
1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2870156, IEEE
Transactions on Mobile Computing

1

Janus: A Multi-TCP Framework for
Application-Aware Optimization in Mobile

Networks
Fan Zhou, Student Member, IEEE, David Choffnes, and Kaushik Chowdhury, Member, IEEE

Abstract—As the dominant protocol on the Internet, TCP has attracted significant attention and has been implemented in various
ways, each of which optimizes for a single objective such as high throughput or low delay. However, in today’s mobile networks that
carry traffic from diverse types of flows, this approach may lead to misconfiguration of TCP congestion control algorithms and further
degrade performance for many applications. In this paper, we propose Janus, a new transport-layer framework that automatically
selects among existing congestion control variants to optimize traffic in accordance with application demands. Janus is easy to deploy
because it reuses existing, well-tested congestion control implementations, and does not require any in-network or client-side changes.
To explore the potential for this approach, we implement Janus in the Linux kernel and extensively evaluate its performance with both
emulated and real Internet traffic. We show Janus outperforms alternative protocols by offering fast convergence times in response to
changing network conditions, achieving 5-10X lower delay with comparable or higher throughput. Our approach also significantly
improves user-perceived performance according to QoE metrics, with up to 5X fewer interruptions for video streaming applications and
2X faster page loading for web-browsing applications.

Index Terms—TCP, congestion control, QoE, transport layer, mobile application.
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1 INTRODUCTION

User-perceived quality of experience (QoE) is a key factor
that influences customer satisfaction. This directly impacts
the consumer’s preference for wireless service providers as
well as the popularity of applications (apps) that run on
smart-devices. Thus, a key challenge is how to meet QoE
requirements for users continuously, given the tremendous
diversity of apps and varying wireless bandwidth with
mobility [1]. A variety of innovative congestion control
protocols have been proposed for specific target scenarios to
address these issues. Over 15 TCP variants are available in
the latest Linux release [2], and the number is still growing.
We argue that no single protocol can capture the collective
needs of every possible app. In this work, we explore the
effectiveness of automatically select and configure existing
congestion control protocols to maximize the QoE based on
the workload for each app that uses the network.

1.1 Motivation for Janus

Despite a large number of available options, only one
congestion control protocol (usually chosen from either
NewReno or Cubic on Linux) is active within the network
protocol stack of a given server. This conservative choice
was largely driven by two limitations of congestion control
design:
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protocols in response to application demands and network
conditions.

• Unknown last-mile wireless access link: Congestion control
protocols are often designed for a specific network architec-
ture and only work best in the scenario for which they were
designed (see Sec. 2). Unfortunately for mobile networks,
the choice of congestion control protocols is usually made
at the server side, which is unaware of the actual last mile
link condition at the client side. In today’s content delivery
network (CDN) architecture, a single server may provide
service to thousands of mobile users, but there may also be
large diversity in the wireless access links that range from
traditional WiFi/LTE to 60 GHz mmWave [3]. Therefore, in
the absence of knowledge about client-side wireless access
conditions, servers are typically configured to use a single,
standard congestion control protocol, even though it may
lead to suboptimal performance.
• Application-agnostic protocol selection: A key goal of a con-
gestion control protocol is to share the bandwidth fairly
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among competing flows. However, this flow-level fairness
ignores application-layer requirements and can result in
inefficient resource allocation, or even drastically degrade
QoE for an app when flows with conflicting demands
compete for the network resources (See Sec. 3). Given this
app-agnostic transport-layer design, some content providers
focus on application layer enhancement approaches, e.g.,
YouTube incorporates adaptive bitrate (ABR) streaming to
balance video quality and rebuffering rates. Google has de-
ployed a new QUIC [4] protocol, which re-implements most
of the transmission control functions in the application layer.
However, such approaches require application-specific logic
that are not always easy to port to new and emerging apps,
and they can give rise to complex interactions between the
application and transport layers [5].

Given the above limitations, we believe that the main is-
sue is not the lack of alternative congestion control protocols
best suited to different scenarios, but rather an automated
mechanism to select the right one to maximize the QoE of
the active apps on the client device. We design Janus to
solve this problem: it is a new transport protocol selection
and adaptation framework that enables automatic per-flow
congestion control protocol selection and optimization ac-
cording to the app requirements. As shown in Fig.1, Janus
allows each app to specify its bandwidth requirement to
provide the best-case QoE, and then selects the congestion
control algorithm according to the so called just aggressive
enough principle. This means that Janus will select an aggres-
sive congestion control protocol only when the bandwidth
requirement of the app is not met, and switch back to a
conservative one otherwise. This improves overall network
performance for two reasons. First it ensures that the QoE
requirement of a given app is satisfied quickly, as long as
there is enough bandwidth; second it prevents an app from
being unnecessarily aggressive after its demand has been
met, thus saving resources for other co-existing apps.

1.2 Design Parameters for Janus and Contributions
While the principles behind Janus are straightforward, we
identified and addressed three key challenges to enable a
flexible, efficient, and fair solution. The first challenge is
how to capture the collective needs of various apps. Not all
apps have specific bandwidth requirements. For example,
delay sensitive apps (e.g., web browsing) need to minimize
delay while some other apps may simply needs to maximize
the link utilization (e.g., file downloading). The second
challenge is how to seamlessly switch between congestion
control protocols for each flow, in a way that satisfies mul-
tiple apps that are sharing the network with heterogeneous
requirements. This is the central problem that Janus needs to
solve. Third, Janus must operate when available bandwidth
is not sufficient to satisfy the aggregate requirements of all
apps. In this case, a fairness principle must be formulated
to share the limited bandwidth resources among competing
flows.

This paper makes three main contributions:

• We present Janus, a new transport framework that
automatically selects different protocols for each flow
according to specific app requirements. In this paper,
we mainly focus on two representative delay- and

loss-based congestion control protocols (Vegas and
Cubic) to illustrates the design of Janus. In addition,
we show in Sec.7, how to extend Janus with more
TCP variants.

• We propose an adaptation policy for selecting and
switching congestion control protocols in a way that
quickly satisfies app requirements. We also analyti-
cally prove that our approach can ensure max-min
fairness allocation given limited bandwidth.

• We implement Janus in the Linux kernel and exper-
imentally evaluate its performance with traffic from
both emulation and real-world apps. We show Janus
provides excellent QoE, relative to other approaches,
for practical situations. For example, it reduces re-
buffering rates by up to 5X for a video steaming app
and reduces page load times by up to 2X for web-
browsing apps. It also shortens the queuing latency
by up to 10X over Cubic and 5X over PCC, while
attaining comparable or higher throughput.

2 RELATED WORK

Many congestion control protocols [6]–[16], [18]–[28] have
been proposed to optimize transport protocol performance.
For example, Westwood+ [7] uses bandwidth estimation to
increase TCP robustness with non-congestion packet loss in
wireless networks; Hybla [6] scales cwnd faster in satellite
networks with very long round-trip-delay (RTT); Cubic
[12] modifies the classical additive increase, multiplicative
decrease (AIMD) rule of TCP to quickly saturate the link
in high bandwidth-delay product (BDP) networks. Table 1
summarizes the features of several existing congestion con-
trol protocols. However, these protocols do not adapt their
congestion-control strategy as the network evolves over
time, as the server is unable to estimate future last-mile
wireless link selections.

Another line of work utilizes both the end-hosts’ and
in-network knowledge to make better congestion control
decisions. For example, FCP [29] combines end-point control
and explicit router feedback. [30] further suggests using
end-point congestion control, arbitrary rate control and
in-network packet prioritization all together to achieve
faster flow convergence. However, such protocols present a
high barrier to deployment since they require simultaneous
support from both end-hosts and intermediate network
switches. In comparison, Janus requires only modification
at the server side and is effective even in incremental de-
ployment.

Several protocol designs focus on learning how to
achieve constant, optimal performance, despite changes in
the network conditions. The key idea is to directly search
for actions (e.g., increase/decrease cwnd or sending rate)
that can maximize objectives (e.g, maximize throughput and
minimize delay). Remy [31], [32] uses off-line training to ob-
tain the optimal mapping between network conditions and
the cwnd adjusting function. In contrast, the performance
oriented congestion control (PCC) protocol [33] uses on-
line learning to find the sending rate that can maximize the
value of a utility function according to the feedback from the
receiver in real time. Similar to Janus, PCC allows apps to
specify their performance preference (throughput or RTT)
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TABLE 1: Different network environments, underlying assumption on link properties and corresponding selected TCP variants
Networks Underlying Assumptions Congestion Control Protocols
Satellite Very long RTT Hybla [6]

Wireless links Frequent non-congestion packet loss Westwood+ [7], Veno [8], Jersey [9]
Sensor Network Ad-hoc topology, limited power and transmission range ESRT [10], CODA [11]
Modern Internet High bandwidth and delay Cubic [12], HTCP [13], Yeah [14], BBR [15]
Cognitive Radio Dynamic Bandwidth availability TP-CRAHN [16], TFRC-CR [17], CogNet [18]

Data Center In-cast topology, stringent latency constrain DCTCP [19], TIMELY [20], HULL [21], D3 [22]
Cellular/WiFi Highly varying network condition, Buffer-bloating Sprout [23], CQIC [24], Verus [25]

by choosing a corresponding utility function. We compare
Janus with PCC in Sec.8 and find Janus achieves better
performance tradeoffs as it can support co-existing flows
with unique or even conflicting requirements, while PCC
can only optimize for a single, pre-selected performance
metric.

Two recent efforts [34], [35] propose the concept of
virtualized congestion control. The key idea is to translate
one congestion control protocol into another by inspect-
ing and modifying packet headers. One important goal
of virtualized congestion control is to allow flows using
different congestion control protocols (e.g, ECN vs. non-
ECN) to share bandwidth fairly with each other. In contrast,
Janus proposes a different approach of directly switching
among congestion control variants, and is more flexible than
protocol translation.

The closest work to Janus is OpenTCP [36], where TCP
parameters are optimized and adaptively selected among
existing TCP variants according to the explicit network
information collected in a software defined network (SDN).
However, despite the conceptual similarities, there are two
key differences between OpenTCP and Janus: (1) OpenTCP
works for an SDN environment that allows the controller
to get the global view and control of all network traffic,
while Janus is designed for mobile network and only re-
quires modification at the server side; (2) While OpenTCP
mentions the idea of selecting TCP variants, the actual
switching logic and procedures are not introduced. Our
work demonstrates that doing so is not trivial, and we
present a detailed design of protocol switching algorithms,
with an implementation and thorough consideration of the
diverse QoE requirements of different apps.

3 PRELIMINARY RESULTS & PROBLEM DEFINI-
TION

The traditional goal of TCP is to share bandwidth fairly
among flows. However, the flow-level fairness overlooks the
actual requirement of various apps. As a result, a flow may
behave aggressively and degrade the performance for other
flows even when its own QoE requirement has been satis-
fied. We illustrate the problem with following two examples.
• Inefficient resource allocation: To demonstrate the prob-

lem of inefficient bandwidth allocation in classical TCP, we
set up a video stream proxy server and play two YouTube
videos on separate laptops, which were connected to the
same WiFi hotspot with 12 Mbps downlink bandwidth. The
video content is the same, but each laptop uses a different
resolution (720P and 1440P). Theoretically, the total band-
width is high enough to play both videos together smoothly.
However, we find the 1440P video suffers from frequent
stalls, and waits for an unacceptably long 30% of the total
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Fig. 2: Throughput of video streaming flows. Without rate
limiting, TCP tries to allocate bandwidth evenly among two
flows, which results in rebuffering for the 1440P video (shown
as gray bars).
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Fig. 3: Average throughput of bandwidth-intensive apps un-
der ideal network conditions. Unlike bulk transfer apps, the
bandwidth guarantee apps do not intend to fully utilize the
bandwidth.

video time for re-buffering. The reason is shown in Fig. 2:
the 1440P video flow only gets half of total bandwidth (6
Mbps, which is smaller than the 1440P bitrate) as TCP tries
to allocate bandwidth evenly between two video flows.
However, if we artificially limit the 720 P flow to occupy
no more than its required share of 2 Mbps, there is no re-
buffering for the both videos, since both video flows get the
amount of bandwidth share to meet their QoE requirements.
• Managing conflicting requirements in flows: It is well

known that TCP cannot deal with the situation when co-
existing flows have conflicting requirements, e.g, when a
delay-sensitive flow and bulk transfer flow are competing
for the same bottleneck link. To show this effect, we fetch
the top 1000 most popular websites [37] automatically and
measure the average RTT with/without a long-lived file
downloading flow. From Fig.4, we see that 90% of web
browsing flows have average RTT less than 100 ms without
the file downloading flow, but this number reduces to only
10% in the presence of cross-traffic. This situation arises
from a combined effect of choosing a loss-based TCP (Cubic
used in this experiment) and its inherent aggressive nature
that attempts to saturate the bottleneck link and its queues.
• Lack of awareness of app QoE: The main reason for the
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TABLE 2: Apps classified by demands
Classes Requirements Examples

Bandwidth guarantee Satisfy Target Rate Video streaming
Delay sensitive Minimize RTT Web Viewing
Bulk transfer Maximize link utilization Large file transfer

above problem is that the flow-level fairness of TCP does
not take actual QoE demands of an app into consideration.
To solve this problem we first have to understand better
the network requirements of various apps. We organize
apps into three classes: bandwidth guarantee (e.g., streaming
video), delay sensitive (e.g., Web traffic) and bulk transfer (e.g.,
file downloads) according to their QoE demands (Table.2).
The idea behind the classification is straightforward: bulk
transfer apps are work-conserving and need as high link
utilization as possible, while delay sensitive apps need to
minimize the round trip latency. For bandwidth guarantee
apps, the QoE requirements can be met as long as the
requested target rates are satisfied.

We measure the difference in throughput between bulk
transfer and bandwidth guarantee apps by running six popular
bandwidth-intensive apps individually on a Google Nexus
6 smartphone connected to a 100 Mbps WiFi network. Our
setup ensures that the wireless link is not the bottleneck
and the measured throughput reflects the actual bandwidth
requirement for each app. Fig.3 shows a clear distinction
between bandwidth guarantee and bulk transfer apps. While
the bulk transfer app (Download) uses up to 80% of total
bandwidth, bandwidth guarantee apps use less than 20%. We
conclude that unlike bulk transfer apps, the bandwidth guar-
antee apps do not need to saturate the network to provide
satisfactory QoE.
• Summary: The above demonstrations show that differ-

ent kinds of apps have their own demands of network re-
sources for satisfactory QoE. However, the flow-level fairness
of traditional TCP will lead to suboptimal QoE as it can
neither share bandwidth resources efficiently enough, nor
resolve the conflict requirements of co-existing flows from
different apps. This motivates our pursuit of a more flexible
transport framework that can satisfy the unique require-
ments for each app by ensuring efficient, fair bandwidth
allocation among competing flows.

4 JANUS OVERVIEW AND DESIGN

In Janus, each app to specify a request for network re-
sources in terms of target rate, then Janus automatically
configures congestion control protocols on a per-flow basis to
ensure each app’s objective can be satisfied. Fig.1 presents

the three main components of Janus: (1) metrics collection,
which gathers data regarding network conditions and app
requirements. (2) TCP switching engine, which chooses the
appropriate TCP variant for each flow given the metrics
collected to ensure that app’s objectives can be met; (3) per-
formance enhancement, which tunes the default operation of
the chosen TCP variant to further improve the performance.

4.1 Overview
At a high level, Janus works as follows: it checks the target
rate R of an outgoing flow during the connection establish-
ment stage. For bandwidth-guarantee flows, R simply rep-
resents the required bandwidth for the app to provide ideal
QoE. We will introduce how to configure target rate later
in Sec.7.2. If the flow is not associated with any target rate
(e.g, bulk transfer or delay sensitive flow), Janus will first
initialize one for the flow according to the current available
bandwidth and then adjust it adaptively as network load
varies (described in Sec.4.2).

Next, Janus continuously logs the throughput of the flow
to detect whether the target rate has been satisfied. If so,
Janus will select a conservative congestion control protocol
to avoid overwhelming the network. Otherwise, Janus will
choose an aggressive protocol to compete for more band-
width until target rate is reached (Sec.4.3). Ideally, each flow
should quickly converge its throughput to the target rate
and then stay with the conservative TCP. However, selecting
TCP variants naively cannot assure stable performance,
especially when flows with distinct demands are sharing
the bottleneck link. Therefore, Janus also uses proactive rate
control to increase bandwidth sharing efficiency and tries to
clear the bottleneck buffer during TCP switching to further
minimize the queuing latency (Sec.4.4).

A key problem arises if the total network bandwidth
is not enough to satisfy the requirements of all co-existing
flows. This is common in mobile networks due to limited
wireless capacity. To solve this problem, we develop an
adaptive target rate adjustment algorithm to scale down
each flow’s target rate temporarily until the network condi-
tion is recovered. By lowering down each flow’s expectation,
Janus avoids the race to keep competing for bandwidth and
allows the flows to converge to max-min fairness allocation
under the limited resources. Sec. 5 and Sec. 6 introduces the
algorithm and provides the theoretical analysis, respectively.

4.2 Metrics Collection
This component is responsible for: (1) measuring the net-
work condition and flow performance; (2) reading or ini-
tializing target rate for each flow according to each apps’
objective. The output of metrics collection will be fed into
following blocks as reference to choose appropriate conges-
tion control protocols and further optimize performance.
•Network measurement: We use throughput P and round-
trip delay RTT as the two key metrics that influence the
choice made by Janus. We carefully smooth the collected
sample values to capture the meaningful trends within the
network and yet avoid rapid fluctuations as follows.

Throughput P : Janus first calculates the sample through-
put Psmp by dividing the bytes acknowledged in a time win-
dow by the window length. Then, an Exponential Weight
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Moving Average (EWMA) filter Pavg = ξ∗Psmp+(1−ξ)∗P
is applied for smoothening. Through empirical measure-
ments, we have observed that the values of ξ = 1/8 and
one RTT as time window are preferred choices for this
smoothing step. This setting is also used in bandwidth
estimation techniques in other protocols [7].

RTT : Janus reads the round trip delay sample
tp->srtt recorded in the TCP/IP stack of the Linux kernel.
Note this tp->srtt has been previously passed through
EWMA filter with ξ = 1/8 by the Linux kernel before
feeding into Janus. However, we find that tp->srtt still
suffers from rapid random fluctuations in wireless network.
To accurately track the trends in RTT changes while filtering
noise, we further pass the tp->srtt into a min filter (by
taking minimum tp->srtt in a time window).
• Target rate initialization: For bandwidth guarantee flows,
the target rate R should be configured beforehand since it is
decided by app’s throughput demand. Therefore, Janus can
read R directly during the connection establishment time.

Unlike bandwidth guarantee flows, bulk transfer and
delay sensitive flows do not have any specific bandwidth
requirements. In this case, Janus starts a flow with TCP
Vegas and waits for two additional RTTs after the slow start
stage finishes. Then it initializes the target rate as the current
measured instantaneous throughput (R = Psmp). Note that
the slow start phase of Vegas is conservative, i.e., it finishes
as soon as packets start accumulating in the network. The
newly joined flow can only fill packets in an under-utilized
link. Therefore, the current throughput represents the avail-
able bandwidth that the new joining flow can use. We choose
to wait two RTTs because flow throughput needs a short
duration to ramp up after slow start.

Allowing a new flow to utilize available bandwidth
yields several benefits. It prevents new flows from starving
any bandwidth guarantee flows. It ensures high link utiliza-
tion for bulk transfer flows, since it makes sure all available
bandwidth is utilized. Finally, it prevents a large number
of packets from accumulating in the bottleneck buffer, thus
reducing queuing latency for delay sensitive flows.

Available bandwidth may change due to varying net-
work conditions such as load, link capacity, etc. Janus uses
the target rate adjustment algorithm (described in Sec.5) to
reactively tune the target rate for bulk transfer and delay
sensitive flows so to match the varying available bandwidth.

4.3 TCP Switching Engine
Congestion control algorithms can be loosely categorized
into delay-based and loss-based. Delay-based TCP is con-
sidered more conservative, as it interprets an increasing delay
as a sign of congestion and slows the sending rate down
accordingly. On the other hand, loss-based TCP is more
aggressive, as it aims to saturate the bottleneck link until
packets begin to drop because of buffer overflow. Therefore,
loss-based TCP usually achieves higher link utilization at
the cost of increased queuing delay, while delay-based TCP
manages to keep queuing delay stable, though sometimes
failing to attain high throughput.

Janus balances the advantages of these two congestion
control strategies by switching between a (i) conservative
stage (i.e., choosing the TCP Vegas [38]) and (ii) aggres-
sive stage (i.e., choosing the TCP Cubic [12]) based on the

If P
avg 

= 0: P
smp

 > R
else        :  P

avg
 > R

P
avg

 < (1-γ)*R

Aggressive
stage

Conservative
stage

Fig. 5: Two-stage TCP transition diagram.

measured throughput and the target rate from the metrics
collection block. We choose these two protocols because
Vegas is a classical delay-base congestion control protocol
and Cubic is one of the default congestion control protocols
in Linux. We also discuss how to extend Janus with other
TCP variants in Sec.7.

The stage transition logic is demonstrated in Fig.5: Janus
enters the conservative stage and switches to Cubic when-
ever the target rate is satisfied, otherwise, it enters in the
aggressive stage to compete for more bandwidth. While the
switching basic logic is straightforward, we note:

(1) To avoid rapid oscillation between two stages, Janus
uses a protection parameter γ that allows this switch to the
aggressive stage only when Pavg < (1− γ) ∗R.

(2) Janus uses sample throughput Psmp instead of Pavg
to decide when to transit to the conservative stage for a
new joining flows, before the first conservative stage. This
is because the initial value of the Pavg is zero when this
flow starts, and it takes few RTTs for the smoothed Pavg
to ramp up until it captures the actual throughput. After
the flow enters into the conservative stage, Janus initializes
Pavg to the current instantaneous throughput and uses Pavg
to decide the state transition.

An example demonstrating the two-stage transition al-
gorithm is given in Fig.6. We set the bottleneck bandwidth to
be 10 Mbps and start a flow with 8 Mbps target rate. When
the flow just joins in the network, Janus starts with TCP
Cubic (aggressive stage) to quickly grab bandwidth. After its
target rate R has been satisfied (around 0.7 s, Psmp > R),
Janus switches to TCP Vegas (conservative stage) to keep
queuing delay stable. During bursty cross-traffic (6 − 8 s),
the throughput drops below (1− γ) ∗R (because of EWMA
smoothing, it takes about 1s for P to drop to bottom after
cross-traffic leaves), Janus returns to the aggressive stage until
its throughput recovers (around 10 s, Pavg > R).

From the Fig.6, we notice that Janus increases cwnd
faster than the cubic function during aggressive stage (in
this example, cwnd increases by 1.5X in eight RTT s). We
find that this is because of an undocumented rule in Cu-
bic’s Linux implementation which specifies that cwnd is
increased by 5% every RTT before the first packet loss. This
highlights the need to carefully limit aggression in Janus
to avoid starving competing flows. We further discuss the
influence of the duration of the aggressive stage later in Sec. 5.

4.4 Performance Enhancement
While above simple TCP switching algorithm satisfies the
requirement of a single flow, more complex situations may
arise when flows with various demands are competing
for one bottleneck link. In this section, we discuss the
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Fig. 6: An example of two-stage TCP switching. Top figure
shows the cwnd dynamics and bottom figure shows the varying
throughput.

enhancements to the basic Janus switching algorithm with
two additional mechanisms that (i) speed up convergence
and increase bandwidth allocation efficiency by performing
proactive rate control, and (ii) minimize the self-inflicted
queuing delay during state transition by clearing the bot-
tleneck buffer.
• Rate control: Classical TCP constantly probes for available
bandwidth and then shares it equally among concurrent
flows. Janus increases the overall efficiency in bandwidth
utilization by actively controlling the sending rate of band-
width guarantee flows, thus preventing such flows from grab-
bing resources greater than their demands. This rate control
is used in the first aggressive stage and the subsequent conser-
vative stage. Janus does not modify the code of any existing
congestion control algorithms; rather it limits the sending
rate through (i) slow start threshold setting snd_ssthresh
and (ii) maximum congestion window cwnd_clamp present
in the Linux kernel.

Aggressive stage: For a bandwidth guarantee flow, Janus ini-
tially chooses Cubic with the purpose of satisfying the target
rate R as soon as possible. It overwrites the snd_ssthresh
to R ∗ Dp, where Dp is the round-trip propagation delay
(we introduce how to estimate Dp later in this section).
Therefore, R ∗ Dp is simply the number of outstanding
packets required by the flow to reach its target rate. After
cwnd reaches snd_ssthresh, if the target rate is still not
satisfied, Janus continues the normal congestion avoidance
operation. By resetting the snd_ssthresh, Janus signifi-
cantly improves the convergence speed by making sure that
the newly joined flow’s target rate can be reached as soon
as possible, regardless of the end-to-end propagation delay
of the connection.

Conservative stage: During the conservative stage, Janus
limits the throughput P of a bandwidth guarantee flow to
(1 + ε) ∗R, where ε decides the extra bandwidth potentially
obtained by each flow. For this, Janus sets the maximum
cwnd to (1 + ε) ∗ R ∗ RTT when Pavg > (1 + ε) ∗ R, and
removes this limit when Pavg < R. This ensures that the
throughput of the bandwidth guarantee flow stays between
R and (1 + ε) ∗ R, thus preventing the flow from trying to
compete for more bandwidth than it demands.
• Buffer clearing: For delay sensitive apps, the goal of mini-
mizing queuing delay cannot be achieved in isolation by a

given end-device. This is because different flows may have
accumulated packets in the network, making it impossible
for other flows to further reduce delay. Therefore, Janus
forces every flow to minimize the self-inflicted queuing delay.
Unfortunately, following the aggressive stage, flows accumu-
late many packets in the bottleneck buffer. As Vegas can
only reduce one outstanding packet in every RTT duration,
it takes a while for Vegas to compensate for the increased
queuing delay incurred during the aggressive stage (Fig.6,
0.7− 9 s). Furthermore, Vegas may regard the extra queuing
delay as part of the link latency and not attempt to reduce
outstanding packets at all (after 10 s).

To solve this problem, Janus cuts the cwnd to Pavg ∗Dp

every time before switching to the conservative stage so that
the flow’s own outstanding packets is just large enough to
maintain its current throughput. This allows the depletion
of packets in the bottleneck buffer, thus minimizing the
queuing latency during the transition.
• Estimating propagation delay: The success of both rate
control and buffer clearing requires accurate estimation of
propagation delay Dp. Janus regards the minimum RTT
observed (base_rtt) during the connection lifetime as
estimated propagation delay. However, it is well known
that delay based TCP like Vegas suffers from the so called
re− routing problem [39]. This happens when link latency
varies because of changing routes or user mobility. To ad-
dress this issue, Janus updates Dp when it enters a new
conservative stage as:

Dp = RTTmin −
Qavg
Pavg

(1)

RTTmin is the minimum RTT sample taken at the start
of a conservative stage. Qavg is the average queued packets
a conservative TCP will try to maintain in the bottleneck
link buffer. Janus estimatesDP by subtractingRTTmin from
Qavg

Pavg
, where the latter is the extra delay caused by average

queuing packets of a conservative TCP. As we show in Sec.8,
this allows Janus to accurately track the propagation delay
despite the varying link latency in a mobile network.

5 ADAPTIVE TARGET RATE ADJUSTMENT

When the cumulative bandwidth demands of all active
flows exceeds the available network capacity, one or more
flows will stay in the aggressive stage because the required
target rate cannot be satisfied. This starts a race to consume
bandwidth that forces other flows to also switch to Cubic,
leading to higher queuing delay and packet loss rate. In
this section, we introduce an adaptive target rate adjusting
algorithm to solve this problem. The key idea is that Janus
intelligently lowers the target rate of the flows given the
limited bandwidth so that network can still converge. We
start with the goal of adjusting the target rate, then describe
the algorithm and configuration of the parameters in detail.

5.1 Goal of target rate adjustment
Target rate adjusting aims to re-allocate the limited band-
width to flows by striking a balance between efficiency and
fairness. Janus uses the max-min fairness (MMF) allocation
principle [40], which implies: (1) flows with lower demand
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Fig. 7: An example of target rate adjustment algorithm: The
flow enters the aggressive stage at t1, and reduces target rate
twice at t2 and t3, respectively. Then it leaves the aggressive
stage because its throughput exceeds the adjusted target rate.
Finally, in the conservative stage the flow gradually recovers its
throughput as well as target rate.

have higher priority in bandwidth allocation. This prevents
a single flow with large target rate from overwhelming the
network; (2) each flow only gets the resources it needs, thus
guaranteeing efficient utilization of bandwidth; (3) equally
allocating spare bandwidth to those flows whose demands
are not met. The easiest way to achieve this goal is to
compute the MMF allocation and assign the rate appro-
priately for each flow. However, this approach requires an
unacceptable centralized control. Hence, we next introduce
a lightweight algorithm to achieve the MMF bandwidth
allocation by adjusting target rate in a distributed manner.

5.2 Algorithm for adaptive target rate adjustment
A Janus flow tunes its own target rate using only local in-
formation with Alg.1. Intuitively, if a flow stays in aggressive
stage for too long, and queuing delay is increased during this
stage, then it implies that (1) the bottleneck link is saturated,
and (2) the current bandwidth is not enough to support
the flow’s target rate. In this case, the flow should reduce
its target rate. Otherwise, if a flow is in the conservative
stage with increasing throughput, then the flow may raise
its target rate as surplus bandwidth is available.

A rigorous proof of MMF allocation with Alg.1 is pro-
vided in Sec.6. Here we explain the key steps of the algo-
rithm: Janus measures the time elapsed time_diff since
entering the aggressive stage (line 3). If the flow’s through-
put recovers to its original target rate R in interval ∆T
(time_diff < ∆T ), Janus leaves the aggressive stage without
reducing R. Otherwise, Janus checks whether the bottleneck
link is saturated by evaluating if RTT has increased over
threshold σ(RTT ), where σ denotes the standard deviation
(line 4). If so, Janus reduces its target rate to (1 − γ) ∗ R′,
where R′ is its current target rate and γ is the same margin
parameter introduced in Sec. 4.3 (lines 9-10). Notice that the
decrease in the adjusted target rate is bounded by minimum
target rate Rmin. The above iteration is repeated until the
throughput of a given flow exceeds its adjusted target rate,
concluding the aggressive stage.

In conservative stage, if the throughput of flow increases
beyond R′/(1 − γ), then Janus raises its current target rate
correspondingly (lines 13-15). For bandwidth guarantee flows,

Algorithm 1: Adaptive Target Rate Adjusting
Input: P : throughput; R: original target rate
Output: R′: adjusted target rate

1 R′ = R; ∆T = 0; prev_adjust_time = Now time;
prev_rtt = RTT ;

2 while in aggressive stage do
3 time_diff = Now time - prev_adjust_time
4 rtt_diff = RTT - prev_rtt
5 if ∆T = 0 then
6 ∆T = τ ∗ γ

1−γ ∗RTT
7 else
8 ∆T = 2 ∗RTT
9 if time_diff > ∆T and rtt_diff > σ(RTT) then

10 R′ = max{(1− γ) ∗R′, Rmin}
11 prev_adjust_time = Now time
12 prev_rtt = RTT
13 while in conservative stage do
14 if P > R′/(1− γ) and R′ 6= R then
15 R′ = R′/(1− γ)
16 return R’

the increase of R′ is upper bounded by its original target
rate R. However, there is no such limitation for bulk transfer
flows since its original target rate R = 0. This allows bulk
transfer flows to keep increasing R′ until full utilization of
the bandwidth. An example showing the entire process of
reducing/recovering target rate is given in Fig.7.

Finally, the time interval ∆T greatly influences Janus’s
performance. A large ∆T allows a flow to stay longer in
the aggressive stage and may potentially degrade the perfor-
mance of competing flows. On the other hand, a small ∆T
may unnecessarily reduce the target rate. Hence, we set ∆T
in an adaptive manner, where the first ∆T1 = τ ∗ γ

1−γ ∗RTT
and the following ∆Ti = 2 ∗ RTT (i ≥ 2). Here τ is
a scaling factor controlling the duration of ∆T1. We will
discuss the ideal setting of τ in Sec.6 and Sec.7. If after ∆T1

the target rate is not yet satisfied, Janus reduces the interval
to 2 ∗ RTT . This avoids hurting the performance of other
flows by forcing a departure from the aggressive stage as soon
as possible.

6 MAX-MIN CONVERGENCE ANALYSIS

In this section, we analytically prove that multiple Janus
flows converge to MMF bandwidth allocation using the dis-
tributed target rate adjusting algorithm under assumptions
of limited network bandwidth. We note that this proof is not
limited to Vegas and Cubic; rather it holds true for general
delay-based and loss-based congestion control protocols.
• Hypothesis statement: Consider N Janus flows sharing
a single bottleneck link with capacity C. Packets arriving
at the bottleneck router are served using the first in first
out (FIFO) principle. ~R = {R1...RN} is the target rate
vector, where Ri denotes the requested target rate for flow
i. Assuming network capacity is less than the total demand
of all flows, i.e., (

∑N
i=1Ri > C), Alg.1 results in MMF

allocation of bandwidth.
We prove this hypothesis using a simplified version of

Janus with only the conservative stage. We then extend the
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analysis for the full-featured Janus, and show that the addi-
tional aggressive stage does not affect the MMF allocation.

6.1 Simplified Janus with only conservative stage
Consider the throughput vector ~P = {P1...PN} and the tar-
get rate vector ~R′ = {R′1...R′N} after the system converges,
where Pi and R′i are throughput and adjusted target rate of
flow i, respectively. We start with a simplified Janus with
only the conservative stage. Therefore, if a flow’s throughput
drops below (1 − γ) ∗ R, it will reset its target rate directly
to (1−γ)∗R without switching to TCP Cubic. Additionally,
the rate control technique requires the flow to limit its
throughput under (1 + ε) ∗R.

The proof of MMF allocation for Janus is based on
the property that multiple delay-based flows converge to
fair bandwidth allocation, which is a basic requirement for
any congestion control protocol (e.g., see [39] for the proof
for Vegas).Therefore, without considering rate control, each
Janus flow converges to the fair share C/N in a finite
amount of time. However, C/N may be larger then the
actual target rates of some flows. Assume flow i has target
rate Ri < C/N . In this case, the rate control limits its rate to
[Ri, (1 + ε) ∗Ri). Then, other flows start to compete for the
bandwidth spared by flow i. This process repeats until the
remaining bandwidth can no longer be fairly distributed to
meet the target rate of the left-over flows.

After the system converges, we separate flows into
two different sets: Φ1 with satisfied demands and Φ2 that
includes the rest. The throughput of flows in these two
sets are: ∀i ∈ Φ1: Pi ∈ [Ri, (1 + ε) ∗ Ri), ∀j ∈ Φ2:
Pj ∈ [

C−(1+ε)∗
∑

i∈Φ1
Ri

‖Φ2‖ ,
C−

∑
i∈Φ1

Ri

‖Φ2‖ ). Specifically, as ε→ 0

, ∀i ∈ Φ1: Pi → Ri; ∀j ∈ Φ2: Pj →
C−

∑
i∈Φ1

Ri

‖Φ2‖ .
Conversely, we can derive the target rate vector R′ from

the throughput vector P ′. Since the throughput of an unsat-
isfied flow must lie between [(1− γ) ∗ R′, R′/(1− γ)] after
the system converges, we have ∀i ∈ Φ1: R′i = Ri; ∀j ∈ Φ2:
R′j ∈ [(1− α) ∗ Pj , Pj/(1− α)], where Pj →

C−
∑

i∈Φ1
Ri

‖Φ2‖ as
ε→ 0.

Intuitively, this means that (1) flows in Φ1 receive a
share just equal to their demand, and hence, they main-
tain their original target rate; (2) flows in Φ2 get the fair
share of the residual bandwidth but must reduce their
target rate correspondingly. Also, since only flows with
target rate less than fair share will be limited, we have
∀i ∈ Φ1,∀j ∈ Φ2, Ri < Rj . As all three MMF principles
are satisfied (Sec.5.1), the final bandwidth allocation must
follow MMF.

6.2 Full-featured Janus
We now extend the analysis to show that the complete Janus
protocol (with the aggressive stage) does not deviate from the
MMF allocation. We first introduce following lemma:

Lemma 1: If the bottleneck link is fully utilized, full-featured
Janus flows cannot leave the aggressive stage without reducing
their target rate within ∆T1 if τ < 1

α . α is the increment of
cwnd in every RTT of the aggressive TCP.

Proof: We need to prove that a flow can only utilize resid-
ual bandwidth after needs of all flows have been considered,
and it cannot steal bandwidth from competing flows during

the aggressive stage. Assume flow i’s throughput drops to
Pi = (1− γ) ∗Ri. This triggers an aggressive stage and Janus
switches to Cubic for flow i. As a result, flow i can leave
the aggressive stage without reducing target rate only if its
throughput P recovers back to Ri within ∆T1. We prove
that this is impossible if the bottleneck link is fully utilized.

Let W denote the flow i’s cwnd at the point of entering
the aggressive stage, which results in W = Pi ∗ RTT . Since
during the aggressive stage, cwnd is increased by a factor of
α every RTT (Sec.4.3). So after ∆T1, cwnd increases to:

W ′ = W ∗ (1 + α)∆T1/RTT (2)

Using Taylor expansion and ignoring higher-degree
components, W ′ simplifies to:

W ′ = W ∗ (1 + α ∗ ∆T1

RTT
) (3)

Inserting ∆T1 = τ ∗ γ
1−γ ∗RTT (from Alg. 1), we get:

W ′ = W ∗ (1 + ατ ∗ γ

1− γ
) (4)

Therefore, if τ < 1
α , then W ′ < W/(1 − γ). Also, note

that the current RTT ′ is larger than RTT because of the
aggressive behavior of flow i. So, after ∆T1, the throughput
of flow i will be bounded by:

P ′i = W ′/RTT ′ <
W

(1− γ) ∗RTT
=

Pi
1− γ

, (5)

The main takeaway is that if we set τ less than the
inverse of the increment cwnd every RTT during aggres-
sive stage, then flow i′s throughput cannot increase to
Pi/(1−γ) = Ri. Thus, it leaves the aggressive stage without
reducing target rate.

Lemma 1 explains why the MMF allocation property
is still valid. Only flows in Φ2 may potentially enter the
aggressive stage because they have unsatisfied target rate and
must compete for the residual bandwidth. However, Lemma
1 indicates that they cannot maintain high target rate during
the aggressive stage. At the end, their throughput and target
rate will converge to the range specified in Sec. 6.1.

Finally, we point out that minimum target rate Rmin
will influence the MMF bandwidth allocation. If a flow sets
Rmin too large (e.g., equal with R), then it could maintain
its own high target rate by forcing down other flows to
stay within lower target rate. Therefore, Rmin should be
small enough to ensure that the throughput of all flows can
fall in the range specified by their MMF share. Specifically,
Rmin must satisfy: ∀j ∈ Φ2, Rmin < Pj/(1 − α), where
Pj →

C−
∑

i∈Φ1
Ri

‖Φ2‖ as ε→ 0 to maintain the MMF allocation.

7 JANUS IMPLEMENTATION

We implement Janus as an kernel module in the TCP/IP
stack based on Linux 4.2.6. In this section, we briefly de-
scribe the high-level context for our implementation. We
also discuss the parameter configuration and the extension
to other congestion control protocols.
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Fig. 8: The convergence of Janus-reno flows.
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Fig. 9: The convergence of Janus-htcp flows.

7.1 Implementation overview
Our implementation only requires minimum modification
of the kernel (∼20 lines of code). Once receiving a new
packet, Janus reads the TCP socket information tcp_sock
associated with current flow, and then feeds the tcp_sock
into the metrics collections module to update the estimation
of the throughput and RTT.

TCP switching is achieved by calling the
tcp_set_congestion_control function defined in
tcp_cong.cc without interrupting the active TCP
connection. We modify the Linux kernel to allow Janus get
access to this function by adding the latter into the exported
kernel symbols. Janus automatically falls back to the default
TCP (NewReno or Cubic) if the switching fails (e.g., the
selected TCP does not exist in the current kernel).
• Janus API: Janus accepts the desired target rate R (and
optional minimum target rate Rmin) from the application
layer as input and configures the congestion control proto-
cols according to Sec. 4.3. As described in Sec.3, target rate
represents the desired bandwidth for the app to provide
satisfactory QoE to users, e.g., the target and minimum
rate for watching 1080P@60fps YouTube video is 18 Mbps
and 9 Mbps, respectively [41]. We add two socket op-
tions SO_TARGET_RATE and SO_MIN_TARGET_RATE to the
TCP/IP stack of Linux kernel so that R and Rmin can
be specified with the kernel function setsockopt at the
time of instantiating a connection socket. We provide a
config interface file to enable Janus to support unmodi-
fied apps seamlessly. In the config file, the tuple <source
port:R/Rmin> can be specified and fed to Janus.

7.2 Parameter configuration
Janus requires 4 parameters to be configured: (1): γ, ε:
margin parameter of throughput used in TCP switching
and rate control respectively; (3) Qavg : average queued
packets maintained by conservative TCP, which is used in
propagation delay estimation; (4) τ : the scaling parameter
used in target rate adjusting.

• Configure γ, ε: These two parameters are protocol-
independent, i.e, they do not vary with different selected
TCP variants. We empirically set γ = 0.2 and ε = 0.1, which
is also the default setting in following evaluation.
• Configure Qavg : The conservative TCP usually maintains a
certain number of packets in the bottleneck buffer to make
sure the link is fully utilized. Qavg is ideally set as the
default queued packets of conservative TCP. For example,
Vegas bounds the buffer size between 2 and 6 packets, so
Qavg is 4.
• Configure τ : As we proved in Sec.6, the minimal setting of
τ should the the 1

α , where α denotes the cwnd increment of
every RTT with aggressive TCP. For example, we set τ as
20 if Cubic is chosen since cwnd is increased by 5% every
RTT during aggressive stage. Also, we recommend τ = 20
when it is difficult to decide the accurate increment of cwnd
for other TCP variants (as long as the selected TCP is less
aggressive than Cubic). The main reason is that τ balances
the aggressiveness of Janus. The larger τ is, the longer Janus
stays in the aggressive stage, which can negatively influence
other flows. However, setting τ too small may force Janus
to unnecessarily reduce the target rate. Setting τ = 20 and
γ = 0.2 means that Janus stays in aggressive stage for at least
5 RTTs before reducing the target rate.

7.3 Extension to other TCP variants

Janus supports other TCP implementations in the server
kernel through a plug-and-play mode, beyond Vagas and
Cubic, which were selected to illustrate its operation in this
paper. We provide two additional examples of Janus with
the widely used TCP NewReno (Janus-reno) [39] and H-
TCP (Janus-htcp) [13], designed for high-speed and high-
latency networks.

To show that Janus still converges with these new loss
based TCP variants, we let two flows with target rate
R = 12 Mbps compete for the bottleneck link with 20 Mbps
bandwidth. We use the default parameter settings as intro-
duced in Sec.7.2 (γ = 0.2, ε = 0.1, Qavg = 4 and τ = 20).
As shown in Fig.8 and Fig.9, both Janus-reno and Janus-
htcp adjust the target rate for each flow and converge to the
fair share of the bandwidth. However, it takes longer for
Janus-reno to converge because NewReno increases cwnd
slower than H-TCP in the aggressive stage. Besides, note the
conservative TCP (Vegas) did not allocate the bandwidth
exactly in a fair share (10 - 20 seconds). However, Janus
ensures the throughput of these two flows remains within
the convergence range of [(1−γ)∗R, (1+γ)∗R]. In fact, when
flow 2 drops out at 20 seconds (Fig.9), it quickly switches to
H-TCP and gets back the fair share of the bandwidth within
2 seconds. This experiment not only shows that Janus can
be easily extended to include more TCP variants, but also
indicates that the Janus actually improves the stability and
fairness over single TCP configurations.

8 EXPERIMENTAL EVALUATION

We implement Janus and evaluate its performance on a
testbed with traffic from emulated workloads as well as real
world apps. We wish to show that Janus:
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Fig. 10: Our experimental setup includes a local server that
generates emulated traffic and a proxy used to redirect Internet
traffic. The topology represents a typical dumbbell-like network
where multiple flows compete for the same bottleneck link.

1) efficiently shares network resources while satisfy-
ing various demands for bandwidth guarantee flows,
(Sec.8.1);

2) minimizes queuing latency for delay sensitive flows
without sacrificing the throughput of background
bulk transfer flows (Sec.8.2);

3) achieves high and fair link utilization for bulk trans-
fer flows when used as the default congestion con-
trol algorithm (Sec.8.3);

In addition, we show how Janus is robust against varying
link latency and fair when competing with heterogeneous
TCP flows in Sec.8.4 and Sec.8.5, respectively.
Testbed description: As shown in Fig.10, our testbed con-
tains a local server connected to a wireless gateway router
(both running Linux Ubuntu 14.04) via a 1 Gbps Ethernet
link. We use the Linux Traffic Controller tool [42] on the
wireless gateway for controling the bandwidth, link latency
and buffer size. Thus the wireless link is the bottleneck of the
connection between servers and clients. The experimental
topology represents a classical dumbbell-like network that
widely used in previous research [31], where multiple flows
compete for the same bottleneck link.

We use four Android HTC Desire 610 phones running
Android 4.4 and two Dell laptops running Ubuntu 14.04 as
the clients. The server generates multiple flows for different
end-clients through a traffic generator that we have devel-
oped. In addition, to study the effect of Janus on real-world
apps, we deploy a proxy to redirect the Internet traffic from
the remote app servers (such as YouTube and Chrome).
Competing protocols: In our evaluation, we mainly use
Cubic as the base-line protocol as it is one of the most
most widely used congestion control protocols (e.g., Google
also uses Cubic in QUIC at the time of writing). We also
compare Janus with PCC [33]: a state-of-art performance
oriented congestion control protocol that is built atop UDP.
Similar to Janus, PCC also aims to satisfy app-specific de-
mands by selecting different utility functions that optimize
either throughput or RTT. However, the selection of the
utility function is predefined and cannot be changed during
runtime. In the following evaluation, we refer to the PCC
with throughput maximization utility function as PCC-tp
and RTT minimization as PCC-rtt.

8.1 Satisfying target rates for bandwidth guarantee
flows

We first study the convergence of Janus under varying
network loads and show that our protocol can satisfy the
bandwidth demands for each flow quickly. Then we validate

our model in Sec.6 by showing that the Janus flows converge
to MMF allocation under limited bandwidth.

8.1.1 Convergence studies
We schedule four bandwidth guarantee flows with different
target rates R (10, 8, 6, 4 Mbps) that enter and leave the
network successively, while limiting the bottleneck band-
width to 25 Mbps. The connection RTT is 60 ms and the
bottleneck link buffer size is 200 packets (same RTT and
buffer size setting is used unless otherwise stated). We
use the satisfaction degree as the performance metric, which
is defined as received throughput divided by target rate
(P/R). Intuitively, satisfaction degree < 1 means the flow
demand has not yet been satisfied. In contrast, satisfaction
degree larger than one means the flow has received a
larger share than it needs, which is also undesirable as it
may hurt the performance for competing flows. Note that
for flows without specified bandwidth requirements (Cubic
and PCC), the satisfaction degree is simply the received
throughput divided by its fair share of total bandwidth.

As shown in Fig.11(a), Janus allows each flow to grab
the needed bandwidth and reach the satisfaction degree if
there is residual capacity. After the last flow comes in at
32 s, we see only flows 3 (R = 6 Mbps) and 4 (R = 4 Mbps)
can be satisfied. Note the fair allocation for each flow is
6.25 Mbps. The adaptive target rate adjustment algorithm
guarantees that only flows that request bandwidth less than
their fair share can be satisfied given limited resources. By
comparison, TCP Cubic (Fig.11(b)) tries to allocate band-
width evenly among all the flows but suffers from longer
convergence time (almost 20 seconds). Lastly, in PCC, the
first flow takes over 70% of the total bandwidth, leaving
only 30% for other flows (Fig.11(c)), thus lead to large
deviation in the satisfaction degree.

8.1.2 Analytical model validation
To validate our model in Sec.6, we start the same four
bandwidth guarantee flows sequentially with a synchronized
departure at 60 s, and plot results for two different bottle-
neck bandwidths- 25 Mbps and 20 Mbps. Fig. 12 shows that
the observed average throughput closely matches with the
analytic MMF bandwidth (Sec. 6). We notice flows with
target rate equal to the MMF share (e.g., 4 Mbps) have
slightly higher throughput than the theoretical value. This is
because Janus attempts to achieve an extra ε ∗R bandwidth
(Sec.4.4) after its target rate has been reached.

8.1.3 Comparison with Google’s TCP for YouTube
To demonstrate the QoE improvement for real-world apps,
we play the same 5-minute YouTube video simultaneously
at different resolutions (1080 P and 1440 P, with target
rates 4 Mbps and 10 Mbps respectively). This represents the
scenario of two bandwidth guarantee flows sharing one bot-
tleneck link (15 Mbps). We count the number of rebuffering
events, total rebuffering duration (seconds) and the start up
latency (seconds) for the 1440 P flow with (1) Janus (2) Cu-
bic, and (3) the default TCP protocol that Google runs on the
origin server (we omit the 1080 P result here because there
is no rebuffering observed). To ensure a fair comparison, we
confirm that the extra round trip delay between the Google
frontend and our video streaming proxy is less than 2 ms.
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Fig. 11: Convergence dynamics of satisfaction degree (throughput/target rate, ideal value is 1) for four flows with (a) Janus (b)
Cubic and (c) PCC-tp. Janus allow flows to quickly grab bandwidth according to the target rate before the bottleneck link is
saturated and achieves the fastest convergence time when compared with Cubic and PCC.
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Fig. 12: Flows converge to MMF allocation with bandwidth
25Mbps (left) and 20Mbps (right).

TABLE 3: The QoE metrics for 1440P YouTube video with Janus
and alternative protocols.

Protocol Rebuffering
number

Rebuffering
duration

Startup la-
tency

Janus 6 4.2 3.6
Cubic 21 (3.5X) 31.9 (7.6X) 3.5 (0.98X)
Unmodified 12 (2X) 22.3 (5.3X) 2.7 (0.75X)

As shown in Table. 3, Janus greatly improves the QoE for
1440 P video compared with Cubic and interestingly, even
Google’s own default protocol. It achieves upto 5X reduction
in number of rebuffering events and 7.6X lowering of the
re-buffering duration. The improvement occurs when Janus
allocates more bandwidth for the 1440 P flow with explicit
target rate setting. Note that this does not sacrifice the QoE
for 1080 P video since there is no rebuffering observed. This
implies users can get satisfactory QoE by sharing bandwidth
more efficiently, which is an important design criterion for
Janus (Sec. 3).
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Fig. 14: Average page load time for four popular websites
without/with background traffic.

8.2 Minimize latency for delay-sensitive flows
In this section, we study the reduction in queuing latency
for delay sensitive flows with Janus and its effects on QoE for
web-browsing applications.

8.2.1 Reducing queuing latency
We emulate a web workload by sending short, bursty flows
of 100 KB every two seconds. Meanwhile, we compare the
95th-percentile queuing delay for emulated web flows in
presence of a background long lived flow with five protocol
settings: Janus-12 (bandwidth guarantee flow with 12 Mbps
target rate), Janus-0 (bulk transfer flow without any target
rate), PCC-tp, PCC-rtt and Cubic. The bottleneck link band-
width is set to 15 Mbps.

From Fig.13(left), we see that Janus achieves almost an
order of magnitude lower queuing latency than that of
Cubic. Additionally, this does not sacrifice the performance
of background traffic as shown in Fig.13(right), where the
target rate of bandwidth guarantee flow is satisfied and
the bulk transfer flow achieves the over 90% of the link
utilization. This indicates that Janus solves the conflicting
requirements problem (see Sec. 3) by preventing bulk trans-
fer flows from overwhelming the bottleneck buffer.

We now compare the performance of Janus and PCC.
We find that PCC-rtt achieves almost the same queuing
delay as Janus, but it does so by sacrificing the throughput
of competing flows (as shown in Fig.13(right)). With PCC-
rtt the background traffic utilizes only about 73% of the link
capacity. In contrast, while PCC-tp achieves high through-
put, the queuing delay is nearly 5X greater than that of
Janus. In summary, PCC requires explicit tradeoffs between
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protocols.

throughput and RTT, while Janus can satisfy various QoE
requirements for different apps simultaneously.

8.2.2 Improving page loading time
We use web browsing to demonstrate QoE improvement for
delay-sensitive apps using Janus. We implement an Android
app that opens websites and collects Page Response Time
(PRT, defined as the time until client receives last byte of
response from server) and Page Load Time (PLT, defined
as the time until entire page is loaded) via the Navigation
Timing API [43]. We then use a Janus proxy to host four
websites (Google, Facebook, Wikipedia, Amazon), which
represent different types of network services (search, social,
wiki and shopping). We compared the average PRT and PLT
in presence of a background traffic with the same protocol
setting as in the previous experiment (except PCC, since
PCC can only be used to serve self-generated traffic).

As shown in Fig.14, Janus achieves almost ideal PRT and
PLT as if there is no background traffic. This is because Janus
tries to minimize queuing latency, which directly lowers
the PRT and PLT for web pages with small objects. By
comparison, Cubic incurs large queues at the bottleneck
link, and leads to more than 2X larger PRT and PLT.

8.3 Link utilization with bulk transfer flows

In Sec.8.2, we showed that Janus can ensure high link
utilization for a single bulk transfer flow in the presence
of short, delay-sensitive flows. We now study two more
scenarios with: (1) a mixed environment of bulk-transfer
and bandwidth-guarantee flows; (2) all bulk transfer flows
competing for the same bottleneck link.

8.3.1 Mixed classes of flows
We first evaluate whether a bulk transfer flow can co-
exist fairly with bandwidth guarantee flows. As shown
in Fig.15, after one bulk transfer flow fully saturates the
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Fig. 18: Variation of cwnd and delay of Janus when link latency
increases (40 - 100ms). Janus accurately estimates the propaga-
tion delay Dp.

bottleneck link, we start three bandwidth-guarantee flows
(R = 5 Mbps) in succession. Note that the initial bulk
transfer flow relinquishes bandwidth for the subsequent
bandwidth-guarantee flows, until they reach fair share of
the total bandwidth (from 20- to 40s). Moreover, after the
latter flows leave the network, the bulk transfer flow fully
saturates the link again. This validates that Janus automati-
cally achieves fair yet efficient resource allocation on a need-
basis.

8.3.2 All bulk transfer flows
Without a target rate, Janus should reduce to classical
congestion control that faily allocates bandwidth among
all flows. To verify this, we start four bulk transfer flows
that last for 60 seconds. We then measure the throughput
deviation ∆Tp, computed as the difference between the
largest throughput and smallest throughput achieved by
these four flows. Intuitively, ∆Tp should be small (ideally 0)
if the flows converge fast to the even bandwidth allocation.
We compare ∆Tp between alternative protocols (Fig.16) and
show that Janus achieves better performance: the through-
put deviation ∆Tp is about 45% less than that of Cubic. PCC
has much larger deviation, as shown in Sec.8.1.

8.4 Robustness against varying link latency
Vegas does not perform well when the link delay changes
during a connection (Sec.4.4). Since Janus also uses Vegas,
we would like to evaluate if Janus will suffer from the
same problem. This is important since link latencies vary
frequently in a mobile network.

We start two Janus flows (target rate 10 Mbps) sharing
a 20 Mbps bottleneck link, and increase the Dp by 20ms
(from 40 ms) every 20 seconds. Then we plot the real-
time throughput of one flow in Fig. 17 (another flow shows
nearly identical performance). While the throughput of the
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flow first drops due to the increasing propagation delay,
Janus quickly recovers its 10 Mbps bandwidth allocation.
Repeating the same experiments with Vegas shows that both
flows are starved, just as the link latency starts to increase.

To explain the robustness of Janus, we plot the cwnd
variation and estimated propagation delay Dp in Fig.18.
Link latency increases trigger the following processes: First
Janus switches to the aggressive stage and increases cwnd
exponentially when the flow throughput drops below the
bound R ∗ (1 − r). After flow throughput recovers back to
R, Janus clears the queued packets by cutting cwnd down
to Pavg ∗Dp (Sec.4.4) before switching back to Vegas again.
Here, the estimated Dp is outdated, so Janus further reduces
the cwnd driving the throughput proportionately lower,
which forces Janus into the aggressive stage. Finally, Janus
updates its estimation ofDp, and the above cycle is repeated
once again with updatedDp, allowing Janus to converge the
cwnd at a higher level.

8.5 Fairness with other TCP
To study whether Janus can co-exist with flows of other TCP
variants, we consider competing Cubic flows. We start one
Janus flow and a Cubic flow simultaneously and measure
their respective average throughput. We see in Fig.20 that
the throughput for Janus flows is within a small fraction
of the Cubic flows, and Rmin approaches the fair share
of total bandwidth. This implies that despite the fact that
delay-based protocols cannot share bandwidth evenly with
loss-based protocols given their inherent conservative be-
havior, the minimum target rate addresses this limitation
for Janus flows. The key reason is that Janus adopts a tit-for-
tat competition strategy: it will first lower its target rate, in
an attempt to share resources with competing flows when
the network is saturated. However if the competing flow

continually overwhelms the network, Janus is forced into
aggressive stage to assure at least Rmin is satisfied.

To take a closer look at the dynamics of convergence
with heterogeneous flows, we start two Janus flows (Rmin =
5 Mbps) and two Cubic flows consecutively. As shown
in Fig. 20, Janus maintains its throughput around 5 Mbps
given the presence of Cubic flows, and increases back to
10 Mbps as soon as the Cubic flows leave the network. Thus,
Janus can co-exist nicely with different congestion control
protocols as long as the minimum target rate is satisfied.

9 CONCLUSION

Given the tremendous diversity of mobile apps and wire-
less access technologues, manually configuring the TCP
network stack for each scenario is inflexible, error-prune
and usually leads to suboptimal performance. Janus instead
enables automatic, per-flow TCP selection and configuration.
Our approach is lightweight and has a low barrier to de-
ployment because (i) it does not need any modification to
existing congestion control implementations, and (ii) it does
not depend on feedback from lower layers or in-network
devices. We showed, through theoretical analysis as well
as a proof-of-concept system implementation, that Janus
not only improves QoE for various apps by seamlessly
switching between different congestion control variants, but
also enforces max-min fairness bandwidth allocation among
flows given limited network resources.
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