
Modeling Considerations for the Hardware-Software
Co-design of Flexible Modern Wireless Transceivers

Benjamin Drozdenko, Matthew Zimmermann, Tuan Dao, Kaushik Chowdhury, and Miriam Leeser
School of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115

Email: bdrozdenko@coe.neu.edu

Abstract—Software-defined radios have introduced new plat-
forms for dynamically modifying wireless system designs, and
heterogeneous computing has opened up implementing such
designs on different computing elements. Our goal is to develop
a modeling environment that captures reusability of various pro-
cessing blocks at the physical layer for several modern protocols,
and makes decisions regarding whether each processing block
should be part of reconfigurable hardware or embedded proces-
sor software. Our approach creates several different MathWorks
Simulink model variants for both the transmitter and the receiver,
each with a different boundary between hardware and software
components. Using the 802.11a standard as an example, we use
these models to generate a bitstream for the FPGA and executable
code for the ARM processor on a Xilinx Zynq system-on-chip.
Our results collect such metrics as data path delay, resource
utilization, and power usage and demonstrate how to further
enhance the SDR design.

I. INTRODUCTION

Target hardware for the next generation of Software Defined
Radios (SDRs) includes a mix of CPU and FPGA components.
In this paradigm, a complex protocol can be broken down
into functional blocks, with their execution distributed across
the available hardware resources. A barrier associated with
designing real-time wireless transceivers is the need for an
environment in which both hardware (HW) and software
(SW) components in the processing chain can be effectively
modeled. Such an environment must enable tunable control of
radio parameters and have a means of measuring execution
time and energy usage on both HW and SW. In this paper, we
introduce our modeling environment, which uses commercially
available tools, MathWorks Simulink and Xilinx Vivado. We
demonstrate our approach using IEEE 802.11a transmitter (Tx)
and receiver (Rx) Simulink models and ensure correctness by
comparing against Annex G of the 802.11a specification [1].
These models require modification to best target execution on
HW or SW. We demonstrate our models on the Xilinx Zynq
SoC, but our high-level designs can be ported to different
SoC HW. We generate HDL code and IP core blocks for the
components targeted for execution in HW, and also generate
C code to be compiled into an executable that runs on the
ARM processor. We present information on timing, resource
utilization, and power consumption for each of the different
HW/SW co-designs. Our approach assumes a HW-SW divide
point to limit communications between FPGA and embedded
ARM processor. We set parameters to control the frame size,
sample time for real-time execution on FPGA, and frame time

for execution on CPU. The data types and sizes required for
HW-SW data transfer differ in each model variant.

Other researchers have developed high-level SDR frame-
works that automatically generate low-level implementations.
ATOMIX builds applications on wireless infrastructure by
defining atoms as fixed-time computations, but is intended
only for synthesis on a variety of DSPs [2]. CODIPHY can
use automatic C and VHDL code generation to build an
802.11a/g transceiver, but its testing is all emulated, not done
on live hardware devices [3]. Airblue introduces an FPGA-
based SDR platform for the PHY and MAC layers, adopting
certain techniques such as data-driven control and annotated
streaming of data samples, but this platform cannot be used
for studying HW-SW co-design tradeoffs [4].

Our approach advances the state of the art by providing (1)
a modeling environment for prototyping the HW-SW divide
point, (2) a library of wireless processing blocks implemented
in both HW and SW, and (3) an approach that encourages reuse
of blocks among different protocols. It provides a platform on
which we can prototype MIMO and Wi-Fi/LTE coexistence.
This approach is superior to a component-based one because it
allows developers to analyze the processing chain as a whole
and supports variations in data types for adaptability.

II. HW-SW PROTOTYPING PLATFORM

Our HW-SW prototyping platform (Fig. 1) consists of an
RF front end (ADI FMComms3), a Xilinx Zynq-based system,
and a host computer. It supports the following capabilities: (1)
an RF front end that enables wireless transception, (2) a HW
platform that combines FPGA and embedded processor, (3) an
efficient bus for transfer between HW and SW, and (4) a user
interface for specifying algorithms, automatic creation of HDL
and C code, compilation into processor-specific executables,
and generation of a compatible FPGA bitstream. The Xilinx
Zynq SoC has an embedded ARM processor and FPGA fabric,
called a Processing System (PS) and Programmable Logic
(PL) in Xilinx terminology. We target two different Zynq
boards, the ZC706 with a Z7045 chip and the Zedboard with
the less capable Z-7020. Internal to the Zynq SoC, an AXI
bus connects the PL and the PS. The Zynq boards connect via
Ethernet to a host computer, which we use to send start and
stop signals to the Zynq PS. The 802.11a transceiver system
contains both a Transmit path, from PS to PL to FMComms3,
and a Receive path, from FMComms3 to PL to PS.



Fig. 1: Prototyping Platform Hardware Components, Software Tools, and Interface

TABLE I: Processing Blocks for Tx Path and Rx Path

Block Transmit Path Receive Path

1 Scramble Preamble Detect
2 Convolutional Encode OFDM Demodulate
3 Block Interleave BPSK Demodulate
4 BPSK Modulate Block Deinterleave
5 OFDM Modulate Viterbi Decode
6 Preamble Switch Descramble

The host computer runs the SW tools used to create
models. We use MathWorks Simulink to create and simulate
synchronous dataflow models. We implement 12 processing
blocks, 6 for Tx path and 6 for Rx path, as listed in Table I.
We use the MathWorks toolboxes HDL Coder and Embedded
Coder to target the PL and PS, respectively. Additional Math-
Works HW support packages allow us to interface with the
Zynq and the RF front end. Each Simulink model captures
all the information about the Zynq transceiver system. The
model distinguishes the subsystem targeted for execution on
the PL from those components which are targeted to run on
the PS. Two IP Cores encapsulate the PL design, one for Tx
and one for Rx. A Xilinx Vivado block diagram is generated to
combine the IP cores with all the AXI interface components.
Vivado synthesizes, implements, and makes a bitstream for the
PL. We use MathWorks Embedded Coder support for Zynq to
automatically generate C code and compile the executable that
targets the PS. When we press the start button on a generated
Simulink model on the host, it sends a signal via Ethernet to
launch the executable on the Zynq.

III. HW-SW MODELING ENVIRONMENT

Our approach uses commercial tools and can work with
multiple HW platforms. Our HW-SW joint modeling environ-
ment has the following abilities.
1) HW/SW Functional Equivalence: For a set of inputs,
each processing block produces the same outputs in the HW
implementation and the SW implementation.
2) HW/SW Mapping: Each design variant models the HW-
SW divide point for wireless behaviors, mapping each pro-
cessing block in sequence to either HW or SW.
3) HW/SW Interfacing: Each design variant prepares and
translates a fixed number of data bits to between HW and SW
as needed for real-time processing.

Fig. 2: Modeling HW-SW Divide for Wireless Behaviors

4) Adaptability & Reusability: Each processing block is
adaptable depending on the needs of the entire processing
chain while remaining reusable and applicable to different
wireless standards.

Our main contributions are a library of HW and SW
implementations for 802.11a processing blocks, a library of
interfacing units for data transfer via AXI, and detailed timing
considerations. As a first decision in the modeling process, we
minimize the communication by permitting only one interface
between HW and SW. We represent alternate HW-SW divide
points using 14 model variants, 7 for the Tx path and 7 for the
Rx path, as shown in Fig. 2. V1 implements all functionality
in SW. Since the RF board connects directly to the FPGA,
for each subsequent version we add to HW the processing
block that is next closest to the RF board. Thus, V2 adds
F6 to HW for the transmit path and F1 for the receive path.
This continues to V7, in which all processing blocks are
implemented in HW.

Internally, communications on the Zynq chip use an AXI
interconnect, which can transfer 32-bit words in a time-
synchronous manner between PL and PS. There are two AXI
interfaces which we use: AXI-lite for the Rx models and
AXI-stream for the Tx models. To support the AXI-stream
interface in the Tx models, the Vivado block diagram must
contain additional IP Cores such as AXI Direct Memory
Access (DMA) Controller, as shown in Fig. 1.

For the purposes of data validation, we run our experiments
in an offline mode, in which data intended for the RF front end
is routed back to the Zynq PS for storage in a file. This method
allows us to verify each model variant produces the same
output. For each model variant, moving the HW-SW divide
line changes the requirements for transferring data between
PS and PL. The size and number of elements that must be
transferred for each model variant are listed in Table II.



TABLE II: HW-SW Data Transfer for Tx

Variant Data to Send Data Type Size of 1 #Elem

V1 Samples Signed Fixed Point 16 bits 80
V2 Samples Signed Fixed Point 16 bits 64
V3 Symbols Signed Integer 1-8 bits 64
V4 Coded Bits Boolean 1 bit 48
V5 Coded Bits Boolean 1 bit 48
V6 Data Bits Boolean 1 bit 24
V7 Data Bits Boolean 1 bit 24

(a) Tx on Zedboard (b) Rx on ZC706
Fig. 3: PS Execution Times per Frame

IV. EXPERIMENTAL RESULTS

For the 802.11a Tx, the execution timing results on the PS
are shown in Fig. 3a. Looking at the whole processing chain,
it is clear that moving one processing block from SW to HW
does not necessarily cause speedup. The increase in Tx frame
time on ZC706 from V1 to V2 is proof. Since V1 is a SW-only
framework, it requires no AXI communication and saves some
time compared to V2, which adds only one small component to
HW. The time saved from implementing it in HW is much less
than the time spent on the PS-PL data transfer. After V2, the
maximum PS frame time decreases as more components are
moved onto the PL. The IFFT is the biggest bottleneck in the
Tx model, and moving it to PL in V3 results in the largest drop
in frame time. For the Rx, the execution timing results on the
PS are shown in Fig. 3b. Similar to the Tx, the Rx maximum
PS frame time decreases as more components are moved onto
the PL. Preamble detection is the biggest bottleneck in the Rx
model; moving it to PL in V2 results in the largest drop in
frame time. However, there are also significant drops when
the FFT is moved in V3 and the Viterbi Decoder is moved
in V6. Notably, moving the Descrambler component to PL in
V7 does not show a decrease in frame time, suggesting that
it may be better placed in SW. For an idea of how long the
same operations take to process on the PL, we look for the
maximum data path delay of the Tx and Rx, which are shown
in Table III. At under 320 ns, the Rx execution time on the
PL is much faster than any model variant on the PS. For the
Rx to keep up with the Tx, the sum of data path delay and the
time to transfer one sample from PL via AXI, ts,AXI , must
be less than the PL step time. In our trials, since the data path
delay is significantly less than the PL sample time, then the
Rx is able to operate at the Tx rate. If ts,AXI remains less
than 680 ns, which it does, then the Rx can match the Tx.

TABLE III: Data Path Delay & Power Consumption

Data Path Delay Power Consumption
Tx (ns) Rx (ns) Tx (W) Rx (W)

V1 n/a n/a 1.530 1.566
V2 11.11 313.70 1.819 2.343
V3 16.17 317.43 1.840 2.354
V4 18.33 311.14 1.845 2.111
V5 15.84 313.12 1.844 2.106
V6 16.52 307.73 1.847 2.111
V7 16.04 318.89 1.842 2.115

(a) Tx on Zedboard (b) Rx on ZC706
Fig. 4: PL Resource Utilization by Model Variant

The Tx resource utilization on the Zedboard is shown in
Fig. 4a. These results show increasing lookup table (LUT),
register, and digital signal processor (DSP) usage as more
components are put onto the PL. The number of registers
decreases slightly from V2 to V3 due to the different data
types involved. The slice registers hold state information that
reduces because V2 must transfer data in 32-bit sample form,
while V3 holds data in single-bit form. V2 must hold each
sample in complex, 16-bit fixed-point format before initiating
IFFT processing, and 64 data samples make up a frame. In
all model versions, even the PL-only variant, the FPGA is
at less than 5% utilization on the ZC706 and 20% on the
Zedboard, meaning that many LUTs and registers are available
for design enhancements. The Rx resource utilization on the
ZC706 is shown in Fig. 4b. Unlike the Tx, the Rx did not fit
on the Zedboard, so we had to use the ZC706. Like the Tx,
these Rx utilization results show increasing LUT, register, and
DSP usage as more components are put onto PL. The largest
Rx increase comes from the initial placement of preamble
detection on the PL in V2. The Rx uses a significant portion of
the FPGA resources, with as much as 60% of the total slices,
the main grouping of logic resources. Still, there remain many
LUTs and registers available for the next stages of our designs.

In addition to meeting timing and resource requirements,
we also want power-efficient designs. The Zynq PS has an
embedded ARM processor that uses less power than alterna-
tives like the x86 on the host PC. Since the Zynq platform
always provides power to the ARM processor, using the
FPGA fabric adds to the overall power usage, even though
the FPGA fabric is more power efficient. The FPGA power
consumption is directly related to the SoC chip area and
resource utilization. The power results were found by running
the Vivado power report with fixed environmental settings (e.g.



TABLE IV: Wireless Standard Components Comparison

802.11a 802.11g LTE

Scrambling (1) (1) (1)
Convolutional Coding

1/2 Rate (1) (1) (1)
2/3 Rate (2) (2) (2)
3/4 Rate (2) (2)

Digital Modulation
BPSK (1) (D)
QPSK (2) (D) (2)

16-QAM (2) (2)
64-QAM (2) (2)

Block Interleaving (1) (1) (1)
OFDM/MA (1) (1) (DL)
IFFT Size 64 64 128-2048

Cyclic Prefix (µs) 0.8 0.8 4.69-33.33
Preamble Detection (1) (2) (2)

(1) Implemented & Reusable, (2) Not Yet Implemented, but Reusable

output load 5 pF, ambient temperature 25 ◦C). The Tx and Rx
power consumption on the Zedboard and ZC706, respectively,
are shown in Table III. The Tx total power increases from
1.819 to 1.847 W as more components are placed on the
PL. However, this small increase of 28 mW is small when
compared to the Tx PS consumption, which alone is 1.53 W
on the Zedboard. Also as expected, the Rx power increases
as preamble detection and FFT are added to the PL. Since
each version of our Tx and Rx designs puts more processing
onto the FPGA, we would expect monotonic increases in the
overall power usage. However, we see a significant decrease
when BPSK is placed on the PL in V4. The reason for this
drop is mainly due to the data type change from samples to
coded bits for data transferred over AXI. Whereas V3 transfers
64 32-bit fixed point samples from PL to PS, V4 must only
transfer 48 bits via 2 32-bit integers, reducing the load on AXI
by a factor of 32. From V4 to V7, the power increase is 4 mW,
which is minor compared to the Rx PS usage of 1.566 W.

V. DISCUSSION

A major benefit of our flexible SDR testbed is the ability to
reuse components for alternate 802.11 and mobile standards.
A comparison of the protocol settings in 802.11a, 802.11g
(for Wi-Fi) and LTE (for mobile phones) standards is given in
Table IV. The functional blocks of our 802.11a implementa-
tion, especially scrambling and interleaving, can be reused in
a number of different standards. However, some modifications
would need to be made to support different convolutional
encoding rates besides 1/2 and digital modulation schemes
besides BPSK. In addition, OFDM requires different IFFT
sizes and cyclic prefix lengths, as well as flexible subcarrier
allotments to form OFDMA (‘MA’ for multiple access) used
in the downlink channel for LTE. This reusability allows us
to explore LTE and Wi-Fi coexistence on the same chan-
nel, TV whitespace reuse, and switching between different
standards. National Instruments also has a testbed for real-
time LTE/Wi-Fi coexistence [5], but our research is unique

in that it studies coexistence in the context of HW-SW co-
design. Considering LTE, larger amounts of control flow exist
compared to 802.11. Such control logic may be best placed on
the PS. This would require even more PS-PL communication
to administer functional changes, introducing multiple HW-
SW divide points. In this case, while streaming data is best
suited for AXI-stream, we may reserve AXI-lite channels for
infrequent control messages. Having prototyped on the Zynq,
our modeling environment can next be tested on alternate SoC
devices. For example, the Altera Arria 10 R© ARM-based SoC
offers performance improvement and power reduction. The
Zynq UltraScale+ Multi-Processing SoC (MPSoC) architec-
ture, which is designed for applications such as wireless, has
both a Cortex-A and a Cortex-R real-time processor that could
improve the SDR’s ability to adhere to specification times.

VI. CONCLUSIONS

We have demonstrated a method for automating HW-SW
co-designs for modern wireless transceivers. Our modeling
environment enables profiling of all processing blocks to
identify bottlenecks such as preamble detection. The envi-
ronment explores various HW-SW divide points, and identi-
fies which model variants are most desirable. It details the
interfacing necessary at the divide point, and shows when
variants consume more time and power as a result of heavy
data transfer. While power consumption generally increases
as more components are placed on programmable logic, the
amount is negligible compared to the embedded ARM.

In the future, we plan to perform tests with online radio
transmissions and measure error rates for the different co-
designs. This 802.11a PHY layer implementation will be used
as a basis for future work in MIMO, higher layers (e.g. MAC),
and LTE coexistence. We plan to test our modeling envi-
ronment on other SoC platforms. Our modeling environment
shows that automation of HW-SW co-designs is possible. As
a future extension, we intend to automatically decide the HW-
SW divide point and bundling of data for transfer, given a
user-specified wireless processing chain.

ACKNOWLEDGMENT

The authors would like to thank Analog Devices, Math-
Works, and Xilinx for their support and donations.

REFERENCES

[1] Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) specifications: High-speed Physical Layer in the 5 GHz Band,
IEEE Std. 802.11a-1999, 1999.

[2] M. Bansal et al., “Atomix: A Framework for Deploying Signal Processing
Applications on Wireless Infrastructure,” in USENIX Symposium on
Networked Systems Design and Implementation, NSDI, 2015.

[3] A. Dutta et al., “CODIPHY: Composing On-demand Intelligent Physical
Layers,” in Workshop on Software Radio Implementation Forum, 2013.

[4] M. C. Ng, K. E. Fleming et al., “Airblue: a System for Cross-layer
Wireless Protocol Development,” in Symposium on Architecture for
Networking and Communications Systems, ANCS, 2010.

[5] National Instruments, Inc. (2016) Real-time LTE/Wi-Fi Coexistence
Testbed. [Online]. Available: http://www.ni.com/white-paper/53044/en/


