectrum band. The location of the PU trans-
mitter is at the center coordinates of (2000 m, 2000 m). The transmission radius of PU transmitter is 800 m, which covers the
region Ap while the broadcasting area of SUs is within the ring As, which spans 1200 m further from Ap boundary. The speed
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of mobile SU is uniformly distributed from 3 m/s to 20 m/s, and the moving direction is also uniformly distributed in [0,2p).
The random walk model was adopted to model the movement of SUs. As per the IEEE 802.22 standard [25], the observation
time ts for one time sensing is less than 2 ms when using energy sensing method. Consequently, ts is set to 2 ms, and the
minimum fine sensing cycle Tmin

s is set to 8 ms.
In order to examine the protocol convergence with regard to the number of samples obtained by individual SU detec-

tion, we gradually injected 20 SUs into region Ap successively to detect the PU transmitter with a = 1 s, b = 0.5 s. As a re-
sult, there were 5 SUs that obtained more than 100 samples. From Fig. 4, we observe that when the number of ON period
samples is more than 30, the mean ON periods of all the 5 SUs fluctuate around the true mean ON period by 15%. How-
ever, when the number of samples is less than 30, the average ON period �ai has a large deviation from the true a. There-
fore, in a practical application, when a SU obtains few samples, these samples can be broadcast allowing us to set the
sample threshold number Nt as 30. Moreover, when a SU has no information about the PU, it can utilize the shortest sens-
ing cycle Tmin

s for detection. After it obtains more than a certain number of samples, the sensing cycles can be increased to
enhance the sensing efficiency.

The cooperative sensing efficiency of multiple SUs can be demonstrated by letting 50 SUs move into the PU’s transmission
range Ap successively. This implies that the number of samples collected by individual SU may differ as well. Two previously
mentioned average approaches, non-weighted average and weighted average, were employed to evaluate the performance. In
the beginning of this simulation, the first SU uses fine sensing with minimum sensing cycle Tmin

s . Once the number of samples
reaches 30, the sensing cycles will be set to Ton

s � c and Toff
s � c, where c = 0.8. It is clear from Fig. 5 that when more than 10

SUs use fine sensing to sense the licensed band, the average ON period �a is very close to the accurate average ON period,
which is a = 0.4 s. Additionally, the weighted average approach obviously outperforms the non-weighted average approach
throughout the range.

It is also crucial to evaluate the performance of MSE and the relative error in our approach. We define relative error as
j�a� aj=a. As shown in Fig. 6, MSE ron decreases as more SUs sense the PU transmitter and it asymptotically converges to
the true mean. Additionally, the relative error also exhibits the similar behavior. However, the fluctuation of relative error
is much larger than that of MSE, and SUs cannot determine the true a when using relative error. The ron is almost equal
to 4% when there are more than 25 SUs, which indicates that not all the SUs’ detected information f�ai; �bi;Ni;Mig are required
to be stored and broadcasted. This is another reason why we introduce gs which is the maximum number of f�ai; �bi;Ni;Mig
stored.



0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
ea

n 
O

N
 p

er
io

d(
un

it:
 s

ec
on

d)

Number of ON samples

True =1s

Mean value traces
for each SUs

α

Fig. 4. Convergence of the estimated mean ON period of five individual SU (a = 1 s, b = 0.5 s).

0 5 10 15 20 25 30 35 40 45 50
0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

Number of SUs

D
et

ec
te

d 
av

er
ag

e 
O

N
 p

er
io

d 
(u

ni
t: 

se
co

nd
) Accurate average ON period

Non-weighted average ON period
Weighted average ON period

Fig. 5. Multiple SUs detect PU (a = 0.4 s, b = 0.5 s).

1712 G. Ning et al. / Computers and Electrical Engineering 39 (2013) 1705–1716
After the fine sensing is completed by 20 SUs, the final mean ON period and mean OFF period are used to calculate the
sensing cycles for the subsequent normal sensing. As shown in Fig. 7, it is obvious that based on the �a and �b estimated by our
proposed sensing model, both the maximum outage ratio TP and lost spectrum opportunity ratio TL are below the predefined
threshold 0.04 after a short period of operation.

We next evaluate the detection sensitivity. Here gs is set to 20. We let 100 SUs successively detect the PU’s activity. After
the 50th SU finishes its detection, a varies from 0.4 s to 0.5 s and 0.6 s. On the contrary, b is constant at 0.5 s. As depicted in
Fig. 8, MSE of ron is almost constant when the number of SUs increases from 20 SUs to 50 SUs. However, ron starts increasing
slowly from the 51th SU because of the change of PU activity. This is because when the 51th SU finishes its detection, the
estimated average ON period of this SU is close to the current real average ON time �0.5 or 0.6, while other estimated
ON periods used converge to 0.4. Hence, the impact of this specific SU on the estimate �a is slight, and the final estimated
ON period �a is still dominated by the previous SUs, before the 51th SU. Consequently, if MSE is used to restart a new fine
sensing procedure, it will have a considerable delay and cause interference with PU. It should be pointed out that the values
of ron(50) and ron(51) are very small, but the increment of ron(51) � ron(50) is in the same order of magnitude and is less
than ron(50) and ron(51). On the contrary, the ratio of (ron(51) � ron(50))/ron(50) is large. From Fig. 8, we observe that the
value of Sron ð51Þ is more than 35%. As a result, the variation of PU’s activity can be quickly detected by the 51th SU, which can
be used to restart fine sensing within a very short time. In addition, we can find that when the activity of PU does not change,
sr(t) fluctuates within acceptable bounds, which is a direct result of combining multiple samples and reducing the sudden
impact of an outlier measurement. Finally, from the 52th SU, fine sensing is restarted. Therefore, alternatively we use sr(t) to
monitor the PU activity since it is more sensitive to the changes in PU activity pattern.
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In [14], the authors utilized moving time window to track the variations of PU activity. The latest ON and OFF periods
samples will be collected within a time window and the estimation procedure will be executed once every a period of time.
In order to further demonstrate that our proposed scheme can quickly track the changes of PU activity, we compare it with
the scheme in [14]. Our proposed scheme is called Scheme 1, the track method in [14] is called Scheme 2. In our proposed
scheme, the maximum number of SUs that pass through the PU activity region and cooperate to estimate the final �a and
�b is gs. Hence, we set the size of the moving window here is not the individual samples, but the number of collaborating
SUs at a given time, i.e., gs = 20. However, the total number of SUs that pass through the PU activity region from the start
to the end of the simulation is 100. Further, we explore the response time of the system when a varies from 0.4 s to 0.5 s
halfway through the simulation (i.e., when the 50th SU finishes its detection). From Fig. 9, we can find that our proposed
Scheme 1 can quickly track the change of PU activity. This is because sr(t) is used to restart the fine sensing, and the earlier
gs estimations are discarded. However, the tracking speed of Scheme 2 is much slower, as the outdated estimations from the
32th to 50th SUs are still used to compute the final average �a when the 51th SU finishes its own sensing. In addition, from the
70th SU, 20 ON estimations of Scheme 2 converge to 0.5 same as those of Scheme 1, so final average �a of two schemes con-
verge to 0.5. When PU activity does not change, i.e., a = 0.4 s, same method is used to calculate �a in Scheme 1 and Scheme 2,
and therefore the curves are overlapping. Hence, we conclude that our method provides enhanced responsiveness of the sys-
tem when PU activity is subject to change.

The broadcast overhead is a concern in collaborative CR sensing. If all the raw sensing data, i.e., ON/OFF period samples,
are broadcast between the SUs, then the broadcast overhead will be large. Therefore, the packet structure in Section 2 is used,
which relies only on sending the average values. By using the statistical information in place of the actual raw samples, the
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overhead is contained. In order to evaluate the overhead incurred by broadcast, we deployed varying number of SUs uni-
formly in the broadcasting region As at the beginning of simulation. In addition, we assume that each SU in As will broadcast
the latest received detection results. Once ron and roff reach the threshold Em, the overhead, defined as the total amount of
broadcasted data divided by the corresponding required time, will be computed. As shown in Fig. 10, with the increase in
detection precision, reduction in Em from 0.12 to 0.03, the average broadcasted data per second increases. This is because
more time and large number of SUs are required to yield the requested detection precision. Additionally, the broadcast over-
head increases when the total number of SUs increases from 50 to 70. This implies that more SUs enter PU’s transmission
region Ap, as more detection information needs to be disseminated.

5. Conclusion

In this paper, we presented and evaluated a novel licensed user activity estimation algorithm to detect the average busy
period and idle period of PUs in a mobile CR ad hoc network. The MLE and weighted average method were used to process
the sensing results, and the MSE was used to decide stop and restart instants of fine sensing. Our approach demonstrated
efficient tracking of the changes of PU’s activity, resulting in convergence to the true activity with an acceptable overhead.
The simulation results indicate that the proposed algorithm can accurately estimate the PU spectrum usage pattern by using
the optimal number of measurements and through the cooperation of multiple SUs. Moreover, our proposed mobile coop-
erative sensing approach can be easily extended for static SUs and centralized CR networks.
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