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Abstract—Recently, wireless technology has seen many new devices, protocols, and applications. As standards adapt to keep pace
with hardware availability and user needs, the trend points towards systems that achieve high data rates with low energy consumption.
Moreover, there is an emerging vision of a transceiver architecture that can adapt to multiple protocols, existing and evolving. This
architecture maps computation to underlying heterogeneous computing elements, composed of processors and field programmable
gate array (FPGA) fabric. Here, we introduce a method for modeling a generic orthogonal frequency division multiplexing (OFDM)
wireless transceiver on the Zynq system-on-chip by decomposing the standard specifications into a set of functional blocks used in
multiple protocols. Implementing the 802.11a physical (PHY) layer as an example, our approach creates Simulink model variants for
both transmitter and receiver, each with a different boundary between hardware and software components. We use these models to
generate hardware description language (HDL) code and bitstream for the programmable logic and C code with an executable for the
advanced RISC machine (ARM) processor. We validate, profile, and analyze the models using metrics including frame time, resource
utilization, and energy consumption. Our results demonstrate how to select a co-design configuration considering execution time and
energy, and show how our platform can be reused for multiple-input multiple-output (MIMO) and protocol coexistence.

Index Terms—Heterogeneous (hybrid) systems, Reconfigurable hardware, Data Communications Devices, Receivers, Transmitters,
Signal processing systems, Wireless communication, Wireless systems, Hardware/software interfaces, Hardware/software codesign
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1 INTRODUCTION

IN recent years, the field of wireless technology has seen
a tremendous surge in the diversity of devices, protocols,

and applications. Wireless devices are more prevalent and
used for a wide variety of purposes. The Internet of Things
(IoT) comprises such devices as phones, watches, ther-
mostats, cars, electric meters, sensors, clothing, televisions,
and medical devices. Estimates show that there were 10
billion things in 2013, there will be 50 billion by the year
2020, and IoT is expected to be a $14.4 trillion business over
the course of 2013-2023 [1].

As the need grows for the use of wireless networks
for more diverse, data heavy applications, wireless pro-
tocols must be adapted to meet the various needs of
these applications, including higher data rates and lower
energy consumption. As the number of users increases
on commonly-accessed mobile bandwidths, congestion be-
comes another issue, and more versatile methods must be
put in place to handle the contention inherent in multiple
access. Modern-day wireless communications standards are
constantly evolving to meet the needs of an increasing
number of devices. The latest standard for mobile phone
technology is known as long-term evolution (LTE), and
many research projects are in place to prototype and test
the 5th generation (5G) technology.

These evolving protocols have brought a need for a
flexible, reconfigurable, programmable design framework
for future wireless systems. Such a system requires a radio
frequency (RF) front end as well as elements to process the
signals, often under strict timing or energy constraints. To
handle the most time-sensitive tasks, heterogeneous com-
puting architectures have been introduced, which combine

a software (SW) processor component with reconfigurable
hardware (HW). The premise of a software-defined radio
(SDR) has opened up the field to allow for reconfiguration
of a transceiver device for adaptation to evolving stan-
dards and protocols. From SDR, the idea of a cognitive
radio (CR) has evolved to personalize SDRs [2]. Recent
research has explored such problems as spectrum scarcity
by sensing shared bandwidths and switching center fre-
quency as needed [3]. Various SDR and CR testbeds have
been introduced to prototype a real-time, online transceiver
system, but each testbed has its limitations. Not all testbeds
combine SW and reconfigurable HW [4], [5]. Some testbeds
do not allow the developer to modify the HW component, or
require the developer to use predefined SW routines [6], [7].
Few testbeds allow the developer a high-level interface for
designing both SW and HW components, and fewer release
their designs for use by the general public [8], [9], [10].

In this research, we target a Xilinx Zynq based platform
coupled with an Analog Devices RF front end board. The
Zynq chip includes both an embedded ARM processor for
software implementations as well as Field Programmable
Gate Array (FPGA) fabric. This platform is low cost, flexible
and easy to upgrade. In addition, this platform allows us
to experiment with which components are best suited for
processor SW or reconfigurable HW. This choice may vary
depending on which protocols and layers are supported,
the target hardware platform, and characteristics of the
environment such as congestion.

We explore the problem in HW and SW using commer-
cially available tools, including MathWorks Simulink and
Xilinx Vivado. We demonstrate our approach using IEEE
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802.11a transmitter (Tx) and receiver (Rx) Simulink models
and ensure correctness by comparing against Annex G of
the 802.11a specification [11]. These models require modifi-
cation, such as different data types, to best target execution
on HW or SW. We generate hardware description language
(HDL) code and intellectual property (IP) core blocks for the
components targeted for execution in HW, and also generate
C code to be compiled into an executable that runs on the
advanced RISC machine (ARM) processor from these high
level models. We present information on timing, resource
utilization, and energy consumption for each of the different
HW/SW co-designs. This approach allows a designer to
experiment with which implementations are best suited for
the needs of different wireless protocols, depending on the
usage scenario.

Our approach advances the state of the art in the follow-
ing ways:

Common Modifiable Hardware/Software Platform: We
target easily available, off-the-shelf commercial HW com-
ponents including the Xilinx Zynq and Analog Devices RF
transceiver chips and front ends, as well as software tools
from MathWorks and Xilinx that are widely used in industry
and academia for wireless transception and research. Our
platform HW and SW can easily be replicated by other
researchers and used for real-time implementations of SDR
and CR, exploration of design tradeoffs both at the HW/SW
co-design level, and at the algorithm selection level. Unlike
SDR alternatives like WARP [6] and Sora [12], our platform
allows the user to modify the HW blocks at a high level and
requires no proprietary HW or SW. We plan to share our
designs with other researchers.

Exploration of HW-SW Design Tradeoffs: Our ap-
proach provides a mechanism for prototyping widely-used
wireless protocols using HW and SW variants on FPGA and
ARM processor respectively. By mapping wireless behaviors
to processing elements, we can determine whether any par-
ticular behavior is better suited for implementation on HW
or SW, given information such as proximity to the RF front
end, time and power metrics, and use of FPGA resources.
Previous mappings of protocols to hardware testbeds have
not included the embedded ARM processor as a target. Each
component in the 802.11a PHY-layer processing chain has a
HW and SW implementation, allowing designs to be ana-
lyzed for speed and energy consumption. The FPGA fabric
can support real time processing as long as the path delay
meets defined timing constraints. Built-in SW profiling tools
can monitor execution time on SW and path delay on HW
to ensure real-time operation. In addition, Vivado reports
provide power consumption information for the FPGA,
allowing choices to minimize energy usage. Future research
will explore methods for choosing the fastest possible im-
plementation or minimizing the energy used during active
periods based on user constraints.

A Platform for Next Generation Wireless Research:
Using a heterogeneous system that consists of a processor
and reconfigurable HW, we can modify the functionality
of the transmitter and receiver to adapt to evolving proto-
cols. The RF front end can be programmed to dynamically
change bandwidths by modifying such parameters as center
frequency (fc) and sampling frequency (fs). The platform
enables research on a number of signal processing and

communications techniques, including choices for preamble
detection, modulation, and encoding schemes that optimize
such metrics as packet error rate, bit error rate, and link
latency. We can support spectrum coexistence, such as LTE
and Wireless Firewall (Wi-Fi) on the same channel, TV
whitespace reuse, or co-operation with Radar. We can sup-
port spatial diversity, using multiple antennas (MIMO) and
transmitting identical sequences using alternate encoding
or modulation techniques, to overcome the effects of fading
and interference. Subcarrier selection can be supported with
a system that can dynamically assign symbols to specific
subcarriers that have been identified to have maximum
channel efficiency, rather than mapping modulated symbols
to a fixed set of subcarriers. Future standards such as 5G
LTE will be explored using this testbed.

The rest of the paper is organized as follows. Sec. 2
discusses similar research that has been undertaken in the
fields of SDR, CR, and heterogeneous architectures. Sec. 3
explains key algorithms in the IEEE 802.11a standard. Sec. 4
describes our targeted HW and SW. Sec. 5 introduces the
HW-SW co-design variants that collectively comprise our
transceiver system model, including timing considerations
and user workflow. Sec. 6 describes HW-SW interfacing and
illustrates metrics measured from the experiments such as
time, utilization, and energy. In Sec. 7, we propose topics
for future research that can be prototyped using our flexible
SDR testbed. In Sec. 8, we summarize our findings.

2 RELATED WORK

For designing SDRs, there have been many HW devices, SW
tools, and systems or solutions introduced.

2.1 SDR Hardware
Any SDR implementation that can support physical radio
transmissions requires a radio frequency (RF) front end. For
easy connection to computer hardware, many SDR projects
use the Ettus Research Universal Software Radio Peripheral
(USRP), an RF front end board commonly used in wireless
research [15]. USRPs feature integrated circuit chips for RF
transception by Analog Devices Inc. (ADI), including the
wideband wireless AD9361 and AD9364 transceivers [16].
To attach to the FPGA Mezzanine Card (FMC) slot on
Xilinx FPGA and Zynq System-on-Chip (SoC) boards, ADI
introduced the AD-FMComms series.

2.2 SDR Software
Specialized SW is needed to effectively work with the SDR
systems and perform the signal processing tasks needed to
instantiate wireless communications. GNU Radio is one of
the most widely used SDR programs, owing to the fact that
it is open source, HW-independent, and modifiable [17]. Its
graphical interface, GNU Radio Companion, allows the user
to build block diagrams to represent complex encoding and
decoding schemes. However, the GNU scheduler is built for
operation on a CPU, and much additional effort would be
required to make designs real-time, clocked, and compatible
with custom HW components. MATLAB and Simulink are
also widely used tools for modeling algorithms in digital
signal processing systems. As the basis for communications



2168-6750 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2017.2651054, IEEE
Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MARCH 2017 3

TABLE 1: Comparison of features for different SDR systems and solutions
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system design, MathWorks produces HW support packages
for interfacing with commonly-used RF front-ends, includ-
ing for Zynq-Based Radio and USRP-based Radio [18]. For
example, in [19], a high-level cognitive radio framework
is designed for bidirectional transception using the USRP
N210, MATLAB, and IEEE 802.11b.

2.3 SDR Systems and Solutions
An overview of SDR systems and solutions is shown in
Table 1. Several features are desirable in an SDR, including
high level description, both CPU and FPGA available, and
open design specifications that are available to the public.
System designers also want to program the FPGA and
study HW-SW codesign tradeoffs. Wireless engineers want
to modify processing blocks for next generation protocols
and study protocol coexistence on the same bandwidth.

Some research focuses on high-level SDR descriptions
that automatically trace down to low-level implementations.
Atomix is a modular SW framework for building appli-
cations on wireless infrastructure that builds an 802.11a
transceiver using fixed-timing computations called atoms to
utilize the cores of a multi-processor DSP [4]. Atomix is
intended only for synthesis on a variety of DSPs, not for re-
configurable HW. CODIPHY uses Xilinx System Generator
to generate synthesizable designs from MATLAB programs
and automatically generate C and VHDL for an 802.11a/g
Tx and Rx [5]. However, the testing behind CODIPHY is all
emulated, not tested on live FPGAs or SoCs.

Some SDR projects are implemented in both HW and
SW on a heterogeneous platform that comprises processor,
FPGA, and often many custom-made components. WARP is
a programmable platform for prototyping wireless networks
that combines an RF transceiver, a Xilinx Virtex-4 FPGA
board, and an open-source repository of reference designs
and support materials [6] [20]. Wireless open-access research
platform (WARP) has been used to build a full duplex 802.11
network with OFDM and a MAC protocol [21], and an
algorithm for estimating time-of-arrival for OFDM-based
transceivers [22]. However, WARP is a fixed HW device
with much implemented in ASIC; for this reason, it is dif-
ficult to update to accommodate the latest spectrum bands
and protocols. The Sora soft-radio stack combines a multi-
core CPU and a radio control board, which consists of a
Virtex-5 FPGA, PCIe-x8 interface, and DDR2 SDRAM [7].
The Sora platform uses the Ziria language to write high-
level SDR descriptions, and is tested using an LTE-like

PHY layer and testbed to ensure real-time operations [12].
Unlike WARP, Sora can accommodate various RF front ends.
However, SORA does not allow for its Virtex FPGA to
be programmed by designers, instead forcing them to use
the provided tools, and its internal routines are hidden.
CoPR, an automated framework for implementing partial
reconfiguration-based adaptive HW systems on Xilinx FP-
GAs is prototyped for a multi-standard CR transmitter [8].
Airblue introduces an FPGA-based SDR platform for the
PHY and MAC layers [9]. However, this platform does not
include a SW processor and so cannot be used for studying
HW-SW co-design issues.

Numerous recent works have proposed an SDR or CR
platform that utilizes a Xilinx Zynq SoC, which combines
the ARM-based Processing System (PS) and Programmable
Logic (PL) FPGA fabric. In [23], SDR is modeled using GNU
radio adaptations for Zynq and Zynq clustering. In [24],
Zynq ZC702 boards are combined into a scalable cluster,
and a Zedboard task mapper partitions data flows across
the FPGAs and ARM cores. Iris uses XML description to
link together components to form a full radio system, run
them within a PS or PL engine, and test using OFDM for
video transmission [10]. In a similar work, the Zynq SoC
implements digital pre-distortion as required by 3G/4G
base stations, using Vivado HLS to design the PL compo-
nent [25]. However, these projects either do not make their
source code publicly available or were tested using static
wireless communications protocols that cannot be modified
easily. CRASH utilizes the Zynq Z-7045 System-on-Chip
(SoC), which combines both FPGA and ARM processor,
and a custom-made PCB to interact with the USRP N210
to perform spectrum sensing [13]. In [26], a platform is
proposed using the Zynq with partial reconfiguration and
the ADI FMComms4 with tunable operating frequency to
enable dynamic, low-power, high-performance CR. This
latest work has not been fully implemented and tested.
Most recently, the National Instruments real-time LTE/Wi-
Fi testbed proposes a new platform for the study of 802.11
and LTE coexistence in 5G technologies [14]. However, this
product does not explore HW-SW co-design issues.

3 IEEE 802.11A STANDARD COMPLIANCE

Like the Open Systems Interconnection (OSI) model, 802.11
describes a multi-layered communications approach, with
the physical (PHY) layer representing the lowest-level sig-
nal processing operations, the media access control (MAC)
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Fig. 1: 802.11a Preamble

layer covering types of messages and contention, and the
application layer handling the top-level purpose. 802.11a
is designed specifically for the 5-6 GHz RF bandwidth
and expects data rates of 6-54 Mbit/s. To meet real-time
constraints, an 802.11a transceiver must complete its PHY-
layer transactions before the end of a fixed period or
else suffer unacceptable data losses. These transactions
include scrambling, convolutional encoding, block inter-
leaving, phase shift keying (PSK) modulation, symbol-to-
subcarrier mapping, and orthogonal frequency division
multiplexing (OFDM) modulation. The 802.11a transceiver
system consists of a transmitter (Tx) that perform these
transactions and a receiver (Rx) that undoes them.

The 802.11a specification provides an example for en-
coding a frame for the OFDM PHY in Annex G [11]. The
Physical Layer Convergence Procedure (PLCP) maps the
PHY Sublayer Service Data Units (PSDU) into a framing
format suitable for transferring data, called a PLCP Protocol
Data Unit (PPDU). Our initial work properly generates and
decodes the frame described in Annex G.

PLCP Preamble: The PLCP Preamble consists of 10
repetitions of a short training sequence and 2 repetitions
of a long training sequence, as shown in Fig. 1. The short
sequence is used for AGC convergence, diversity selection,
timing acquisition, and coarse frequency acquisition in the
receiver. The long training sequence is used for channel
estimation and fine frequency acquisition [11]. The PLCP
preamble is the same for every PPDU frame. The short
preamble consists of 12 OFDM subcarriers, while the long
preamble consists of 53. The total length of the preamble is
16 µs.

Scrambling: The scrambler performs a bitwise XOR with
incoming data and a bit sequence randomly generated using
a linear feedback shift register (LFSR). The scrambler LFSR
uses the generator polynomial in equation 1.

S(x) = x7 + x4 + 1 (1)

This creates a bit sequence that repeats every 127 bits. Since
an XOR is used, the same sequence is used to descramble
data at the Rx. The SIGNAL field sent as the first transmitted
symbol is not scrambled, but all data bits are. The scram-
bling sequence changes depending on what seed value is
used. Our implementation uses the same seed value as the
example in Annex G of the spec, which is 1011101.

Convolutional Encoding: The convolutional encoder
uses generator polynomials of g0 = 133 and g1 = 171.
These correspond to a rate 1/2 code with maximum free
distance for K = 7. The output sequence has a bit length
of twice the input length for this 1/2 rate. Note that 802.11a
also supports rates 2/3 and 3/4 [11].

Fig. 2: Symbol to Subcarrier Mapping Diagram

Block Interleaving: Data interleaving is a two-step per-
mutation performed on coded data. The first permutation
maps adjacent bits to nonadjacent subcarriers, and the sec-
ond permutation ensures adjacent coded bits are mapped
alternately to avoid long runs of low reliability bits. Since
we focus on BPSK with 1/2 code rate, this configuration
simplifies the interleaving to equation 2.

i = 4(k mod 16) +

⌊
k

16

⌋
j = i+ (i+ 48−

⌊
16

i

48

⌋
) mod 16

(2)

where k is the index before the first permutation, i is the
index after the first permutation, and j is the index after
the second permutation. The number of coded bits per
subcarrier, NCBPS , is 1, and the number of coded bits per
symbol, NCBPS , is 48. Using this equation, the one-step
interleaving permutation can be calculated beforehand.

PSK Modulation: PSK modulation is done to convert
the input data to complex symbols. The specification de-
fines that the OFDM subcarriers be modulated using BPSK,
QPSK, 16-QAM, or 64-QAM. We built our implementation
for BPSK, which has a constellation with points at -1 and 1.

Symbol-to-Subcarrier Mapping and Pilot Insertion:
Next, the 48 complex symbols are mapped to subcarriers
and combined with a set of 4 pilots whose polarity changes
based on frame count. The 52 subcarriers are arranged
in a specific order for the 64-point Inverse Fast Fourier
Transform (IFFT), and nulls (zeros) are placed in the empty
locations. Fig. 2 illustrates the mapping of input symbols,
pilots, and null samples to IFFT inputs.

OFDM Modulation with Cyclic Prefix: The OFDM
Modulator combines a 64-point IFFT and cyclic prefix
attachment, in which the last 16 samples in time are
prepended to the IFFT output [11]. The cyclic prefix is added
to reduce inter-symbol interference and lower the effects of
multipath fading by creating a Guard Interval (GI).

4 TARGET HARDWARE AND SOFTWARE

4.1 Hardware Setup

Our HW consists of an RF front end, the ADI FMComms3
board; a Xilinx Zynq evaluation board; and a host computer.
We attach an Ethernet cable and a JTAG cable between the
host PC and the Zynq board and connect the FMComms3
board to the FPGA Mezzanine Card (FMC) slot on the
Xilinx FPGA board. The FMComms3 features the wideband
wireless AD9361 transceiver chip. The AD9361 transceiver
supports up to 2 transmit (Tx) and 2 receive (Rx) channels
at bands from 70 MHz to 6.0 GHz [16]. The Xilinx Zynq
SoC has an embedded ARM processor and FPGA fabric.
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Fig. 3: 802.11a Transceiver HW: Zynq SoC & FMComms3

TABLE 2: Zynq Board Comparison

Zedboard ZC706
Device Z-7020 Z-7045
FPGA Artix-7 Kintex-7
LUTs 53,200 218,600

Registers 106,400 437,200
DSP Slices 220 900

BRAM Blocks 140 545

Throughout this paper we use Xilinx terminology: Process-
ing System (PS) for the ARM processor and Programmable
Logic (PL) for the FPGA fabric. In our experiments, we
target two different Zynq boards: the ZC706, which contains
a Xilinx Z-7045 chip and the Zedboard, which contains a
slightly less capable Z-7020. These boards are compared
in Table 2. Internal to the Zynq processor, an Advanced
eXtensible Interface (AXI) bus connects the PL and the PS.
We use the ethernet cable to send start and stop signals from
host PC to Zynq PS. The 802.11a transceiver system contains
both a Tx path, from PS to PL to FMComms3, and a Rx path,
from FMComms3 to PL to PS, as shown in Fig. 3.

4.2 Software Tools
To target the hardware described above, we use commer-
cially available tools from MathWorks and Xilinx as illus-
trated in Fig. 4. We use MathWorks Simulink to create and
simulate synchronous dataflow models. Specialized tool-
boxes from MathWorks, HDL Coder and Embedded Coder,
allow us to target the PL and PS, respectively. Additional
MathWorks hardware support packages allow us to inter-
face with the Zynq SoC and the ADI FMComms3 [27].

We start by making a Simulink model to capture all
the information about the Zynq transceiver system. In this
model, we set radio parameters such as sampling frequency
and number of samples per frame. We distinguish one
subsystem in the model to target for execution on the PL,
presuming that all the other model components are targeted
to run on the PS. We run the HDL Workflow Advisor wizard
to auto-generate an IP Core block for the Tx or Rx design
under test (DUT). The wizard auto-generates a Vivado block
diagram to combine the DUT with all the AXI interface
components. The wizard creates a generated model to interact
with the PL via AXI. Then, the wizard invokes Xilinx Vivado

Fig. 4: High-Level SW Tool Workflow for Zynq PL & PS

from the command line to synthesize, implement, and make
a bitstream [28]. We program the PL with this bitstream.

Finally, we generate an executable for the PS using
MathWorks tools. By setting the generated Simulink model
to run in External mode, Simulink uses Embedded Coder
to generate C code for all processing blocks in the Simulink
model [29]. Then, Simulink invokes Xilinx SDK to package
and compile the executable for the PS [28]. When we press
the play button in the Simulink model, it sends a signal via
Ethernet to launch the executable on the PS.

5 TRANSCEIVER HW-SW CO-DESIGN

5.1 Design Variants
Fig. 5 and Fig. 6 show the processing chains for transmitter
and receiver respectively. We have functionally equivalent
software (PS) and FPGA hardware (PL) versions of each of
the blocks in these figures. For each processing chain, we
have explored HW-SW codesign by creating a number of Tx
and Rx variants that each implement a different number of
functional blocks in HW and SW. Data movement as well
as processing is an important consideration when deciding
which processing block to put in HW or SW. Each design
variant moves data once between PL and PS. The reason
that there is only one HW/SW divide point is that trans-
ferring data between computing elements adds additional
overhead that we want to minimize. In future experiments,
we may incorporate more divide points.

For the transmitter, each design variant adds one new
block in FPGA hardware. V1 has the complete processing in
software on the ARM processor. Subsequent designs assign
one or two additional components to the PL, starting with
the component closest to the RF board. Seven different
versions were explored, where V7 has the entire Tx chain
implemented on the PL. These versions are identified in
Fig. 5. Specifically, V1 is a SW-only design that implements
all functional blocks on the ARM processor. V2 moves the
preamble insertion onto the PL. The preamble insertion
block is placed at the end of the transmit processing chain,
just before the RF front end. We apply OFDM modulation
to the preamble beforehand and store the processed data in
a lookup table. V3 adds the IFFT and cyclic prefix attach-
ment components to HW. V4 adds the BPSK Modulation
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Fig. 5: 802.11a Transmitter Chain HW/SW Codesign Variants

Fig. 6: 802.11a Receiver Chain HW/SW Codesign Variants

and Symbol-to-Subcarrier mapping components to HW. V5
adds the Block Interleaving component to HW. V6 adds the
Convolutional Encoder component to HW. V7 is a HW-only
design that only does file I/O on the PS and performs all
processing on the PL fabric.

A similar approach is taken for the receiver model, for
which we also model seven variants, as shown in Fig. 6. The
PS-Only design is designated V1, and PL implementation
versions increase incrementally from there. V2 adds the
Preamble Detection component to reconfigurable HW. The
preamble detection method uses a matched filter block to
efficiently correlate two frames of fixed-point input samples
with the expected long preamble sequence. Each subsequent
version from V3 to V7 adds an additional component of
the frame recovery subsystem to the PL. V3 adds OFDM
modulation to the PL, including cyclic prefix removal and
FFT. The FFT block adds a latency of 159 samples before the
output is valid. V4 adds BPSK demodulation and subcarrier-
to-symbol mapping to the PL. It uses a delay line to gather
the 64 valid samples and a selector to reorder them and
remove the pilot and empty guard subcarriers. V5 adds
block de-interleaving to the PL using a selector. V6 adds
Viterbi decoding, which introduces a delay of two frames.
V7 adds the Descrambler component to the PL. We evaluate
all these different versions with respect to timing, resource
utilization and energy efficiency.

5.2 Timing Considerations
In order to maintain a real-time transceiver system and
prevent unacceptable data losses, we need to closely mon-
itor execution times. For simplicity and to meet SW tool
requirements, we instantiate a fixed step time for both PL
and PS. Since operations on the PL fabric can operate many
times faster than on the PS, we design for the PL to process
one sample at a time and the PS to process one frame at
a time. The time per frame, tf , is therefore the product of
the number of samples per frame, nspf , and the time per
sample, ts, as shown in equation 3.

tf = tsnspf (3)

By setting the appropriate step times in the model vari-
ants, we can ensure that data is transferred between PL and
PS at the desired rate. However, we must be careful to en-
sure that all the processing operations in the PL subsystem
complete within the sample time, ts. If they do not, then we

TABLE 3: Timing Details

Variable Rx Value Tx Value

PL Step Time/Sample Time tps 12.5 µs 1 µs
# Samples per Frame nspf 80 80-403

PS Step Time/Frame Time tpf 1 ms 80-403 µs

run the risk of underflow, where new received RF bits are lost
at the FMComms3 Analog to Digital Converter (ADC) ports,
or zero bits must be sent at the Digital to Analog Converter
(DAC) ports. In addition, we must also be careful to ensure
that all the processing operations on the PS complete within
tf . If they take longer, then the PS would lose data sent
from the PL or fail to send data to the PL in time, causing
issues with data integrity. A summary of the relevant timing
variables is listed in Table 3.

According to the IEEE 802.11a specifications for the low-
est bit rate, each OFDM symbol represents 24 data bits [11].
If we assign only one OFDM symbol to a frame, each frame
has 24 data bits. After convolutional coding, this becomes
48 coded bits. After BPSK modulation and mapping, this
becomes 64 symbols. Finally, after OFDM modulation, this
becomes 80 time samples per frame. For the Rx, we decide
to have the PS process one frame at a time every 1 ms, and to
have the PL process one sample every 12.5 µs. In contrast,
the Tx models are designed to use a fixed sample time of
1 µs and increase the number of samples per frame, nspf ,
for each design variant. Thus, the Tx model variants have
an increasing PS frame time of between 80 and 403 µs.

5.3 Common System Components

For all the design variants, there were several system com-
ponents that are used consistently. These components are
necessary for implementing a wireless behavior in HW
that has equivalent functionality to the SW version. Before
sending data between the PS and the PL, multiple inputs
(e.g. data, validIn, and reset signals) must be packed on one
end and unpacked at the other end. This packing consists
of concatenating inputs into 32-bit unsigned integer for the
Advanced eXtensible Interface (AXI) interconnect. A system
reset signal is packed into the AXI input, and pulsed once at
the start. We use sample and frame counters to handle logic
specific to a sample or frame number.
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Fig. 7: AXI Connections between Zynq PS and AD9361 Chip

Fig. 8: AXI-Stream Transmit and Receive Path Detail

6 EXPERIMENTAL RESULTS

As described in Section 4 our target hardware consists of
a board containing a Xilinx Zynq chip, an interface to an
ADI FMComms RF front end, and a host PC. The FM-
Comms board makes use of an AD9361 chip. Internally,
communications on the Zynq chip uses an AXI interconnect,
which is used to transfer 32-bit words in a time-synchronous
manner between PL and PS. There are two AXI interfaces
which we use: AXI-lite is a memory mapped protocol and
AXI-Stream is intended for high-speed streaming data. We
use AXI-lite for the Rx and AXI-stream for Tx. To support
the AXI-stream interface, the Vivado block diagram must
contain both AXI Interconnect and AXI Direct Memory
Access (DMA) Controller IP Cores as shown in Fig. 7. To
retrieve RF data bits from the FMComms3 ADC ports, the
in-phase and quadrature (I&Q) bits are concatenated for
both channels, processed through the Rx path, and sent to
the DMAC AXI slave interface. To transmit data bits on the
FMComms3 DAC ports, the bits travel from the DMAC AXI
master interface, through the Tx path, and are split into I&Q
components for each channel. Detailed diagrams of the Tx
path and Rx path are shown in Fig. 8.

6.1 Timing Results

For the 802.11a Tx, the execution timing results on the PS are
shown in Fig. 9. The maximum PS frame time decreases as
more components are moved onto the PL. Moving the IFFT
to PL in V3 results in the largest drop in frame time. Also,
the ZC706 frame time of 55 µs is significantly lower than the
Zedboard frame time. While the maximum frame time on
the ZC706 does not decrease between V3 and V6, we have
seen that the V7, the PL-only version, exhibits the lowest
maximum and average frame time on both the Zedboard
and the ZC706. To meet the 802.11a specifications, we would
need to meet a 4 µs maximum frame time. Thus, further
optimization is needed to reduce the PS frame time.

Fig. 9: Transmitter Frame Times on Zedboard & ZC706

Fig. 10: Receiver Frame Times on ZC706

TABLE 4: Data Path Delay on ZC706 PL

Tx (ns) Rx (ns)
V1 n/a n/a
V2 11.11 313.70
V3 16.17 317.43
V4 18.33 311.14
V5 15.84 313.12
V6 16.52 307.73
V7 16.04 318.89

For the Rx, the execution timing results on the PS are
shown in Fig. 10. Similar to the Tx, the Rx maximum PS
frame time decreases as more components are moved onto
the PL. Moving the preamble detection to PL in V2 results
in the largest drop in frame time, but there are also signif-
icant drops when the FFT is moved in V3 and the Viterbi
Decoder is moved in V6. Notably, moving the Descrambler
component to PL in V7 does not show a decrease in frame
time, suggesting that it may be better placed in SW.

For an idea of how long the same operations take to
process on the PL, we look for the maximum data path delay
of the Tx and Rx, which are shown in Table 4. Since the
FPGA implementation is inherently parallel, at under 320
ns, the Rx PL delay is faster than any SW implementation.
This data path delay indicates that the Rx path on the PL can
definitely keep up with the Tx, whose sample time is cur-
rently set to 1 µs. Our real challenge is meeting the 802.11a
specification, for which the Rx PL sample time would need
to be 50 ns. However, by implementing preamble detection
in a different way and reducing the size of the matched filter,
we could reduce the number of data dependencies, thereby
decreasing the path delay significantly.
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(a) (b) (c)

Fig. 11: Resource Utilization for (a) Tx on Zedboard, (b) Rx on ZC706, (c) Combined Tx-Rx on ZC706

6.2 Resource Utilization

Our Tx design can be accommodated on either the ZC706
or the Zedboard, although only the ZC706 has sufficient
resources for the Rx implementation. The Tx resource uti-
lization results are shown in Fig. 11a. These results show
increasing lookup table (LUT), register, and digital signal
processor (DSP) usage as more components are put onto the
PL. The number of registers decreases slightly from V2 to V3
due to the different data types involved. The slice registers
hold state information that reduces because V2 must trans-
fer data in 32-bit sample form, while V3 holds data in single-
bit form. V2 must hold each sample in complex, 16-bit fixed-
point format before initiating IFFT processing, and 64 data
samples make up a frame. In all model versions, even the
PL-only variant, the FPGA is at less than 5% utilization on
the ZC706 and 20% on the Zedboard, meaning that it retains
many LUTs and registers for use by prospective component
variations (e.g. QPSK), higher OSI layers and other designs.

The Rx resource utilization on the ZC706 is shown in
Fig. 11b. Like the Tx, these Rx utilization results show
increasing lookup table (LUT), register, and digital signal
processor (DSP) usage as more components are put onto
PL. The largest increase comes from the initial placement of
preamble detection on the PL in V2. Note that the Rx uses a
significant portion of the FPGA resources, with as much as
60% of the total slices, the main grouping of logic resources.
Still, we see that there remain many LUTs and registers for
use by higher OSI layers or other designs.

A combined Tx and Rx design could be implemented
on the ZC706 or more powerful boards. Such a combined
design would be appropriate for a modern bidirectional
transceiver, since even a designated Tx must have an Rx
component to receive ACKs. The combined Tx and Rx
resource utilization is shown in Fig. 11c.

6.3 Power Efficiency

In addition to meeting timing and resource requirements,
we are also interested in generating power efficient designs.
Since the Zynq PS is based around an embedded ARM
processor designed for low power, it is more power efficient
than some alternative processors such as TI6670 DSP used
in Atomix, which consumes 5-8 W [4]. The Zynq platform
always provides power to the ARM processor; thus, using

TABLE 5: Power Usage, Tx on Zedboard, Rx on ZC706

Tx (W) Tx (∆V1) Rx (W) Rx (∆V1)
V1 1.530 0 1.566 0
V2 1.819 0.289 2.343 0.777
V3 1.840 0.310 2.354 0.788
V4 1.845 0.315 2.111 0.545
V5 1.844 0.314 2.106 0.540
V6 1.847 0.317 2.111 0.545
V7 1.842 0.312 2.115 0.549

FPGA fabric adds to the overall power consumption. The
Xilinx Zynq SoC we use has 7-series FPGAs, which consume
less power than the Virtex-4 FPGA in WARP or the Virtex-
5 in Sora [30]. The FPGA power consumption is related
to the SoC chip area and resource utilization; hence, each
version of our Tx and Rx designs that puts another block
onto FPGA fabric increases overall power consumption.
Xilinx Vivado offers synthesis options for speed or area
optimization that we plan to explore in future work. The
power results were derived by running the Vivado Power
Report with fixed environmental settings (e.g. output load
5 pF, ambient temperature 25 ◦C). The Tx and Rx power
consumption on the Zedboard and ZC706, respectively, are
shown in Table 5. Our results show that the FPGA fabric is
more power efficient than the ARM processor because each
power increase is only a fraction of the ARM power in V1.

The Tx total power increases from 1.530 to 1.842 Watts
as more components are placed on the PL. However, this
increase of 312 mW is small when compared to the Tx
PS consumption, which alone is 1.53 W on the Zedboard.
As expected, the power increases as more components are
added to the PL, most notably AXI in V2 and IFFT in V3.

The Rx total power also increases as more blocks are
put on the PL, most notably AXI and preamble detection in
V2 and FFT in V3. However, we see a significant decrease
when BPSK is placed on the PL in V4. The reason is the
data type change from samples to coded bits. Whereas V3
transfers 64 32-bit fixed point samples from PL to PS, V4
only transfers 48 bits packed into 2 32-bit integers. Thus, the
load on the AXI interconnect is reduced by a factor of 32.
From V4 to V7, the Rx power increases only 4 mW, which is
minor compared to the ZC706 PS consumption of 1.566 W.
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TABLE 6: Preamble Detection Matched Filter Variants

Default HDL Long HDL Training
Data Path Delay (ns) 499.6 313.7 131.6

%LUTs 8.89 38.16 15.77
%Registers 4.34 1.96 1.26

%DSPs 99.22 35.33 14.67
Total Power (W) 2.65 2.34 2.09

6.4 Variants of Processing Blocks
Next, we focus on two components that consume many
resources, preamble detection and Viterbi decoding, and
explain the details and tradeoffs associated with the design
of each.

6.4.1 Preamble Detection
Our preamble detection method uses a matched filter block
to efficiently correlate two frames of fixed-point input sam-
ples with the expected long preamble sequence. When
the complex magnitude exceeds a predefined normalized
threshold, a flag is set to identify that the preamble was
found. In addition, the index of maximum correlation is
used by a selector block to choose which sample in the
delayed frame is first OFDM demodulated.

Our modeling environment aided in the identification
of preamble detection as a major source of path delay and
resource utilization. Thus, we prototyped different versions
of the preamble detection processing block for variant V2,
which use different algorithms for the matched filter (MF)
component. These variants are shown in Table 6.

The first MF variant was manually assembled from the
default components, which are a delay line and an array
of multipliers and adders for each received sample. Since
this default version auto-generates HDL for each individual
multiplier and adder, it is not HDL optimized and it is very
inefficient. The Vivado synthesis process used over 99% of
the DSPs for it, and it has a very long data path delay.
Using the HDL-optimized MF with the full long preamble
was therefore preferable. However, since the long preamble
is composed of repetitions of a shorter training sequence,
we found the best results using this training sequence for
the MF coefficients instead. The HDL-optimized training MF
showed a 2.38X reduction in data path delay over using the
long preamble, as well as a 1.12X reduction in power and a
smaller number of LUTs, registers, and DSPs utilized.

The modeling environment shows value for highlighting
that preamble detection is a bottleneck. In addition, the
resource utilization analysis identifies that the Zedboard can
now be used for the Rx chain in addition to the ZC706. In the
original long versions of the design, due to the large number
of LUTs and DSPs needed, we were forced to use the ZC706.
However, using the training version uses only a fraction of
those LUTs and DSPs, meaning that the resources available
on the Z-7020 SoC are sufficient for implementing all model
variants, even the HW-only design.

6.4.2 Viterbi Decoder
The Viterbi decoder processing block reverses the effects of
the convolutional encoder by calculating maximum like-
lihoods. Since the decoding is based on probabilities, it

TABLE 7: Viterbi Decoder Variants

Delay-Based BRAM-Based
Data Path Delay (ns) 307.73 314.45

%LUTs 40.97 40.34
%Registers 4.17 3.24

%DSPs 36.78 36.78
#BRAM Tiles 0 2

Total Power (W) 2.358 2.357
Viterbi Power (W) 0.011 0.005

requires a delay of a few dozen samples before it can
produce valid output data bits. Since it requires memory
to hold intermediate state values, an implementation may
use different resources to accomplish this, either by use of
registers or block RAM (BRAM).

Since Viterbi decoding was also revealed to be a source of
delay and resource usage, we prototyped different versions
of the Viterbi Decoder (VD) processing block for model
variant V6, which are shown in Table 7. By using the
default delay-based version, we observed the lowest data
path delay. However, using the version that holds state
memory in BRAM uses fewer LUTs and registers, which
slightly lowers the overall power consumption. By looking
specifically at the power consumed by the VD block, we
see a power reduction of 6 mW. Thus, swapping the VD
variant illustrates a tradeoff between time and power that
can be dynamically tuned for either objective. This brand
of adaptability is most useful when there are few of one
resource available, and switching the implementation of a
processing block would be beneficial for utilizing less of the
overused component (e.g. LUTs or registers) and utilizing
more of an underused component (e.g. BRAM).

6.5 Next Generation Enhancements

Having demonstrated the capability of our modeling en-
vironment to prototype the 802.11a processing chain, we
explore extending the design to research areas of interest
to the next generation wireless community. In particular,
we show how our modeling environment is suited for
exploring such issues as protocol coexistence and multiple-
input, multiple-output (MIMO) operation.

6.5.1 LTE / Wi-Fi Coexistence
The reusability inherent in our modeling environment al-
lows us to explore LTE and Wi-Fi coexistence on the same
channel. The IEEE 802.11a standard provides the functional
basis for IEEE 802.11g, the protocol used by Wireless Fire-
wall (Wi-Fi) devices. As an initial study into this topic, we
note that OFDM is used by both protocols. However, to
support OFDM for both protocols would require different
IFFT sizes and cyclic prefix lengths, as well as flexible
subcarrier allotments to form OFDMA (‘MA’ in the acronym
implies the addition of multiple access) used in the downlink
channel for LTE. Our modeling environment can easily
modify processing blocks to prototype the different settings
for each standard. For example, we can vary the IFFT sizes
required by LTE OFDM and collect metrics to identify the
impact of the different size, as shown in Table 8. The results
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TABLE 8: OFDM Block IFFT Size Variants

IFFT Size 64 128 256 512 1024

Data Path Delay (ns) 15.15 16.76 16.81 15.64 17.99
%LUTs 19.86 22.38 27.8 37.18 54.86

%Registers 12.33 14.47 19.09 27.65 44.11
%DSPs 6.36 7.73 9.09 10.45 11.82

Total Power (W) 1.842 1.841 1.849 1.854 1.872

TABLE 9: All-HW Model MIMO Variants

# Tx/Rx chains 1 Tx 2 Tx 1 Rx 2 Rx
Data Path Delay (ns) 10.63 11.37 25.07 25.27

% LUTs 1.89 4.06 7.15 13.87
% Registers 1.14 2.11 3.44 6.84

% DSPs 1.44 1.78 25.78 51.56
% Slices 3.18 6.48 12.24 22.04

Total Power (W) 1.930 1.938 2.128 2.321
PD Power (W) n/a n/a 0.183 0.359

show increases in data path delay, resource utilization, and
power for rising IFFT sizes.

Considering the case of LTE, larger amounts of control
flow exist here compared to 802.11. Presuming this control
flow exhibits a large amount of divergence, it may be better
placed on the PS. This would require more communication
from PS to PL to administer functional changes, and intro-
duces multiple HW-SW divide points. In this case, while the
streaming data is best suited for AXI-streaming transfers,
we may reserve AXI-lite channels for handling infrequent
control messages from the PS to the PL.

6.5.2 MIMO Spatial Diversity

The IEEE 802.11n standard describes the extension of
802.11g for MIMO. Since the ADI FMComms3 supports
MIMO with 2 transmit channels and 2 receive channels,
our platform allows for further exploration of spatial diver-
sity. By using multiple antennas, we can experiment with
transmitting and receiving identical sequences, which can
be used at the receiver to overcome fading and interference.

To prototype spatial diversity as a basis for future ex-
periments, we must first recognize that some elements of
the receive chain are ill-suited for replication. Simply at-
tempting to copy the original preamble detection compo-
nent multiple times easily overwhelms the FPGA resources,
surpassing the number of available slices. However, using
the reduced preamble detection method described in 6.4.1,
we can accommodate multiple receive chains on the FPGA.
We modified model V7 for both the transmitter and the
receiver, and capture the results in Table 9.

The results show that multiple transmit and receive
chains can be implemented on FPGA fabric with only mi-
nor changes to data path delay. Duplicating the preamble
detection (PD) block for the receive chains doubles the
number of DSPs and slices used, as well as the power
for that processing block. However, the total power only
increases by a fraction. By using multiple antennas and
transmitting identical sequences, we can next experiment
with using alternate encoding or modulation techniques

for each channel and enable further evolution towards the
MIMO functionality described in 802.11n and 802.11ac.

7 DISCUSSION

7.1 Reusability for Wireless Studies

A major benefit of our flexible SDR testbed is the ability to
reuse components for alternate 802.11 and mobile standards.
A comparison of the protocol settings in several modern
802.11 and LTE-based cellular standards is given in Table
10. The functional blocks of our 802.11a implementation,
especially those concerning scrambling and block interleav-
ing, can be re-used in a number of different standards.
However, some modifications would need to be made
to support different convolutional encoding rates besides
1/2 and digital modulation schemes besides BPSK. This
reusability allows us to explore LTE and Wi-Fi coexistence
on the same channel, TV whitespace reuse, or co-operation
with RADAR, and also allows the same SDR hardware
to switch between access standards by downloading only
the additional functional blocks and retaining the common
ones.

In addition, the use of reconfigurable HW allows us
to explore methods for optimal subcarrier selection. Rather
than mapping modulated symbols to a fixed set of subcarri-
ers, the wireless transceiver system can dynamically assign
symbols to specific subcarriers that have been identified to
have maximum channel efficiency.

7.2 Optimization Considerations

Developers familiar with Simulink may expect the slow
execution times associated with running Simulink models
on a host PC in Normal mode. However, this expectation is
not reality in our modeling environment. Since our gener-
ated models run in External mode, C code is generated and
compiled to an executable and the executable is run on the
ARM processor. The Simulink model, running on the host
PC, only uses the start and stop buttons to send a signal
to the executable running on the ARM to begin or end.
Optimization techniques for the Zynq ARM processor are
not necessarily ideal for an FPGA implementation, and vice-
versa. For this reason, Simulink libraries include alternate
versions of blocks for either destination. For example, the
FFT algorithm is handled by the FFT block in SW, or by
the FFT HDL Optimized block in HW. Both blocks show
improvements in new releases. In R2016a, the latter block
has reduced latency for vector inputs.

Although our initial foray into HW-SW codesign uses
only the built-in Simulink blocks, we plan to experiment
with alternate custom implementations for the processing
blocks that show the longest data path delays. MathWorks
tools allow developers to create their own Simulink blocks,
via either a Level-2 S-function for incorporating custom C
code or a Black Box Interface for incorporating custom HDL
code. The latter option would allow us to incorporate IP
cores from Xilinx for LTE downlink.

While some algorithms can be optimized to work well
for a specific protocol, these may also prohibit flexibility
with other protocols. As an example, consider the Schmidl-
Cox algorithm for preamble detection with the 802.11a
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TABLE 10: Wireless Standard Block Comparison: (1) Implemented & Reusable, (2) Not Yet Implemented, but Reusable

802.11a 802.11b 802.11g 802.11p 802.11n 802.11ac 802.11ad LTE LTE-A

Scrambling (1) (1) (1) (1) (1) (1) (1) (1) (1)
Convolutional Coding

1/2 Rate (1) (1) (1) (1) (1) (1) (1) (1)
2/3 Rate (2) (2) (2) (2) (2) (2) (2)
3/4 Rate (2) (2) (2) (2) (2) (2)

Digital Modulation
BPSK (1) (D) (D) (1) (1) (1) (π/2)
QPSK (2) (D) (D) (2) (2) (2) (π/2) (2) (2)

16-QAM (2) (2) (2) (2) (π/2) (2) (2)
64-QAM (2) (2) (2) (2) (2) (2)

Direct Seq Spread Spectrum (2) (2)
Block Interleaving (1) (1) (1) (1) (1) (1) (1) (1)

OFDM (1) (1) (2) (2) (2) (2) (DL) (DL)
IFFT Size 64 n/a 64 64 64,128 64-512 512 128-2048 128-2048

Cyclic Prefix (µs) 0.8 n/a 0.8 1.6 0.8,0.4 0.8,0.4 4.69-33.33 4.69-33.33
Preamble Detection (1) (2) (2) (2) (2) (2) (2) (2) (2)

preamble. This algorithm has been shown to be optimal
for preambles that consist of a repeating training sequence,
but not others. In contrast, our incorporation of a simple
matched filter for this purpose could be used to detect
any sort of preamble for various protocols with only minor
model modification. The benefits of our modeling environ-
ment are that all of these aforementioned topics can be
explored, which very few SDR alternatives are capable of
doing. In future work, we plan to explore these optimization
methods further.

8 CONCLUSION

We have introduced and explored a method for exploring
HW-SW co-designs for 802.11a wireless transmission and re-
ception systems. We have shown that for direct feedthrough
algorithms, moving more components to execution in HW
results in faster execution speed, but adds the risk of
overwhelming FPGA resources. Moreover, while energy
consumption increases as more components are placed on
the programmable logic, the amount is negligible when
compared to the embedded ARM energy consumption. We
show that many of the components developed for this base
design can be reused for prototyping MIMO, other variants
of 802.11 such as Wi-Fi, and LTE protocols.

In the future, we plan to perform tests with online radio
transmissions and measure bit error rate (BER) for the dif-
ferent co-designs. This 802.11a PHY layer implementation
will also be used as a basis for future work in higher layers
(e.g. MAC). We plan to expand upon our investigation of
MIMO to prototype spatial multiplexing and beamforming.
In addition to fully exploring the design space, the system
will be adapted to other modern wireless standards such
as 802.11ac for beamforming, 802.11af for UHF band reuse,
LTE, and 5G.
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