
Attribute Allocation and Retrieval Scheme for Large-Scale

Sensor Networks

Ratnabali Biswas,
1,2

Kaushik Chowdhury
1
and Dharma P. Agrawal

1

Wireless sensor network is an emerging technology that enables remote monitoring of large
geographical regions. In this paper, we address the problem of distributing attributes over such
a large-scale sensor network so that the cost of data retrieval is minimized. The proposed

scheme is a data-centric storage scheme where the attributes are distributed over the network
depending on the correlations between them. The problem addressed here is similar to the
Allocation Problem of distributed databases. In this paper, we have defined the Allocation
Problem in the context of sensor networks and have proposed a scheme for finding a good

distribution of attributes to the sensor network. We also propose an architecture for query
processing given such a distribution of attributes. We analytically determine the conditions
under which the proposed architecture is beneficial and present simulation results to dem-

onstrate the same. To the best of our knowledge, this is the first attempt to determine an
allocation of attributes over a sensor network based on the correlations between attributes.

KEY WORDS: Data-centric storage; allocation problem; storage node; control node; correlation tree;
aggregation tree; hard threshold; soft threshold; update epoch

1. INTRODUCTION

Sensor networks are revolutionizing remote
monitoring applications because of their ease of
deployment, ad hoc connectivity and cost effective-
ness. Such networks might be expected to serve
multiple applications simultaneously. For example,
given a geographical area, the user might want to
deploy a sensor network that assists in ecosystem
monitoring, weather monitoring, precision agricul-
ture, etc. For each application the user would want
the network to sense specific physical attributes (e.g.
humidity, temperature, light, etc. for weather moni-
toring application; temperature, light, presence of
chemicals etc. for precision agriculture application
and so on.) and consequently would expect the sensor
network to respond to some user-defined queries.

Since such large-scale sensor networks would be
expected to serve a substantial number of queries
simultaneously for several applications, the number
of attributes sensed by the network would also be
substantial. Since a major resource constraint of
sensor networks is the limited battery life of sensor
nodes, protocols designed for sensor networks should
minimize energy consumption of the network. At the
node level, data communication is the dominant
component of energy consumption, and hence sensor
network protocols are geared towards reducing
communication in the network [1].

The proposed Data-Centric Attribute Allocation
and Retrieval (DCAAR) scheme is designed for
minimizing the communication cost involved in data
retrieval from large-scale sensor networks. The pro-
posed scheme is a data-centric storage scheme where
data is stored at a particular network location and
queries for that data are directly routed to that
location without flooding the network. As is true for
all data-centric storage schemes [2], the proposed
scheme is not always the method of choice, but is

1 OBR Research Center for Distributed and Mobile Computing,

Department of ECECS, University of Cincinnati, Cincinnati, OH

45221-0030, USA.
2 E-mail: biswasr@ececs.uc.edu

International Journal of Wireless Information Networks, Vol. 13, No. 4, October 2006 (� 2006)
DOI: 10.1007/s10776-006-0037-y

303
1068-9605/06/1000-0303/0 � 2006 Springer Science+Business Media, Inc.

preferable under certain conditions. Thus, using both
analysis and simulation studies, we have determined
the conditions under which the DCAAR scheme
should be preferred. Future sensor networks are
expected to support several protocols, with middle-
ware software allowing a user to select the preferred
protocol as per his requirements.

The rest of the paper is organized as follows.
Section 2 lists some related research in the area of
data storage in sensor networks. Section 3 defines the
problem that this paper addresses, while Section 4
presents the proposed architecture to demonstrate
how a distribution of attributes can be used to
facilitate query processing in sensor networks. The
methodology for determining a good distribution of
attributes is presented in Section 5. Section 6 deter-
mines analytically the conditions under which the
DCAAR scheme should be preferred. The simulation
results are discussed in Section 7, while Section 8
concludes the paper.

2. RELATED WORK

There have been different approaches for storing
data in sensor networks. Earlier sensor network
systems stored sensor data externally at a remote
base station (external storage) or locally at the nodes
which generated them (local storage). Recently there
has been a paradigm shift so that a technique called
data-centric storage (DCS) now allows events to be
stored at specific rendezvous points within the net-
work that queries can access directly. Shenker et al.
[2] proposed the DCS scheme and have shown that
DCS outperforms other approaches such as external
storage (ES) and local storage (LS) under certain
circumstances. However, data-centric storage brings
forth the challenge of storing the sensed data in a
manner that assists in its retrieval for query process-
ing. Furthermore, a query processing architecture
needs to be defined for retrieving the stored data.
Also, the data stored at specific rendezvous points
needs to be updated in response to environmental
changes. Thus, an efficient update mechanism needs
to be designed such that the application quality-of-
service requirements are maintained. Ratnasamy
et al. [3] have proposed Geographic Hash Table
(GHT) as a specific solution to achieve DCS in sensor
networks. GHT hashes user-defined events (e.g.
earthquakes, animal sightings) into geographic coor-
dinates. GHT is inspired by Internet-scale Distrib-
uted Hash Table (DHT) systems such as Chord [4]

and CAN [5]. Thus GHT hashes event names into
geographic locations and stores the event at the
sensor node closest to the hashed location.
Greenstein et al. [6] have further extended the DCS
architecture by designing DIFS, a spatially distrib-
uted index to efficiently support range queries (i.e.
queries where only events with attributes in a certain
range are desired). DIFS builds on top of GHT and
constructs a multiply-rooted hierarchical index where
nodes store event information for a particular range
of values detected within a particular geographical
region. Higher-level nodes cover smaller ranges
detected within large geographic regions, while
lower-level nodes cover wider range of values from
within a smaller geographic region. In a similar work,
Li et al. [7], have built a distributed index (DIM) for
multidimensional data. DIM supports multi-dimen-
sional range queries such as ‘‘List all events whose
temperature lies between 50� and 60�, and whose light
levels lie between 10 and 15¢¢. In another work, Ghose
et al. [8] have proposed Resilient Data-Centric Stor-
age (R-DCS) as a method to achieve scalability and
resilience by replicating data at strategic locations in
the sensor network.

In this paper, we also propose a data-centric
storage scheme for distributing attributes over a
sensor network depending on the correlations between
attributes and hence translate the allocation problem
of distributed databases to the context of sensor
networks. The proposed approach differs from the
existing data-centric approaches in that it attempts to
distribute attributes instead of specific user-defined
events. We reason as follows. If an attribute is
included in many events, then the values for that
attribute have to be replicated and stored at different
places in the network for each individual event. In our
proposed approach, the attribute need not be repli-
cated at multiple places and hence saves communica-
tion cost involved in storing and replicating data.
Instead every attribute is stored at a predefined
location within the network such that attributes that
are a part of the same query are stored near each other
to facilitate data retrieval. Thus it is similar to the
Allocation Problem of distributed databases where a
set of attributes need to be distributed over a number
of sites, such that, in serving a predefined set of queries
the communication between sites is minimized. In a
similar manner, in this paper we present a scheme for
storing attributes in the sensor network such that the
communication involved in serving a predefined set of
user queries can be minimized. Since all values of a
particular attribute are stored at one geographical

304 Biswas, Chowdhury, and Agrawal

location, the proposed architecture easily supports
range queries. Also storing attributes belonging to
the same query near each other, facilitates efficient
querying of multidimensional data.

3. THE ALLOCATION PROBLEM

Sensor networks can be envisioned as a large
distributed database where the sensor nodes generate
named data against user-specified queries. Hence, the
Allocation Problem of distributed databases can be
redefined in the context of sensor networks as
follows. ‘‘Assume that there are a set of sensed
attributes A ¼ fA1;A2; . . .;Amg and a network S of
sensor nodes which have to serve a set of queries
Q ¼ fQ1;Q2; . . .;Qqg. The allocation problem involves
in finding the optimal distribution of A to S.’’ Here, the
optimality can be defined with respect to minimal
energy consumption and hence minimal communica-
tion required in serving the set of queries Q. This is
similar to the Allocation Problem of distributed
databases which can be stated as ‘‘Given a relation
R (i.e. a set of attributes), a set of queries Q, and a set
of sites S where queries in Q run, the allocation
problem involves finding the optimal distribution of
R to S that minimizes the cost of evaluating Q’’. For
databases, the Allocation Problem involves finding
disjoint fragments (group of attributes which are
accessed together) that are distributed at independent
sites. On the other hand, for sensor networks all the
attributes are distributed over the same two-dimen-
sional geographical area, such that the communica-
tion involved in dissemination of query and retrieval
of data for the set of queries Q is minimized.

As in the case of distributed databases, some
statistics about query runs (e.g. query access fre-
quency, attribute affinity) are required to solve the
allocation problem. Thus, it is assumed that a set of
priorities p1; p2; . . . ; pq

� �
are available for the queries

Q1;Q2; . . . ;Qq

� �
. The priority pi of a query Qi could

depict either the probability with which query Qi is
issued per unit time or the frequency of tuples
generated for query Qi per unit time or a combination
of both. These valuesmay be set by the system designer
to specify the relative priorities of queries and are
normalized such that

Pq
i¼1 pi ¼ 1. Each query Qi can

be modeled by the set of attributes included
in the query i.e., Qi ¼ fAi1 ;Ai2 ; . . . ;AikgðAip 2
fA1;A2; . . . ;Amg; p ¼ 1; . . . ; kÞ. The sensor nodes are
assumed to be uniformly deployed over a rectangular
region. Thus, the objective is to distribute the m

attributes fA1;A2; . . .;Amg over this rectangular field
of sensor nodes. To do so, the rectangular area is split
into a gridG of size j

ffiffiffiffi
m
p
j � j

ffiffiffiffi
m
p
j and each attributeAi

is allocated to a particular grid cell. The allocation
problem thus reduces to finding an optimal
distribution of m attributes over a j

ffiffiffiffi
m
p
j � j

ffiffiffiffi
m
p
j grid.

Let f:A fi G be an optimal distribution function.
Thus f Akð Þ ¼ xk; ykð Þ; xk 2 f1; . . . ; j

ffiffiffiffi
m
p
jg; yk 2

f1; . . . ; j
ffiffiffiffi
m
p
jg implies that attribute Ak should be

stored in grid cell (xk, yk) of the deployed rectangular
sensor network. The function f then attempts to
minimize the following two costs for each query
Qi; i ¼ 1; . . .; q:

• Query Evaluation Cost Ci
E: This is the cost of

aggregating resultant tuples for all the attri-
butes Ai1 ;Ai2 ; . . . ;Aikf g specified in the query
Qi. For minimizing this cost, attributes belong-
ing to the same query should be placed near
each other in the grid, i.e. the cost of the
minimum spanning tree joining the grid cells
xi1 ; yi1ð Þ; xi2 ; yi2ð Þ; . . . ; xik ; yikð Þf g should be

minimized.
• Query Access Cost Ci

A: This includes the cost
of query dissemination from the sink and
result delivery to the sink. In order to mini-
mize this cost, the query attributes should be
placed close to the sink.

Thus, the function f should minimize the total
query evaluation costCEð

Pq
i¼1 C

i
EÞ and the total query

access cost CAð
Pq

i¼1 C
i
AÞ for the set of queries Q.

This distribution f should be made available to all
the nodes in the network so that every node is aware
about where every attribute is stored in the network.
The method of determining the function f is explained
in Section 5. Since the proposed method for comput-
ing the function f is topology independent, each sensor
node may compute f independently. However, to
reduce the overhead involved in performing the same
redundant computation all over the network, the
function f may be computed at the sink and then sent
to all the nodes in the network. For now, let us assume
that such a function f is available to all the nodes in
network and analyze how it facilitates query process-
ing in a large sensor network.

4. PROPOSED ARCHITECTURE

As mentioned in Section 3, the entire network is
divided into a j

ffiffiffiffi
m
p
j � j

ffiffiffiffi
m
p
j grid. Each sensor node is

305Attribute Allocation and Retrieval Scheme for Large-Scale Sensor Networks

assumed to be location-aware [9,10] and hence can
determine which grid-cell it belongs to. The number of
sensor nodes in each grid cell depends on the density
and distribution of nodes in the sensor network. Given
the function f (as computed inSection 5), each attribute
Ai is then assigned a grid cell f(Ai) of the network. The
grid cell f(Ai) is responsible for storing values of the
attribute Ai. Thus, even though the attribute Ai is
sensed all over the network (assuming complete
sensing coverage), the values of the attribute are stored
in the grid cell f(Ai) and every node in the network
knows in which grid cell each attribute is stored.

The grid cell f(Ai) responsible for storing attribute
Ai, is referred to as the zone for attribute Ai and
denoted by Zi. Only some of the nodes in the zone Zi

actually store the values for the attribute Ai. These
nodes are called the storage nodes for Ai. The number
of storage nodes required for an attribute Ai depends
on the amount of data values corresponding to
attribute Ai and the storage capacity of each sensor
node. To facilitate data retrieval from these storage
nodes, one node in every zone is designated as the
control node. The control node is responsible for
fetching data from the storage nodes using specialized
indexes that it maintains. Some of the remaining nodes
in a zone may store redundant or summary informa-
tion about attribute values to provide fault tolerance
and are hence called the replica nodes. Figure 5 shows
the proposed architecture where the control node is the
node nearest to the center of each zone.

4.1. Processing of Queries

The steps involved in serving a query are as
follows:

• Sink gets a queryQi ¼ Ai1 ;Ai2 ; . . . ;Aikf gwhose
attributes are stored in the zones
Zi1 ;Zi2 ; . . . ;Zikf g.

• The sink computes the optimal route for
disseminating the query to the zones
Zi1 ;Zi2 ; . . . ;Zikf g storing the query attributes.

The optimal route for retrieving the attributes
Ai1 ;Ai2 ; . . . ;Aikf g would essentially be the min-

imum spanning tree joining sink with the zones
Zi1 ;Zi2 ; . . . ;Zikf g. The complexity involved in

calculating this route is minimal (any minimum
spanning tree algorithm may be used) since a
query usually contains a limited number of
attributes.

• The computed route is used for routing the
query and routing the resultant data tuples

back to the sink. Suppose the sink sends the
query to zone Zij .

• The control node of zone Zij uses its stored
indexes to retrieve relevant values of Aij from
the storage nodes.

• While routing the data to the sink, the control
nodes of the respective storage zones use
aggregation [11,12] and in-network processing
mechanisms [13,14] to further reduce the
amount of data transfer in the network.

4.2. Updating of Stored Data

The proposed architecture achieves efficiency in
query processing at the cost of maintaining updated
values of all the attributes in the zones where they are
stored. To reduce the control overhead involved in
this maintenance, a soft threshold and timer-based
scheme may be used as follows:

• Suppose a sensor node in zone Zi senses an
attribute Ak. Suppose the soft threshold for
attribute Ak is /k. If the difference between the
previously sensed value and the current value
of Ak is more than /k, the current value needs
to be reported to the storage zone Zk housing
Ak. However, instead of sending update mes-
sages for every individual node fluctuation, the
sensor node first sends an update message to
the control node of its own zone Zi.

• The control node of Zi waits for a predefined
time interval Tk. All the update messages for
Ak that the control node receives from nodes
in its own grid cell during time Tk are then
combined into aggregate update message(s)
and sent to zone Zk housing Ak. The duration
Tk is called the update epoch for attribute Ak.

Increasing the soft threshold and the update
epoch reduces the frequency with which the attributes
are updated. Reducing the number the update mes-
sages in turn reduces the communication overhead
involved in maintaining updated values of the attri-
butes in their respective storage zones. However,
increasing the soft threshold and update epoch also
reduces the probability of the zone Zk having
updated values of Ak. This in turn, reduces the
probability that queries accessing Ak would receive
the current values for Ak as sensed by the network
which might be a serious problem for critical data.
Thus, depending on how critical an attribute is, a

306 Biswas, Chowdhury, and Agrawal

suitable soft threshold and update epoch may be
chosen to balance the tradeoff between energy-effi-
ciency and accuracy.

Note that all the messages (viz. query message,
update message or resultant data tuple) can be routed
in the network using geographic routing protocols
like GPSR [15].

4.3. Advantages and Limitations

As with all data-centric storage schemes, the
proposed DCAAR scheme obviates the need for
flooding queries in the network. The user response
time for queries is also minimized. Moreover,
DCAAR minimizes both the query access cost and
the query evaluation cost. In addition to these
benefits, having all values of an attribute at one place
provides helpful global context for evaluating local
data. For example, sensed temperature values could
be compared against the average temperature value
of the network to detect fires or other local temper-
ature spikes. Furthermore, user-defined parameters
like soft threshold and update epoch allow the user to
tune the performance of the system as per his
requirements.

The DCAAR scheme works well as long as the
overhead of sending update messages to storage
zones does not supersede the advantage of minimiz-
ing the query cost. That is, if the attributes are such
that they have very frequent fluctuations or fluctua-
tions continually occur all over the network while the
queries are not frequent enough, then more energy
may be expended in proactively maintaining updated
values in storage zones. However, since most real-life
physical phenomena are localized, the fluctuations
can be considered to be mostly local and not too
many. Consequently, the DCAAR scheme should
perform well in most real-life situations.

5. ATTRIBUTE ALLOCATION

METHODOLOGY

Having discussed the benefits of distributing
attributes over a sensor network and how it assists in
efficient query processing, this section focuses on the
methodology for determining a good distribution of
attributes such that the total cost of serving a set of
user-defined queries is minimized. The methodology
has two phases. In the first phase, the query priorities
are used to determine correlations between each pair
of attributes. In the second phase the correlations are

used to determine the distribution of attributes to
the rectangular sensor network. To illustrate the
proposed methodology, consider an example set of
queries as listed in Table I.

5.1. Phase 1: Determining Correlations

Query priorities can be used to determine corre-
lations between attributes. If a pair of attributes is a
part of a high priority query, then the attributes may
be considered to have a high correlation between
them since they would be accessed together very
frequently. Similarly, if a pair of attributes is never
accessed together in the same query, the attributes
may be considered to not have any correlation
between them. The distribution function should then
store attributes with higher correlations closer to each
other. The correlations between all the attributes can
be represented by a tree of attributes where the edge
weights between a pair of attributes represent the
correlation between them. Using this data structure
and its represented correlations, the distribution of
attributes can be determined. Also attributes that are
accessed more frequently should be stored closer to
the sink. The individual access probability P(Ai) of an
attribute Ai can be computed as follows:

P Aið Þ ¼
Xq

j¼1
P Qj

� �
P AijQj

� �
; 8i ¼ 1; . . . ;m;

where

PðQiÞ ¼ pj; 8j ¼ 1; . . . ;m and

P AijQj

� �
¼

1; Ai 2 Qj

0; Ai j2Qj

�
ð1Þ

Table I. List of queries in ascending order of priorities

Qi pi Ai Qi pi Ai

Q30 0.0001 A6 Q10 0.0044 A20

Q29 0.0001 A12,A19 Q6 0.0052 A7

Q24 0.0001 A10,A16 Q8 0.0063 A5,A8,A11

Q27 0.0001 A12,A18 Q22 0.0117 A1,A6,A11,A16

Q18 0.0001 A4,A8,A12,A19 Q26 0.0136 A14,A20,A6

Q12 0.0001 A13,A16 Q14 0.0161 A3,A7

Q23 0.0005 A1,A6,A11 Q4 0.0185 A5,A7,A9

Q15 0.0005 A11 Q16 0.0189 A15

Q17 0.0007 A19,A3, A7,A11,A15 Q2 0.0246 A8,A16,A4,A12,A20

Q28 0.0007 A5 Q13 0.0510 A19

Q21 0.0008 A16 Q25 0.1017 A8

Q20 0.0010 A8,A13 Q19 0.1179 A16,A20,A4

Q3 0.0011 A9,A18,A7,A20 Q5 0.1185 A6,A16

Q11 0.0015 A4,A7,A10 Q1 0.1994 A1,A3,A5,A7,A9

Q9 0.0015 A14,A17 Q7 0.2833 A2,A15,A17,A19

307Attribute Allocation and Retrieval Scheme for Large-Scale Sensor Networks

Table II gives the individual access probabilities for
the attributes involved in the queries listed in Table I.
To represent the relative ordering of attributes with
respect to their individual access probabilities of
attributes, attributes are represented in the form of a
heap so that if attribute Ai is parent of Aj then P(Ai) ‡
P(Aj). This heap-like data structure is referred to as
the correlation tree and it gives a synoptic view of all
the correlations between attributes as also the relative
ordering of attributes with respect to their individual
access probabilities and thereby assists in determining
a good distribution function f.

To create a correlation tree for a given set of
queries, to start with each query is represented as a
tree of depth 1 and then these individual query trees
are combined to form a comprehensive correlation
tree. Figure 1 shows the query tree corresponding to
query Q7 listed in Table I. Since the correlation tree
should have a heap-like structure, the attribute in the
query having the highest access probability is made
the root of the corresponding query tree (refer to
access probabilities listed in Table II). Hence attri-
bute A19 becomes the root for query tree for Q7. Also
as mentioned before, the edge weights depict the
correlation between the attributes joined by the edge.
For the initial query tree, the edge weights are simply
the query priorities. Such a query tree is created for
every given query. These query trees are combined to
form the final correlation tree. This is done iteratively
by selecting query trees in ascending order of their
associated query priorities.

The process is illustrated using the set of queries
listed in Table I. First the query tree corresponding to

Q30 is selected and set to be the initial partial
correlation tree. Next the query tree corresponding
to query Q29 is combined with the partial correlation
tree. The process of combining query trees continues
using usual tree union algorithms, reinforcing edge
weights as required. However, special consideration is
required when an attribute has different parents in the
query tree to be added and the partial correlation
tree, respectively. To illustrate this, consider the
partial correlation tree after query tree for query
Q23 has been added (Figure 2). While attempting to
add query tree for Q17, it is found that attribute A11

has attribute A19 as parent in the query tree but
attribute A1 as parent in the partial correlation tree.
Thus, it needs to be decided as to which attribute
should be parent of A11 in the new correlation tree.
The attribute with which A11 has higher correlation
should be chosen, because the second stage of the
methodology allocates attributes to grid cells such
that attributes are stored closer to their parent
attribute. Also, since every child attribute is stored
near its parent, the sibling attributes also end up
being stored fairly close to each other in the grid.
Thus the other parent is made a sibling of the
attribute as shown in Figure 3. A triplet of values
(.0005,1,11) called the virtual weight is assigned to
both attributes A1 and A11 to signify the correlation
that attribute A11 has with attribute A1 even though
they do not share a parent–child relationship in the
tree. Also note that attribute A11 could be made a

Table II. List of attributes with access probabilities

Ai Pi(Ai) Ai Pi(Ai) Ai Pi(Ai)

A1 0.2116 A8 0.1337 A15 0.3029

A2 0.2833 A9 0.2190 A16 0.2737

A3 0.2162 A10 0.0016 A17 0.2848

A4 0.1441 A11 0.0197 A18 0.0012

A5 0.2249 A12 0.0249 A19 0.3352

A6 0.1444 A13 0.0011 A20 0.1616

A7 0.2425 A14 0.0151

19 16 1

6131084 1112

18

.0005.0
00

5

.0001

.0001

.0
00

1

.00
02

.0
00

1

.0
00

1

Fig. 2. Partial correlation tree after adding query Q23.

12

19

184 11 7 15

618 5

10 13

16

.0
00

1

.0001
.00

01

.0
00

5

.0001.0
00

1.0007.0007

.0007.0002 .0007

3

Fig. 3. Partial correlation tree after adding query Q17.

19

15 172

.28
33

.2
83

3

.2833

Fig. 1. Query tree for query Q7.

308 Biswas, Chowdhury, and Agrawal

child of attribute A19 because P(A11)<P(A19). If A19

had a higher individual probability, then the position
of A11 in the tree had to be adjusted using usual heap
creation algorithm.

If any edge has to be deleted in the process, a
cost-benefit analysis is performed to ensure that the
benefit > cost, where cost and benefit are defined as
follows,

Cost = Sum of effective weights of deleted
edges

Benefit = Sum of effective weights of new edges
where effective weight w0T Ai;Aj

� �
of an edge Ai;Aj

� �

is,

w
0

T Ai;Aj

� �
¼ wTðAi;AjÞ þ Rfvirtual weights of Ajg

and value of a virtual weight ðv;Ay;AzÞ is,

ðm;Ay;AzÞ ¼ m if Ay and Az are siblings
0 otherwise

n
:

The final correlation tree for the set of queries in
Table I is shown in Figure 4. The virtual weights
have not been shown to preserve clarity of the figure.

5.2. Phase 2: Allocating Attributes

Once the correlation tree has been constructed, it
can be used to determine the distribution of attributes
to the grid such that the more frequently accessed
attributes are closer to the sink and the attributes

with higher correlations are stored closer to each
other. The sink is assumed to be in any random
location of the network. Hence, more frequently
accessed attributes are stored as close to the centre of
the grid since the centre is the position that is easily
accessible from any random position in the region.
The attribute having the maximum access probability
is allocated to the central-most grid cell. Then,
attributes are chosen iteratively in descending order
of their access probabilities and grid cells for storing
them are determined using the correlation tree. If the
attribute does not have a parent in the correlation
tree, it is allocated the grid cell nearest to the centre.
However, there may be multiple available grid cells at
the same distance from the centre. In that case, the
optimal grid cell is the one for which adjacent
already-allocated attributes have the least number
of unassigned children. The justification for choosing
such a cell is that, if a cell C is surrounded with
attributes that have more number of unassigned
children attributes, then it would be preferable to
leave C for those unassigned children attributes when
other options are available. Now consider the case
where the correlation that an attribute has with its
parent is the same as its own access probability. This
implies that any query that accesses it also accesses its
parent. In that case, the attribute should be stored
close to its parent. However, there may be more than
one cell at the same distance from its parent. In this
case, the optimal grid cell is the one farthest from the

19

15 16 17 2

11 8 4 12 20

141531091813

.00
1

.00
11

.2
19

.0
01

5 .2155

.2179

.1944 .0136

.1302
.1425

.0246

.1425

.0246.0117

.2833.2833

.284

67

Fig. 4. Correlation tree.

309Attribute Allocation and Retrieval Scheme for Large-Scale Sensor Networks

centre. This can be justified by the fact that the
available cells near the centre are left for attributes
that need to be stored close to the centre. Finally,
consider the case where the attribute has correlations
with multiple attributes. In such a situation, the
DCAAR scheme attempts to allocate the attribute to
an available grid cell, such that the distance between
storage zones of attributes is inversely proportional
to the respective correlation value.

Figure 5 shows the allocation of attributes to the
grid with the assistance of the correlation tree of
Figure 4. Note that attribute A19 has highest individ-
ual probability and hence is in the centre. Attributes
A15, A17, A2 and A16 are then selected in descending
order of probabilities and stored near A19. Attribute
A7 is then stored near its parent A16 while A5 is stored
near its parent A7 and so on. Also note that query Q7

that has the highest priority has all its attributes A2,
A15, A17 and A19 stored near the centre adjacent to
each other. Some of the grid cells in Figure 5 are
empty since the number of attributes in our example
query set (Table I) is less than the number of grid
cells. These empty unassigned grid cells can be used
later for fault tolerance and load balancing.

6. ANALYSIS

To analyze the performance of the DCAAR
scheme, we study the energy consumed in querying
the network and maintaining updated values in
storage zones. As mentioned in Section 2, the existing
data-centric storage schemes store user-defined events
instead of individual attributes. Thus we compare the

energy consumption of DCAAR with that of TAG
[12]. In TAG, individual attribute values are stored
locally at nodes that generate them and an aggrega-
tion tree spanning all the sensor nodes is formed in a
distributed manner to perform in-network aggrega-
tion while delivering query results to the sink. For
both DCAAR and TAG, it is assumed that the query
selection predicate specifies a hard threshold F for a
query attribute, and only those attribute readings
greater than the hard threshold F are reported to the
sink. Furthermore, as mentioned in Section 4.2,
update messages are sent in the DCAAR scheme
only when the soft threshold / is crossed. The sink is
assumed to be at the centre of the network as shown
in Figure 6. It is also assumed that the communica-
tion between nodes of a grid cell and their respective
control nodes, the sink and the control nodes, as well
as nodes in different levels of the aggregation tree all
pack available data in the fewest possible packets.
The parameters used in the analysis are listed in
Table III.

6.1. Energy Cost of Aggregation Tree (AT)

The queries are propagated downwards till every
leaf node in the AT is reached. The AT is rooted at
the sink and thus spreads outwards from the center of
the region. For best case performance, the AT is
assumed to span the region uniformly. We divide the
entire area into n concentric square regions, each of
width r as shown in Figure 6a. The nodes present in
the ith concentric region are assumed to be at a depth
i in the AT. Thus n is the depth of the tree where
2nr = L.

Fig. 5. Allocation of attributes to grid.

Table III. Parameters used in analysis

Ntotal Total number of nodes in the network

A(i) Area of sub-region at depth i

r Transmission radius

L Length of a side of the deployed region

F Hard threshold

/ Soft threshold

n Ratio of information generated by a single

node to size of data packet

Ptx Transmission cost of a single packet

d Length of a side of the sub-region

N Nodes reporting a reading >F
N¢ Nodes reporting a reading >/
D(sk,stg) Distance between sink and storage region

l Frequency of attribute value crossing F
l¢ Frequency of attribute value crossing /
fQ Query frequency

310 Biswas, Chowdhury, and Agrawal

Area of region i is AðiÞ ¼ 4ð2i� 1Þr2;
i ¼ 1; 2; 3; . . .; n.

The probability that a node lies in region i is
given by pðiÞ ¼ AðiÞ

L2 . Thus, out of N nodes, the number
of nodes in the ith region is given by Np(i). Conse-
quently, the energy cost incurred at each level is
E(i)=I(i)� n � Ptx and the total energy is given by

EDataðATÞ ¼
Pn

i¼1
EðiÞ. We now calculate I(i), the total

number of packets transmitted at level i of the
aggregation tree. This includes the total number of
packets generated at level i as well as the packets
arriving at level i from level i + 1. Thus a recursive
relation is obtained as follows as:

I nð Þ ¼ 4Nð2n� 1Þ r

L

� �2
;

I n� 1ð Þ ¼ 4Nð2n� 3Þ r

L

� �2
þI nð Þ; . . . ;

and

I 1ð Þ ¼ 4N
r

L

� �2
þI 2ð Þ

Thus the total incurred communication cost,

EDataðATÞ ¼
Xn

i¼1
IðnÞ

" #

� n� Ptx

Through algebraic manipulation,

I 1ð Þ ¼ 4N
r

L

� �2
nð Þ2; I 2ð Þ ¼ 4N

r

L

� �2
½ nð Þ2�1�; . . . ;

I ið Þ ¼ 4N
r

L

� �2
½ nð Þ2�ði� 1Þ2�;

Therefore,

Xn

i¼1
IðnÞ

" #

� n� Ptx

¼ 4N
r

L

� �2
nPtx n3 � n n� 1ð Þ 2n� 1ð Þ

6

	

ð2Þ

Since each node forwards the query exactly once, the
initial cost of propagating the query down the tree is
given by

EQueryðATÞ ¼ NtotalPtx ð3Þ

For query-driven systems, information is sent to the
sink only in response to a query. Hence, total cost of
query dissemination and aggregation is,

ETotal ATð ÞP¼ fQ EQueryðATÞ þ EDataðATÞ
� �

ð4Þ

The total cost incurred in event-driven systems is
dependent on the number of reports generated by the
system with EQuery(AT) =0. In this case, the cost is,

ETotal ATð ÞR¼ EDataðATÞl

6.2. Energy Cost of DCAAR Scheme

Let us assume that the storage region X in
Figure 6b stores the values for the desired query
attribute. The squares marked �1� represent the first
tier of surrounding sub-regions, those marked �2�
indicate the second tier and so on. We approximate
the distance from any node of the ith tier to the center
of X as id and this distance is traversed in id/r hops.
Thus the probability of a node lying in regions marked
1, 2, is, p 1ð Þ ¼ 8d 2

L2 ; p 2ð Þ ¼ 16d 2

L2 . . . up to º L/2d ß tiers.

Hence, p ið Þ ¼ 8id 2

L2 where i=1,2, ..., º L/2d ß
N¢ number of nodes report update messages to

control nodes of their own grid cell. In the worst case
scenario, the reporting nodes are furthest away from

Fig. 6. Aggregation tree vs. DCAAR.

311Attribute Allocation and Retrieval Scheme for Large-Scale Sensor Networks

the control node at a distance of d/r hops. Thus
energy spent in this update is,

EUpdate ¼ N0
d

r

� �
Ptx

The number of nodes reporting update of attribute
values in tier i is N¢p(i). Energy cost associated with
all control nodes in tier i reporting aggregated update
message to region X is,

E ið Þ ¼ 8iN0d2

L2

di

r

� �
nPtx ð5Þ

Thus, in one reporting event, total energy spent by all
control nodes in reporting data to the storage region
hosting that attribute is given by

EDataðDSÞ ¼
XL=2d

i¼1
E ið Þ ¼ 8N0d3

rL2
nPtx

XL=2d

i¼1
i2

¼
XL=2d

i¼1
E ið Þ ¼ 2N0d3

3rL2
nPtx

ðL=dÞðL=2dþ 1ÞðL=dþ 1Þ½ � ð6Þ

The storage region receives queries from the sink with
a frequency fQ and incurs a query cost of

EQueryðDSÞ ¼ Dðsk;stgÞ
r Ptx. The consequent reply from

the storage region to the sink incurs a cost of

EReplyðDSÞ ¼ Dðsk;stgÞ
r NnPtx

The total energy expended in our scheme is given
by

ETotalðDSÞ ¼fQ EQueryðDSÞ þ EReplyðDSÞ
� �

þ ðEDataðDSÞ þ EUpdateÞl0 ð7Þ

Thus, the DCAAR scheme should be preferred only
when ETotal (DS)<ETotal (AT) i.e.

fQ EQuery DSð Þ þ EReply DSð Þ
� �

þ EData DSð Þ þ EUpdate

� �
l0

<
fQ EQuery ATð Þ þ EData ATð Þ
� �

(Query – driven)

EData ATð Þl (Event – driven)

(

ð8Þ
To validate our models of the aggregation tree and
DCAAR scheme, we simulated a testbed of 1030
nodes distributed randomly in an area of 630� 630
square units. A node at (x,y) is given an initial
attribute value calculated by the function
Z ¼ 20ð1þ sinðRÞ=RÞ, where R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
þ 0:5.

We allow 15 possible fluctuations in the sensed

attribute, but the decision to undergo a change was
taken locally at each node with probability 0.3. The
magnitude of change is ±1.8 and is a function of a
uniformly distributed random variable. At the end of
the simulation we obtained an average of 340 nodes
crossing u = 0.7 at each fluctuation and those that
are over F = 22 averaged at 380. The other constant
simulation parameters are as described in Section 7.
The calculated and observed values are summarized
in Table IV and are in good agreement thereby
validating our model. As predicted by Eq. 8,
DCAAR has lower energy cost under these condi-
tions and is the preferred choice.

7. SIMULATION RESULTS

Using Simjava [16], a general discrete event
simulator, we have conducted extensive simulations
to compare the performance of the proposed
DCAAR scheme with that of the aggregation tree
(AT) algorithm of TAG [12].

7.1. Simulation Environment

For simulation studies, 1030 nodes have been
randomly dispersed in a square area of 630� 630
units, each node having a transmission range of 40
units. Each packet of 30 bytes is transmitted over a
20 kbps channel, incurring a cost of 0.81 and 0.3 mW
for transmission and reception, respectively. To
investigate the performance of the DCAAR scheme,
we split the area into 49 subregions, each of side 90
units. It is assumed that the communication between
nodes of a grid cell and their respective control nodes,
the sink and the control nodes, as well as nodes in
different levels of the aggregation tree, pack available
data in the fewest possible packets. We assume that
the sink is at the centre of the network. To evaluate
the best case performance of the proposed DCAAR
scheme, the attribute queried is assumed to be stored
in the central grid cell (i.e. nearest to the sink). To
measure the worst case performance, the sink queries
an attribute that is stored in a grid cell further away

Table IV. Energy cost analysis (mJ)

DCAAR Aggregation tree

Simulation Calculated Simulation Calculated

19.7311 19.5864 26.351 21.073

312 Biswas, Chowdhury, and Agrawal

from the centre of the network. Energy consump-
tion has been used as the metric to compare the
DCAAR scheme with the aggregation tree (AT)
algorithm of TAG. For both the schemes, only
those readings greater than the hard threshold are
reported to the sink. Furthermore, for the proposed
DCAAR scheme, the update messages are sent only
when the soft threshold is breached. Experiments
have been conducted for computing energy con-
sumption against varying query rate and attribute
fluctuation frequency as described in the following
sections.

7.2. Effect of Query Rate on Performance

First the rate of fluctuations is kept constant and
the query rate is varied (Figure 7a, b). The DCAAR
scheme shows marginal performance degradation at
lower query rates. As the sink injects progressively
greater number of queries per unit time, the DCAAR
scheme performs increasingly better than the AT
algorithm. The reason is as follows. The cost of
flooding the query down to the leaf level of the AT
and then retrieving the information essentially
requires O(n) transmissions. In the proposed
DCAAR scheme (and more so for the considered

topology), this is accomplished in a single transmis-
sion between the control node in the storage region
and the sink, as is evident from the minimal
DCAAR-Query cost. However, there is a constant
overhead of updating the storage region for the nodes
which show a variation in the sensed attribute. This is
reflected in the almost constant DCAAR-Update
cost. Figure 7b shows results for the scenario where
the attribute stored at a subregion far from the sink is
accessed by a periodic query. Here the break-even
point is reached when the query rate is 22 (unlike
eight in the best case), after which DCAAR performs
much better than AT.

7.3. Effect of Fluctuation Rate on Performance

In this experiment (Figure 7c, d), the rate of
fluctuations has been varied, while maintaining a
steady query rate of 20 queries/simulation time. It can
be observed that with an increase in the number of
fluctuations, the DCAAR scheme is no longer pref-
erable to the AT scheme after the break-even point.
The AT performs at a steady energy cost as nodes,
while sensing the changed attribute values, see no
need of reporting it unless a query message is
received. The minor increase in energy cost of AT

5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

Queries / Simulation time
5 10 15 20 25 30 35 40

Queries / Simulation time

E
ne

rg
y

co
st

 (
m

J)

DCAAR
AT
DCAAR-Query
DCAAR-Update

DCAAR
AT
DCAAR-Query
DCAAR-Update

0

10

20

30

40

50

60

E
ne

rg
y

co
st

 (
m

J)

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

Fluctuations / Simulation time
5 10 15 20 25 30

Fluctuations / Simulation time

E
ne

rg
y

co
st

 (
m

J)

DCAAR
AT
DCAAR-Query
DCAAR-Update

DCAAR
AT
DCAAR-Query
DCAAR-Update

0

10

20

30

40

50

60

E
ne

rg
y

co
st

 (
m

J)

(a) (b)

(c) (d)

Fig. 7 (a) Effect of query rate (best case). (b) Effect of query rate (attribute far from sink). (c) Effect of fluctuation rate (best case). (d) Effect of

fluctuation rate (attribute far from sink).

313Attribute Allocation and Retrieval Scheme for Large-Scale Sensor Networks

happens because, with increasing rate of fluctuations,
the number of attribute values more than the hard
threshold increase and hence more number of nodes
report data to the sink. On the other hand, the rapid
fluctuation and its associated cost in maintaining
updated information in the storage region strains the
DCAAR scheme, which explains the steady increase
in DCAAR-Update cost and hence DCAAR-total
cost. Even then, in the best case scenario (Figure 7c),
the DCAAR scheme performs better than AT till the
fluctuation rate reaches a considerable value of 26
fluctuations/simulation time.

8. CONCLUSIONS

The proposed DCAAR scheme is a data-centric
storage scheme for allocating attributes to a large-
scale sensor network depending on the correlations
between them. In order to define the optimization
criteria involved in selecting appropriate rendezvous
locations for sensed data, the problem has been
formulated in a manner similar to the allocation
problem of distributed databases. Each user-defined
query is assumed to have an associated priority,
which in turn defines correlations between the sensed
attributes. These correlations and priorities have been
used to determine storage locations of individual
attributes within the network. Also mechanisms have
been developed for efficiently retrieving and process-
ing the stored data in response to user queries.
Furthermore, a soft threshold and timer-based
update mechanism has been proposed to increase
the energy efficiency of the system and to better cater
to user requirements. Finally, using both analysis and
extensive simulations, the preferable conditions for
the protocol has been determined. As a part of future
work, we plan to develop detailed protocols for query
dissemination, data update and data retrieval. We
also need to ensure that these protocols are fault-
tolerant and perform load balancing.

REFERENCES

1. D. P. Agrawal, R. Biswas, N. Jain, A. Mukherjee, S. Sekhar
and A. Gupta, Sensor systems: state of the art and future
challenges,’’ Book Chapter in Handbook on Theoretical and
Algorithmic Aspects of Ad hoc and Sensor Networks, pp. 317–
346, Auerbach Publications, 2006.

2. S. Shenker, S. Ratnasamy, B. Karp, R. Govindan and D.
Estrin, Data-centric storage in sensornets, in Proceedings of the
1st ACM SIGCOMM Workshop on Hot Topics in Networks,
Princeton, New Jersey, October 2002.

3. S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan
and S. Shenker, GHT: A Geographic Hash Table for Data-
Centric Storage, in Proceedings of the 1st ACM International
Workshop on Wireless Sensor Networks and Applications
(WSNA 2002), Atlanta, Georgia, September 2002.

4. I. Stoica, R. Morris, D. Karger, F. Kaashoek and
H. Balakrishnan, Chord: A Scalable Peer-To-Peer Lookup
Service for Internet Applications, in Proceedings of the ACM
SIGCOMM 2001 Conference, San Diego, California, August
2001.

5. S. Ratnasamy, P. Francis, M. Handley, R. Karp and S.
Shenker, A scalable content-addressable network, in Proceed-
ings of the ACM SIGCOMM 2001 Conference, San Diego,
California, August 2001.

6. B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy and S.
Shenker, DIFS: a distributed index for features in sensor
networks, in Proceedings of the 1st IEEE International Work-
shop on Sensor Network Protocols and Applications, Anchor-
age, Alaska, May 2003.

7. X. Li, Y. J. Kim, R. Govindan and W. Hong, Multi-dimen-
sional range queries in sensor networks, in Proceedings of the
1st International Conference on Embedded Networked Sensor
Systems, Los Angeles, California, November 2003.

8. A. Ghose, J. Grossklags and J. Chuang, Resilient data-centric
storage in wireless ad-hoc sensor networks, in Proceedings of
the 4th International Conference on Mobile Data Management
(MDM), Melbourne, Australia, 2003.

9. J. HighTower and G. Borreillo, Location systems for Ubiqui-
tous Computing, in IEEE Computer Magazine, Vol. 34, No. 8,
pp. 57–66, Aug 2001.

10. L. Doherty, K. S. J. Pister and L. E. Ghaoui, Convex position
estimation in wireless sensor networks, in Proceedings of the
IEEE Infocom, Anchorage, Alaska, April 2001.

11. C. Intanagonwiwat, R. Govindan and D. Estrin, Directed
diffusion: a scalable and robust communication paradigm for
sensor networks, in Proceedings of the 6th Annual ACM/
IEEE International Conference on Mobile Computing and
Networking (Mobicom 2000), Boston, Massachusetts, August
2000.

12. S. Madden, M. J. Franklin, J. M. Hellerstein and W. Hong,
TAG: a tiny aggregation service for ad-hoc sensor networks, in
Proceedings of the 5th Annual Symposium on Operating Systems
Design and Implementation (OSDI), Boston, Massachusetts,
December 2002.

13. R. Biswas, N. Jain, N. Nandiraju and D. P. Agrawal, Com-
munication architecture for processing spatio-temporal con-
tinuous queries in sensor networks, in Special issue of the
Annals of Telecommunications on Sensor Networks, Vol. 60, pp.
901–927, July–Aug. 2005.

14. R. Kumar, V. Tsisatsis and M. Srivatsava, ‘‘Computation
Hierarchy for In-network Processing,’’ in Proceedings of the
2nd ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA�03), San Diego, California, Septem-
ber 2003.

15. B. Karp and H. T. Kung, ‘‘GPSR: greedy perimeter stateless
routing for wireless sensor networks, in Proceedings of the 6th
Annual ACM/IEEE International Conference on Mobile Com-
puting and Networking (Mobicom �00), Boston, Massachussets,
August 2000.

16. F. Howell and R. McNab, ‘‘Simjava: a discrete event simula-
tion package for Java with applications in computer systems
modelling, in Proceedings of the 1st International Conference on
Web-based Modelling and Simulation, San Diego, California,
January 1998.

314 Biswas, Chowdhury, and Agrawal

Dharma P. Agrawal is the Ohio Board of Regents Distinguished

Professor of Computer Science and Engineering and the founding

director for the Center for Distributed and Mobile Computing in

the Department of ECECS, University of Cincinnati, OH. He has

been a faculty member at the N.C. State University, Raleigh, NC

(1982–1998) and the Wayne State University, Detroit (1977–1982).

His current research interests include energy efficient routing,

information retrieval, and secured communication in ad hoc and

sensor networks, effective handoff handling and multicasting in

integrated wireless networks, interference analysis in piconets and

routing in scatternet and use of smart directional antennas for

enhanced QoS. Thomson has recently published the second edition

of his recent co-authored textbook entitled Introduction to

Wireless and Mobile Systems, specifically designed for Computer

Science & Engineering students. He is an editor for the Journal of

Parallel and Distributed Systems, the International Journal of High

Speed Computing, International Journal on Distributed Sensor

Networks, Taylor and Francis Journal, International Journal of

Ad Hoc and Ubiquitous Computing (IJAHUC), Interscience

Publishers, 2004 and the International Journal of Ad Hoc &

Sensor Wireless Networks. He has served as an editor of the IEEE

Computer magazine, and the IEEE Transactions on Computers.

He has been the Program Chair and General Chair for numerous

international conferences and meetings. He has received numerous

certificates and awards from the IEEE Computer Society. He was

awarded a Third Millennium Medal, by the IEEE for his

outstanding contributions. He has also delivered keynote speech

for five international conferences. He also has four patents in

wireless networking area. He is a Fellow of the IEEE, the ACM,

the AAAS, and the WIF.

Kaushik Chowdary received the B.E. degree in electronics

engineering from the Veermata Jijabai Technological Institute

(erstwhile affiliated to the University of Mumbai) in 2003.

Currently, he is a PhD student in computer science and engineering

at the University of Cincinnati. His research interests include

resource provision in sensor and ad-hoc networks, distributed

channel allocation and multichannel MAC protocols. He is a

student member of the IEEE.

Ratnabali Biswas is a PhD candidate in Department of Electrical

and Computer Engineering and Computer Science (ECECS) in

University of Cincinnati. She received a B.Sc. degree in Mathe-

matics (Honors) from University of Calcutta, India and a Master in

Computer Applications degree from Bengal Engineering College,

Shibpur (India). Her research interests are in developing energy-

efficient protocols for query processing in sensor networks. Her

focus includes energy-efficient routing infrastructure for query

processing in sensor networks, application-specific energy-efficient

distributed data storage in sensor networks as well as providing

link-layer quality of service in sensor networks.

315Attribute Allocation and Retrieval Scheme for Large-Scale Sensor Networks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

