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SUMMARY

Unlike conventional sensor networks, wireless sensors are limited in power, have much smaller memory
buffers, and possess relatively slower processing speeds. These characteristics necessitate minimum transfer
and storage of information in order to prolong the network lifetime. In this paper, we exploit the spatio-
temporal nature of sensor data to approximate the current values of the sensors based on readings obtained
from neighbouring sensors and itself. We propose a tree based polynomial regression algorithm (TREG),
that addresses the problem of data compression in wireless sensor networks. Instead of aggregated data,
only the coefficients computed by the regression function, TREG are passed to achieve the following goals:
(i) the sink can get attribute values in the regions devoid of sensor nodes, and (ii) readings over any portion
of the region can be obtained at one time by querying the root of the tree. As the size of the data packet
from each tree node to its parent remains constant, the proposed scheme scales very well with growing
network density or increased coverage area. Since physical attributes exhibit a gradual change over time,
we propose an iterative scheme, UPDATE COEFF, which obviates the need to perform the regression
function repeatedly and uses approximations based on previous readings. Extensive simulations are
performed on real world data to demonstrate the effectiveness of the aggregation algorithm, TREG.
Results reveal that for a network density of 0.0025, a complete binary tree of depth 4 could provide the
absolute error to be less than 6%. A data compression ratio of about 0.02 is achieved using our proposed
algorithm, which is almost independent of the tree depth. In addition, our proposed updating scheme
makes the aggregation process faster while maintaining the desired error bounds. Copyright # 2006 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Recently, many practical applications like environmental monitoring, military installations and
scientific research have been proposed [1] using wireless sensor networks (WSNs). Such
applications necessitate transfer of a huge amount of relevant data from one point of the
network to another. This forces the use of a fast and robust data aggregation protocol that
could compress data without any substantial loss in accuracy, thereby facilitating quick data
storage and retrieval. Compression and aggregation directly translates to energy savings, and
this is a crucial issue in WSNs. Therefore, data aggregation may be optimized in terms of latency
and energy by judicious choice of the number of aggregation points and their locations [2],
reduction in total number nodes used for transmitting sensed data to the sink as in LEACH [3],
formation of special boundaries like Voronoi tessellations [4], amongst others. Sensed
parameters, like almost any other physical attribute, exhibit a gradual and continuous variation
over 2-D Euclidean space. Our scheme is based on the fact that there is a correlation between
attribute values and location as presented in Reference [5], and hence between sensors in close
proximity [6]. Furthermore, a close analysis of sensor data in naturally occurring physical
phenomenon exhibits spatial correlation. Tree-based polynomial regression (TREG) [7]
leverages this phenomenon by aggregating correlated attribute values and eliminating
underlying redundancy. Our scheme first creates multiple attribute-based binary trees (the
key aggregation data structure of TREG also called query trees or QTs) and then based on
the network sensor density derives a probabilistic bound with which a node joins the tree. After
the tree construction phase, sensors which are non-tree nodes or NT nodes) report the sensed
values, f ðx; yÞ (a function of the location ðx; yÞ) to the tree nodes closest to them. Each tree
sensor node (solely does aggregation and not sensing) then performs polynomial regression on
the reported values to compute the coefficients b0; :::::; b8 of the regression polynomial b0 þ
b1yþ b2y

2 þ b3xþ b4xyþ b5xy
2 þ b6x

2 þ b7x
2yþ b8x

2y2; which is passed on to the higher
level in place of raw data. Thus, nodes at each level use the coefficients of their children to
improve the approximation function and this procedure is repeated till the root is reached. The
sink (the base station which receives queries from end users and itself queries the root of QT)
can finally have access to an approximation, f ðx; yÞ of the sensed attribute at any point in the
region spanned by the tree. The root is the topmost node of QT which receives the final
polynomial and gets answers to queries sent by the sink. The attribute values at any point ðx; yÞ
can be obtained by substituting the values of x and y in the final polynomial at the root. For
sparse networks, QT might not be complete, so the parent needs to approximate the information
for the missing child based on the data available from the other neighbouring child. On the
other hand, if no child is present, the parent uses its own data to approximate information for its
missing children. This method of substituting attributes which we formally call as
DUMMYREG [8] increases the accuracy of the overall approximation process by including
readings from regions devoid of actual sensor nodes. Apart from spatial correlation being an
important characteristic of sensors, sensor readings are also observed to be temporally
correlated. Thus, for successive rounds of aggregation, instead of performing regression at each
tree node periodically, our proposed algorithm UPDATE COEFF simply modifies previously
computed coefficients (which can be stored in a table in the sensor’s memory and retrieved
through efficient table look-up) at each node. The modified coefficients are then sent up the tree
using TREG, assuming a smooth variation from their previous values. In TREG, a fixed sized
data packet is sent up the tree by each node thus keeping the bandwidth usage fixed. Again, as
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each packet consists of only coefficients and two pairs of x2y co-ordinates, the overall
bandwidth efficiency is also improved considerably. The rest of this paper is organized as
follows: Section 2 lists the preliminaries and discusses existing work. Section 3 describes our
proposed scheme, TREG in details. This section formally introduces our polynomial regression
algorithm for achieving data compression, TREG. In Section 4, we discuss a way to optimize
TREG for varying topologies (when QT is not complete). In Section 5, TREG is further
optimized by introducing a new scheme. Instead of performing regression every time the
attribute values change, the idea of this scheme is to update the coefficients of the previous
period thus decreasing the overall computation time. Section 6 discusses the construction of QT
in details. We first propose an algorithm which determines how to select the root of QT followed
by discussion about the formation of each QT similar to Reference [9]. Expressions for optimal
depth of QT are derived in this section. Simulation results are presented in Section 7. Finally,
Section 8 concludes this paper.

2. RELATED WORK

In a typical Greedy aggregation-tree approach [2], a shortest path is built between the first
source to the sink and subsequent sources are connected to the closest nodes of the existing tree
by creating incremental least energy paths. This scheme is useful in providing savings for
proactive systems (systems which require periodic updates). However, for queries with attribute
in a given range, a fairly expensive network-wide flooding [10] is used. Also, sink is assumed to
be immobile, as gradients remain unchanged during the operation of the scheme. In LEACH [3],
a set of nodes is selected randomly as cluster heads (CHs) and each node joins a cluster
depending on the communication energy between the node and the CH. Also, to preserve
energy, the role of CH needs to be changed. However, a major limitation of this scheme is that
the CHs themselves may run out of energy to transfer data to the sink as they have to do extra
work to serve as CHs and the sink is assumed to be situated far away from them. In TREG, the
continuous use of the tree nodes amounts to passing a set of nine coefficient values at periodic
intervals and this is the overall energy cost of a sensor reporting its own reading (please recall
that the tree node does not have to report its own reading to anyone). Thus no additional energy
usage occurs in the tree structure as compared to (maybe a fractional more) the other ground
level sensing nodes i.e. NT nodes.

In Reference [4], Voronoi clusters are formed by associating each node with a particular sink.
A border node is a node which belongs to more than one such cluster. If a sink generates a query
involving more than one cluster, the corresponding border node needs to route the query every
time from the internal nodes to the sink and is termed as a bottleneck node.

The density of the network [11] is observed to have a dominant effect on the distortion at the
sink as transmitting power level is adjusted such that adjacent sensors can interchange their
values. As the density increases in multi-hop sensor networks with adjustable transmission
power, the number of hops between any two arbitrary nodes also increases proportionately.
This increases the delay in the network and accordingly decreases the temporal correlation of
sensors. Increase in node density also increases the number of neighbours, thus enhancing the
spatial correlation among them. Using node density as the determining factor, accuracy of
estimation and energy efficiency in retrieval of sensor data at the sink is analysed in Reference
[11]. The goal of the scheme is to derive an optimal value of N, the number of nodes in the
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network that minimizes the spatio-temporal distortion. For a two-dimensional square grid
network of size L�L, the optimal value of N decreases when the values in the region become
closely correlated. A polynomial equation in N can be derived based on the distortion D(N).
This scheme primarily focuses on energy saving techniques by exploiting the spatio-temporal
correlation of sensor nodes. We propose a scheme for updating the reading stored previously at
a sensor with an assumption that consecutive sensor readings are similar in nature [12]. This
saves time in computing new coefficients, resulting in lower delays, and sending coefficients in
place of raw sensor data saves bandwidth and hence energy consumption in the process.

In Reference [10], a node is elected as the representative node for sending the snapshot of a
sensed region to the sink. Though this scheme reduces the overall number of nodes required to
satisfy a query request, it nevertheless involves election of the representative node that needs to
be determined at definite intervals of time (making it strictly proactive). TREG, unlike
Reference [10], avoids this extra work by selecting a random node location as the representative
of the sensed region in a reactive manner, i.e. the system adopts according to the
unpredictability of environmental model.

TREG is similar to Reference [14] where a kernel function fits the measurements taken by a
sensor at different intervals of time, the readings being temporally correlated. Again, sensors
being spatially correlated, a node also approximates its neighbours’ readings with its own.
However, every pair of neighbouring nodes need to exchange message which consists of a square
matrix and a vector whose size depends on the number of variables shared by the two nodes. On
the other hand, in our scheme, each node sends only a constant number of coefficients along
with their co-ordinates to it parent. Since the leaf nodes fits a polynomial which consists of only
readings from the sensing (NT) nodes spanned by it, a linear equation is adequate for the lowest
level of QT, thus requiring only four coefficients in place of nine. As the compression
method continues up the tree, each non-leaf node needs to incorporate readings from the NT
nodes spanned by it as well as the regenerated measurements obtained from each of its
child nodes. A non-linear (quadratic is sufficient) equation is found to capture these increased
number of readings accurately conforming to Reference [13]. TREG utilizes Mathematica
(explained in Simulations results) for performing regression which gives a quadratic
polynomial with nine coefficients making the number of coefficients in our approximation
scheme also nine. For maintaining uniformity and simplicity of simulation, we have
assumed that each tree node sends nine coefficients to its parent irrespective of its level in the
tree. In Reference [14], each node can only answer queries belonging to the particular region
covered by its kernel which again depends on the size of the kernel. In our scheme, the root node
keeps the final set of coefficients which spans the entire network under it, thereby enabling it to
compute values at any point in the network as long as there is a smooth variation in the data
distribution.

Similar to the contour maps generated in our scheme, Reference [15] also builds contour maps
to depict the nature of spatial correlation in sensors. In this paper, a sensing node suppresses the
attribute sensed, if its neighbour also senses the same attribute with a value similar to it within a
threshold d. For this, a node needs to overhear its neighbour’s reading and then back off
accordingly. In our scheme, sensing of attributes is solely done by NT nodes and data filtering is
taken care of by tree nodes. Unlike discontinuities produced by local decisions in Reference [15],
our scheme reproduces a contour which is mostly continuous. Finally, to compute the maximum
over the readings, the aggregation process needs to be modified at the starting point in
Reference [15] so that nodes with less than its neighbour’s value suppress their readings. In our
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scheme, the maximum can be computed after the proposed data aggregation process is
complete, simply by differentiating the final polynomial at the root.

3. OUR PROPOSED REGRESSION-BASED SCHEME

Our scheme is based on the periodic per-hop timing model [16] of data aggregation along each
sub-tree. In a periodic per-hop category timing model, a node sends the aggregated packet as
soon as it hears from all its children. However, at the root, only a final message is sent
containing the coefficients, thus conforming to a simple periodic timing model. Each node in the
network has a unique node ID and has location information through triangulation and other
location services [17]. According to Reference [18] several schemes on localization exist in
literature and ‘no single algorithm performs best; which algorithm is to be preferred depends on the
conditions (range errors, connectivity, anchor fraction, etc.)’. The reader is therefore encouraged
to refer to these cited works to gain further knowledge about location estimation in WSNs.

3.1. Proposed regression-based function approximation scheme

Each node of QT stores the attribute value sent by each of the nearest NT sensor nodes. These
NT nodes report their data to the tree node closest to them, for storage of the current attribute
reading. Recall that NT nodes only sense attributes while the QT is for storage only. As the
measured attribute varies with respect to space in a continuous manner, the values stored at the
QT node can be considered as function values having two inputs, x and y. Since, attribute (say z)
in a spatially correlated region is a function of sensor location which can be denoted by the (x, y)
co-ordinates, therefore z is dependent on both the independent variables, x and y, i.e., z=f(x, y).
Thus, z1 ¼ ðð f1ðx1; y1ÞÞ;x1; y1Þ is one such attribute tuple where z1 is the attribute value sensed
by a node at location x1; y1ð Þ: Node i of a QT creates a function approximation fi(x, y) from the
data reported to it by its nearest NT nodes. Following the approach given in Reference [13], we
find by incrementing the degree of the polynomial, that a polynomial equation of second degree
(quadratic) is sufficient to capture the non-linearity of the measured data set accurately.
Increasing it further does not improve the accuracy (percentage error of 6% is reduced to 5.9%)
as much as it increases the overhead in sending the increased number of coefficients. Therefore,
TREG follows a quadratic polynomial regression approach. It is to be noted here, that higher is
the degree of correlation of the data set easier it is to capture it with lower degree polynomial.

Using multivariate polynomial regression [19], a polynomial equation is generated with three
input variables (z=f(x, y), x, y) for all the data points in one particular node of QT. A general
multilinear regression model can be given as follows [19]:

z ¼ f x1;x2; . . . ;xmð Þ ¼ a0 þ
Xm
k¼1

akxk ð1Þ

where x1;x2; :::; xm are the independent variables called predictors of the model and z is the
dependent variable. The observations are sampled and the observed values of the vector variable
z are used at the particular levels of xk to estimate a. z is the n-element vector of sample values
and a is the (m+1)� 1 vector estimate of a.
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Applying least-square criterion, the squared error needs to be minimized, i.e.

FðaÞ ¼ ðXa� zÞTðXa� zÞ ð2Þ

where

X ¼

1 x11 x21 �� xm1

1 x12 x22 �� xm2

: : : : :

1 x1n x2n �� xmn

0
BBBBB@

1
CCCCCA

ð3Þ

z ¼

z1

:

:

zn

0
BBBBB@

1
CCCCCA
K ð4Þ

a ¼

a0

a1

:

am

0
BBBBB@

1
CCCCCA
K ð5Þ

Necessary condition for a minimum is that the partial differentiation of F(a) w.r.t a is zero.

i:e: raFðaÞ ¼ raðXa� zÞTðXa� zÞ ¼ 0

Again,

Xa� zð ÞTðXa� zÞ ¼ ðraðXa� zÞÞTðXa� zÞ þ ðraðXa� zÞÞTðXa� zÞ

¼ 2XTððXa� zÞÞ

¼ 2XTXa� 2XTz ¼ 0:

i.e. equated to 0.
The normal equation obtained from above is

XTXa ¼ XTz ð6Þ

The system has a solution if XTX is not singular, i.e. it has an inverse. Therefore, multiplying
both sides of Equation (6) by (XTX)�1, we get a=(XTX)�1 XTz where (XTX)�1 XT, called the
(Moore–Penrose-) pseudoinverse of the matrix X is a generalization of the inverse X�1. Using
polynomial regression for our model, we get the following equations analogous to Equations
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(3)–(5). In our case, x, y, are the independent variables

X ¼

1 y1 y21 x1 x1y1 x1y
2
1 x21 x21y1 x21y

2
1

1 y2 y22 x2 x2y2 x2y
2
2 x22 x22y2 x22y

2
2

: : : : : : : : :

1 yn y2n xn xnyn xny
2
n x2n x2nyn x2ny

2
n

0
BBBBB@

1
CCCCCA
; z ¼

z1

z2

:

zn

0
BBBBB@

1
CCCCCA

and b ¼

b0

b1

:

bm

0
BBBBB@

1
CCCCCA
ð7Þ

For estimating b, a unique inverse of X should exist, i.e., XTX must be of full rank m+1 [20],
given that b is a (m+1)� 1 vector. In other words, ncmþ 1 and no column of X can be
expressed as weighted linear combination of any set of other columns.

Here, n is the number sensor locations whose readings are fitted to a polynomial. For each
tree node performing regression, n=ns

f ðx; yÞ ¼ b0 þ b1yþ b2y
2 þ b3xþ b4xyþ b5xy

2 þ b6x
2 þ b7x

2yþ b8x
2y2 ð8Þ

Equation (8) can also be written as

f ðx; yÞ ¼
Xi¼8; j¼9

i¼0; j¼1

bi:fj ð9Þ

where f1 ¼ 1; ::::f9 ¼ x2:y2

Again, each tree node creates the matrix, Am (from the readings reported by the n NT nodes)
for calculating the polynomial. Am is a square matrix of size 9� 9.

The (i�j)th element of

Am ¼
Xns
l¼1

fi xl;yl
� �

:fj xl ; ylð Þ ð10Þ

where i=j.
At any point of time, each tree node has the tuples, x1; y1; z1ð Þ . . . xns; yns; znsð Þ: Each tree node

creates the matrix, F with these tuples. F is a matrix of size, 9� 9 where the ith element,

Fi ¼
Xns
l¼1

zl :fi xl ; ylð Þ where f1 ¼ 1 . . .f9 ¼ x2:y2 ð11Þ

At each tree node, b0, b1,. . .b8 are calculated from Equation (11):

b ¼ A�1m � F ð12Þ

Equations (7), (10)–(12) together constitutes the method of Gaussian elimination [21] for solving
equation and computing inverse of a matrix.

When b, obtained from Equation (12), is used with a given location (x, y), we solve z=f(x, y)
to retrieve the attribute value at a node location (x, y). Note that f(x, y) is the final function
available at the root.

Each tree node uses Equation (12) to generate the coefficients and sends this set to its parent.
Nodes at each level regenerate values of the sensed attribute by using these coefficients obtained
from their children. These data values are then combined with a node’s own reported readings
to calculate the new set of coefficients that will be passed to the next higher level. In this process,
it is important to identify the region over which the data values are generated as they directly
affect the accuracy of the approximation.
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We identify this region as the area bounded by the co-ordinates fxmin; ymin; xmax; ymaxg where
the minimum and maximum are taken over all the sensing nodes in the sub-tree under the
current parent that report to tree nodes. As an example, consider At in Figure 1, as the current
aggregation node. The shaded area represents the region in which data values will be re-
generated by At. This region is bounded by the minimum and maximum co-ordinates of the
sensing nodes (diamond-shaped) reporting to the sub-tree under At. At gets the boundary co-
ordinates of this region from its children.

Based on the function approximation process, we have proposed the algorithm, TREG stated
in Figure 2. Inputs to the algorithm are the depth and the number of sensing nodes reporting to
each tree node. In Figure 2, let B(m) be the vector representing the coefficient values (b0,
b1,. . .b8) that is passed from a child node m to its parent using our function send(). Let the set Ai

represent all nodes of a tree at level i. Hence |Ai|=2i, where i=0, 1, . . ., p. Each node m knows

PSEUDOCODE TREG (p) 
begin
For each level, i=d to 0

∀n, n∈Ai,
1.Counter =0 
2.Ai = Ai –{n}
3.Cn = n.gather()

∀ m, m.parent = n
      4.  C n  = Cn U regenerate (B(m))

  5.Counter = Counter +1 
If Counter =2 

     6.   B(n) is calculated from Cn
endif

If n = root,
end
else n.send(B(n), n.parent)

endif
endfor
end

Figure 2. Tree regression algorithm, TREG.

{Xmax, Yc}

{Xd, Ymax}

{Xmin, Ya}
{Xb, Ymin}

Tree node Sensing node 

At

the area of
Sensing node defining

approximation 

Figure 1. Illustration of how a node calculates the boundary of the region for data regeneration.
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its parent represented as m parent. The function regenerate() uses the boundary values fxmin;
ymin;xmax; ymaxg calculated earlier to identify the region where the data is reconstructed from the
received coefficients. We also introduce the function gather() that obtains all the data points
from the NT nodes that sense the attribute around the closest tree node. The set C contains all
the data points obtained from the neighbours of a tree node and regenerated from its children.

Assuming an arbitrary node k to be the parent of nodes i and j, each of nodes i and j uses
Equation (12) to generate the coefficient tuple (bi0, . . .bi8) and (bj0, ,. . .bj8), respectively and
sends this set to node k. Node k now generates two sets of random (x, y) locations and calculates
the corresponding values of the sensed attribute at each such location by using the coefficients
sent by nodes i and j, respectively. These two data sets are then appended with k’s own reported
readings to calculate the new set of coefficients that will be passed to k’s parent at the next higher
level. This process is continued until the root node is reached which will have the final set of
coefficients to be used by the sink. Through the construction of the attribute based trees and the
aggregation process described above, our scheme can answer location based SQL type query like
‘SELECT temperature FROM sensors WHERE location=(x, y)’ or ‘Give maximum acoustic
data in the target area (104x440,104y440) every 3 s.’ In the latter case, a set of (x, y) co-
ordinates are generated in the specified range and the sink can calculate the maximum attribute
value by first knowing the attribute values at each of the locations in the set. When a sink needs
to know the attribute value at a particular location (x, y), it sends the query to the root. The
query is first propagated down the QT to reach the leaf nodes at the last level. The aggregation
model follows a bottom–up approach. Reporting data through the aggregation process should
be much more efficient in terms of bandwidth and latency, than sending individual data bits
corresponding to a specific geographical co-ordinate. To prove our claim, a parameter called
compression ratio is defined as the number of bytes transmitted in QT after compression to the
original number of bytes transmitted in QT. Compression ratio (based on a round of data
aggregation) is calculated as follows: Assume that QT is a complete binary tree of depth p of 2p

leaf nodes. Each attribute packet of size si bytes contains the attribute reading (sc) and the co-
ordinates of the location (sx+sy) where the reading is taken. The number of bytes input to each
leaf node is only this data of size ns� si, since ns is the total number of sensing nodes reporting to
each tree node.

Therefore, Tl=ns� si� 2p where Tl the total number of bytes input to the leaf nodes.
Apart from the attribute readings from the ns sensing nodes, each non-leaf node gets as input

from its two children, the coefficients and the x–y boundaries of the area to be regenerated.
Thus, Tnl=(ns� si+2� (sx+sy+sc))� (2p+1–1–2p), where Tnl stands for the total number of
bytes input to the non-leaf nodes. The output packet (from a tree node) of size (sx+sy+sc) bytes
contains the coefficients and the x–y range. The total number of bytes output from all the nodes

T0 ¼ ðsx þ sy þ scÞ � ð2pþ1 � 1Þ ð13Þ

Compression ratio (output: input size),

CR ¼
X

alledges

no: of bytes transmitte d on an edge after compression

no: of input bytes on an edge

¼
To

Tl þ Tnl
¼

sx þ sy þ sc
� �

� t

ns � si � tþ 2� sx þ sy þ sc
� �

tl � 1ð Þ
� � ð14Þ

where t is the total number of tree nodes and tl is the number of leaf nodes.
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4. OPTIMIZATION OF TREG FOR SPARSE TOPOLOGY

In the description of the TREG algorithm presented in Section 3, we have assumed the QT to be
complete. In a sparse network, however, nodes may be out of range of each other after random
deployment so that the QT formed might not be fully balanced. This section provides a
modification of TREG, when the QT is not complete. Algorithm, DUMMYREG (shown in
Figure 3) exploits the idea of spatial correlation of attribute values to create readings at
locations devoid of actual aggregating nodes, which we define as ‘dummying’ [8]. It can be called
from TREG by adding an extra line of code, ‘Call DUMMYREG (index of the missing node)’ in
Figure 1 before step 2(d). This ensures that that the readings from missing nodes are still
incorporated in the polynomial so as not to compromise with the accuracy of the overall
approximation process. For any arbitrary parent node, k of QT, if any of its child nodes is
absent, k needs to dummy (or virtualizes) the readings of its missing child. The parent node k

PSEUDOCODE  DUMMYREG (i)
begin

for each of the non−leaf nodes k of the tree,

CaseI: k has only node i as its child and i even (i is left child), it computes random x-y points
for i+1 where (xmin, ymin) and (xmax, ymax) are the coordinates of the leftmost and down most node and rightmost 
and top most node respectively reporting to node i+1 It sets B(i+1) to B(i) to regenerate readings for node i+1.

xmin[i+1]=xmax[i];
xmax[i+1]=xmax[k]+w;
ymin[i+1]=ymin[i];
ymax[i+1]=ymax[i]

   Case II:  node only i+1 is present and i+1 is odd (i+1 is the right child), it computes random x-
y points for i where (xmin, ymin) and (xmax, ymax) are the coordinates of the leftmost and down most node and 
rightmost and top most node respectively reporting to the node i. It sets B(i) to B(i+1) to regenerate readings for i.

coefficients, B(k). It sets B(i) and B(i+1) to B(k) to regenerate readings for each of its non-existent children.

xmin[i]=xmin[k]-w;
xmax[i]=xmin[i+1];
ymin[i]=ymin[i+1];
ymax[i]=ymax[i+1],

Case III: k has no children; k performs regression on its reported values and generates 

      cc=ymax[k]-ymin[k];
xmin[i]=xmin[k];
xmax[i]=Ceiling[(xmin[k]+xmax[k])/2];
ymin[i]=ymin[k]-cc;
ymax[i]=ymin[k];
xmin[i+1]=Ceiling[(xmin[k]+xmax[k])/2];
xmax[i+1]=xmax[k]+w;
ymin[i+1]=ymin[k]-cc;
ymax[i+1]=ymin[k];

endfor 
Using B(i) and B(i+1), new attribute values are calculated and added to the readings sent by nearest NT nodes to 
node”k”’. Node k then calls the TREG to calculate B(k) and passes it to its parent. 

endwhile
level=sum

endwhile 
end

Figure 3. Algorithm for dummying nodes for an unbalanced QT, DUMMYREG.
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generates readings by generating random node locations in the virtual area spanned by each of
its virtual children, i or/and i+1. In cases I and II (see Figure 3), coefficients of the real child (the
child node present) are used to regenerate attribute readings for the virtual child (the child node
absent). In case III (see Figure 3), since the parent node has no children, therefore, it uses its
own coefficients to regenerate readings for its two virtual children. This method of dummying
attribute readings increases the accuracy of the overall compression process by including
readings from regions devoid of actual sensor nodes. Without any dummying, i.e. without the
inclusion of attribute values from non-existent nodes in the overall approximation process, error
incurred is the largest. This is evident from the fact that readings that would have otherwise been
reported from the region spanned by the non-existent nodes are not considered in the
compression process. With partial dummying, a parent node follows case III of DUMMYREG
to regenerate attribute values of both of its non-existing children. But, regeneration is not done
for the case when one child is present. For the full dummying case, the error incurred is
minimum as attribute values are included from the entire region irrespective of whether a node is
actually present or not. The length of each square area spanned by a child is assumed to be a
constant w units. When node k does not have a child, the sensing region spanned by its missing
child can be approximated to lay w units away from k’s sensing region and accordingly its xmin,
xmax, ymin, ymax are adjusted as in Figure 3. The child’s y co-ordinate is assumed to be w units
below that of the parent. As in Figure 4 (analogous to Figure 1), consider A’ as the current
aggregating node. The shaded area represents the region in which data values will be
regenerated by A’. This region is bounded by the minimum and maximum co-ordinates of the
sensing nodes (coloured gray) reporting to the sub-tree under A’. A’ gets the boundary co-
ordinates of this region from its children. Here, nodes B and D are not present (unlike Figure 2)
and therefore they are the dummy nodes. However, the area bounded by them is computed from
their neighbours’ {xmin, ymin, xmax, ymax} ranges using DUMMYREG algorithm. Thus, A’ still
covers the entire area of the sub-region under it thus providing accurate approximation process
though some nodes are not actually present in the sub-region. PD, parent of node D follows case
II of DUMMYREG to regenerate virtual attribute readings at D. Similarly, PB, parent of node
B follows case III of DUMMYREG to regenerate virtual attribute readings at B.

Sensing node 
the area of
approximation 

Sensing node definingTree node 

{Xmax, Yc}

{Xb, Ymin}

D B

A’

PD
PB

{Xd, Ymax}

{Xmin, Ya}

Figure 4. Illustration of how a node of an incomplete QT calculates the boundary of the region
for data regeneration.
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Similar to the CR calculated in Section 3.1 for complete binary QTs, for a non-complete
binary QT, the total number of tree nodes will be less than (2p+1–1) but will otherwise follow the
same expression for CR.

5. UPDATING OF COEFFICIENTS

The work described in Sections 3 and 4 leveraged spatial correlation of data for compression. In
this section, we propose a scheme for multiple periods of data aggregation, where the tree nodes
do not naively perform regression every time the attribute values change. Instead, they update
the previously computed coefficients and send them up the tree, assuming a smooth variation
from their previous values. Considering the hardware limitations of low-power sensors, usually,
saving battery life of sensor is more important than achieving accuracy of readings, and to
implement this, our scheme assumes temporal correlation and allows sensors to perform simpler
computations themselves with minimum use of any external software. We describe the process
in detail as follows.

Matrix, Am (in Equation (10) Section 3), is computed only once and for all, for the first time
the NT nodes report their readings to their nearest tree node and the leaf nodes send their
coefficients to their respective parents. At the start of the data aggregation process when there
are no stored coefficients, b0, b1,. . .b8 are calculated from Equation 12.

The complexity of this matrix multiplication process is 5O(m2.376) (the currently known
lowest order of multiplying two matrices each of size, is O(m2.376) by Coppersmith and
Winograd, [22]) where size of Am is m�m and that of F is m� 1. In the subsequent intervals, b0,
b1,. . .b8 are obtained by a simple iterative scheme as follows.

Let g and g+1 be the consecutive periods, when the NT nodes report data to the tree nodes.
We get an approximate value bap(g+1) of b in the current interval g+1, from the bg (calculated
from Equation (12) if g=0, else calculated from Equation (13) by updating bg of the previous
interval) in the last interval, g:

bapðgþ1Þ ¼ bg þD�1 � D ð15Þ

where g is the number of observations. D is the diagonal matrix of Am and of same size and
D=Fg+1–Fg where D is the difference of the two F matrices at time instants g+1 and g
respectively.

The F matrix is recomputed every time the z (attribute) values change. Accordingly, b needs
to be updated according to Equation (15). All entries of the diagonal matrix, D are zeros, except
the ones along the diagonal. Thus, the number of multiplications computed in Equation (15) is
much less compared to the ones that would have been needed if we use Equation (12) every time
to update b0, b1,. . .b8, making the update process relatively faster. In the pseudo-code
UPDATE COEFF (shown in Figure 5), in step 2, TREG is called. When executing TREG, in
step 1(b) of Figure 1, instead of performing regression to calculate the new b at (g+1)th period,
bap(g+1) is stored in b0, b1,. . .b8 by updating bg, making the time complexity of update
{O(m2.376). The frequency with which F needs to be updated depends on how unstable the
network is. In other words, the higher is the change in attribute values with time, greater is the
number of times that the coefficients need to be updated.
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6. CONSTRUCTION OF TREE

6.1. Decision of node at what location should become the root

This section discusses in details, our scheme proposed in Reference [7] to determine the location
of the root so that minimum communication overhead is incurred between the sink (which has
the provision of being mobile in our scheme) and root. SEAD [23] defines a data dissemination
protocol where the sink can be mobile thus keeping the source of the aggregation tree separate
from the sink. The SEAD scheme proposes to involve minimum communication energy between
sink and the source. Our scheme also keeps root of QT separate from the sink. Which node
should become the root (to begin the tree formation algorithm, FORM QT) is decided by
running our proposed DECIDE ROOT algorithm in a distributed manner. In Figure 6, d is
defined as the length of a side of the region approximated by a single QT. The region is divided
into a number of square sub-regions. Let l is the length of a side of the square sub-region which
houses nodes of a QT. d/l gives the number of such squares along the length (or breadth). The
roots of the neighbouring sub-regions need to be situated as close to each other as possible so
that minimum number of hops are required among them to send attribute information involving
more than one sub-region to sink. The optimal location of each root node (marked by X in
Figure 6) is one corner of the square so that neighbouring roots are all bunched together.
Selection of the correct corner is crucial and it is a corner on the right edge for odd numbered
regions. Similar observations along the breadth help us to identify the relation between a specific
sub-region and its preferred corner, which we define as root intersection. We allow a variation of
a threshold d from this location.

The reasons for the corner selection are as follows: we assume a general case in which the sink
does not have prior information about the root location. Thus, it merely needs to route its query

PSEUDOCODE UPDATE_COEFF

( )1()1(2)1(1 ,....,, +++ gngg zzz )

Input:
The coefficients of gth instant of time.

begin
1. for each of the nodes, k of the tree of depth, p

a. each element of F(g+1) is computed as

( )lli

n

l
lggi yxzF

s

,.
1

)1()1( φ∑
=

++ =

b.β- values of the (g+1) th instant is computed as

( )ggggap FFD −+= +
−

+ 1
1

)1( .ββ
endfor

IV. Call TREG ( )snp,
end

Figure 5. Algorithm for updating previous period’s coefficients, UPDATE COEFF.
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to the nearest root intersection with some certainty of finding a root there. Therefore, for a node
at (Xa, Ya), DECIDE ROOT (given in Figure 7) and the function ROOT (given in Figure 8)
invoked by it, first enables it to determine if it lies within the permissible distance from the y axis
of the optimal root location. This is repeated for the x-axis, and any node which satisfies both
these conditions is eligible to be the root and all such nodes broadcast their eligibility. There
should, however, be a single attribute specific root for a sub-region and the final selection is
made based on the node ID. We assume that the nodes are aware of (Xmax, Ymax) in this

X X
XX

X X
XX

X X
XX

X X
XX

XXX

X
X

X
X

XX

d

δ

Xmax

(xa,ya)

Ymax

X Optimal location of root

l

Figure 6. Optimal location of root nodes over the network.

PSEUDOCODE DECIDE_ROOT (Xmax, Ymax, Xa, Ya)
Input: the maximum x-y coordinates of the network,

    coordinates of the node    
begin

if d/lis even
root_y=call ROOT

( )Ymax,Y

( )X  max,Xa

( )X  max,Xa

( )Y  max,Ya

  root_x=call ROOT

else 
if lYa < then

if
aYl − < δ then root_y=true

else   root_y=call ROOT

if )( max lXXa −> then 

if δ<−− a

a

XlXmax
then root_x=true

else root_x=call ROOT

end

Figure 7. Algorithm DECIDE ROOT for deciding root placement.
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algorithm, i.e. the co-ordinates defining the network, l, d. There are small placement differences
when d/l is even or odd and our algorithm, ROOT takes care of these cases as well.

6.2. Construction of query tree

The trees are designed to have a pre-assigned depth, p and hence involve a maximum of p-hops
for complete traversal. All the nodes of a tree store the same attribute type. The tree is assumed
to be well balanced (complete in the best case) and this results in lower loss of data increasing
the accuracy of data aggregation [24]. To facilitate the description of our scheme, we have
defined the parameters that we have used, in Table I.

6.2.1. Deriving an upper bound on tree depth, p. We now derive an upper bound on the depth p
given the area of the network, AN and the total number of nodes in the network, D. Density (r)
of the network is equal to D/AN. As is the area of a sub-region which contains a single
compression tree Tc. Therefore, the average number of nodes, S, in the sub-region is given by
r�As. In a complete binary tree, the total number of nodes t can be given by

t ¼ 2ðpþ1Þ � 1 ð16Þ

PSEUDOCODE ROOT(Max, value)

Input: the maximum value of the coordinate in the network, corresponding
coordinate of the node
Output: Boolean value true or false depending on whether the node will be the root
or not respectively..
begin
ans=false
n=1
find minimum n such that

value>(Max-(n-1) × l)
if n is even the n

if valuelnMax −×− < δ then

ans=true 
end

Figure 8. Algorithm ROOT to decide whether the region is odd or even numbered.

Table I. Definition of variables used.

Symbol Definition

ns Total number of sensing nodes reporting to each tree node
p00 Threshold for tree node selection
p Depth of QT
AN Area of the network
As Area of a sub-region containing a single QT
R Radio range
D Total number of nodes in the network
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Again, assuming that ns is the average number of sensing nodes reporting to each tree node.
Lower bound on

S ¼ ns � tþ t or t ¼ s=ðns þ 1Þ ð17Þ

Substituting the value of n is Equation (1); we get an optimal value for the depth of QT

p ¼ In
s

ns þ 1
þ 1

� �
� 1 ð18Þ

As an example, D=1930, AN=800� 800. Therefore, r=1930/8002=0.0025, As=400� 400.
Upper bound on the number of nodes in the region S=0.002469� 400� 400=408.

Assuming depth p=4, number of nodes in Tc ¼ t ¼ 2ð4þ1Þ � 1 ¼ 31; ns ¼ 12; leads to total
number of sensing nodes=31� 12=372. Therefore, the number of nodes actually in the region
S, for TREG to give accurate results=31+372=4035408. Thus the parameters defined above
are valid.

Again, ns is independent of the depth of QT, i.e. the total number of nodes sampled by each
tree node is independent of the depth. However, the total number of nodes sampled in the
network depends on the depth of QT and is given by

n�s t

As depth of tree of QT is increased, number of approximations increase proportionately
thereby deviating more from the true value. To control this, the number of children of QT could
be increased further. However, this introduces increase in the computational time at each level
due to increased number of children. By simulation, binary tree (each tree node having two
children) is shown to exhibit a trade-off between accuracy and computational delay and
therefore chosen as the preferred depth throughout the simulations.

6.2.2. Proposed tree formation algorithm. By ensuring that QTs are spread throughout the
entire network, attribute readings sent by the sensing nodes (or non-tree nodes, NT) to the
corresponding QT incur a smaller hop count. Our algorithm FORM QT (shown in Figure 9)
that creates binary trees of a given depth builds on TREECAST [9], a stateless routing scheme.
Each root runs the modified algorithm to create attribute-based trees. Every time a node has to
select two of its children, it selects the two nodes farthest apart. This ensures that the tree is
widely spread covering as much sensing region as possible, so that the maximum accuracy of the
approximation process could be achieved. It also ensures that redundancy in reported attribute
values is reduced. As greater area is spanned by the QT, more information about the sensed
network is incorporated in the aggregation process, enhancing its accuracy (increased amount of
data gives rise to higher correlation and therefore higher accuracy [25]). Thus, our
approximation algorithm performs better with increasing number of children at each level
and hence incomplete binary trees can be considered as the worst-case scenario to show
performance improvement. The tree formation process of TREG is achieved through three
types of messages: BEACON, PROBE and JOIN as discussed in the description of the
algorithm below. All the message packets contain the sender’s and receiver’s ID except
BEACON message (a broadcast message) which contains just the sender’s ID. Figure 10
describes the exchange of different signals to construct the QT. A formal pseudo-code of the
algorithm is also included in Figure 9. Three types of control messages are exchanged for tree
construction.
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(a) BEACON Message: Each node at level j broadcasts a BEACON packet to all its one-hop
neighbours. Therefore, a node at level (j+1) can receive multiple BEACON packets from level
j nodes. It chooses one of them randomly with a probability p0>p00 as its parent node and sends
a PROBE packet to it. From Figure 10, it is seen that node d receives BEACON from both A
and B. The value of p00 (which is an input to the algorithm) is optimized a follows:

Assuming that a parent node i broadcasts its BEACON message to a sector of angle 1208 and
the communication radius to be r, the area of this sector 120

360
� p� r2 � r:

Therefore, the number of nodes in this region,

nr ¼ 120
360
� p� r2 � r ð19Þ

PSEUDOCODE FORM_QT ( p, p’’)

Input: the depth and the b-value
Output: a binary tree Tc rooted at r of depth atmost p and a unique ID assigned
to each node of Tc.
begin
for each level j from 0 to p-1

for each node i from 1 to 2 
j

mi is a node at level j+1

in is a node at level j

in sends BEACON packet containing in ’s ID
ina to mi where distance 

between in and mi<r

mi chooses in as its parent with probability p’ > p’’

mi sends PROBE packet to in

in waits NWAIT time (which is a sufficiently long fixwd time period) to

receive PROBE pkt from each mi who selected in as parent

end

Figure 9. Tree formation algorithm, FORM QT.

BEACON PROBE JOIN

a c d

A B

ba c d

A B

ba c d

B

b

A

Figure 10. Selection of children by a parent node.
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Probability p00 that exactly two nodes in this region selects i as their parent follows a binomial
distribution.

p00 ¼ Cnr
2 � ð0:5Þ

2 � ð1� 0:5Þnr�2 ð20Þ

Figure 11 shows the variation of p00 with number of nodes in the network, D. If a node receives
multiple beacons from prospective parent nodes, their IDs are saved for new parent selection for
faster recovery in case of node failure. We however leave this as future work.

(b) PROBE Message: The chosen parent waits to receive PROBE packets from all its
children before deciding which two are to be selected as children. Once, the parent has heard
from all its one-hop (j+1) level nodes, it selects the two nodes farthest apart as its children. The
nodes which are not selected by any parent do not try for membership in QT anymore and
behave as normal sensing nodes. This ensures proper reduction in the size of the tree (again,
frequency of sensing is much greater than frequency of storing). From Figure 10, node d selects
node B as its parent and sends PROBE packet to it. Again, node A sends BEACON to nodes a,
b, c and d but receives PROBE from nodes a, b and c only.

(c) JOIN Message: After selecting children, the parent sends JOIN message to them,
intimating their inclusion in the tree. A however, selects nodes a and c as it children (as is evident
from the JOIN message it sends to each of them in Figure 10) since a and c are further apart
than either of a and b or b and c.

7. SIMULATION RESULTS

We have simulated our tree construction algorithm, FORM QT in SimJava [26], a discrete
event simulation package. We assume a collision free MAC protocol and list the values of the
simulation parameters in Table II. As FORM QT is a modification of the TREECAST
algorithm [9], its performance is observed to be the same as given in Reference [9]. We thus focus
on performance evaluation of our proposed TREG algorithm. A network of 450 nodes is
simulated with 12 sensors (ns) reporting to each tree node and a QT of depth 4. This number of
NT nodes is observed to provide a highly accurate representation of the environment.
Mathematica [27] tool is used for calculating the coefficients at each node during the execution
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Figure 11. Variation of p00 with no. of nodes D.
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of this algorithm. While evaluating the results we consider the following metrics: (1) contour
matching between real and approximated data, (2) the accuracy of the approximation of the
sensed parameter over the entire region both in absolute value and percentage error, (3)
compression ratio, and (4) data packet size at the root node with and without compression. Our
simulation study consists of two different data sets: a synthetic model generated in the
laboratory based on spatial correlation of attributes and real world data model taken from the
data set from rooftop of ATG, University of Washington [28] (relative humidity, temperature,
etc.). We first generate a temperature gradation contour over a 2-D region from the real world
data [28] for testing the accuracy of our algorithm as shown in Figure 6(i). The temperature
attribute shows a change of 1 unit for a traversal of every 45 units. We then place about 400
sensor nodes in an area of 400� 400 square units. Over this area, a temperature range of 30–
348F can be realistically assumed for a highly unstable region, like a volcanic eruption site where
sensors may be deployed. This assumption of temperature range is validated by the small
temperature variation shown in National Observational Data [29] for an undisturbed region.
We note that smaller variation in the sensed parameter will only improve the accuracy of our
scheme. The first set of results show the effect of the depth of QT on one period of aggregation
when we assume that the query has already disseminated to all the leaf nodes of QT.

(1) Contour plot: In Figure 12(a) our synthetic model depicts the correlation between sensed
attribute values and co-ordinates of NT nodes. Figure 12(b) depicts the same but with
approximated values obtained after running TREG at each node of QT. In this plot the
recorded temperature readings are in Fahrenheit scale [28]. A comparison of the plots shows
that our scheme does not limit the accuracy to certain regions of the contour. The gradation and
scales of approximated temperature contour matches the actual temperature distribution in the
region almost exactly.

(2) Percentage error: Error is calculated as the absolute deviation from the true value and
percentage error

E ¼
jz� %zj

z
� 100

� �
4eTh

where eTh=6% is the error threshold.
For different depths of the query tree, we obtain similar error levels for both synthetic and

real world data. Figure 13 shows the variation in percentage error with the depth of a complete
QT. We observe a steady fall in mean error and percentage error for synthetic data as the depth

Table II. Values of simulation parameters used.

Symbol Value

A 800� 800
R 40mm
D 1930
r=A/D 0.0025
As 400� 400
p00 0.33
p 4
ns 12
w 20
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of the query tree increases. This is expected, as with increase in depth, the tree nodes are able to
cover larger area thus being able to approximate the sensed parameter over the region better. A
tree with depth 1 gives maximum error, as a small tree of only three nodes (most sensing nodes
are dispersed in the region, not within range of tree nodes and are hence unable to report to the
QT) is made to approximate the entire region of area As. Figure 14 shows the gradation of
percentage error upto the maximum value of 5.64 for a tree depth 4, which has least error as
shown in the previous result. We take 381 readings and find that the first three bars concentrate
the maximum number of points where the approximation is evaluated. These bars show that
while the tree of depth 4 had a maximum error of 5.64%, a majority of nodes had their
individual error limited to a much smaller level, 0–1.68%. This error distribution has a steadily
decreasing nature implying that as error range increases, the number of nodes having a
magnitude of error that falls in that range decreases.

Figure 15 shows the variation in percentage error as a function of the depth and the type of
tree, i.e., complete and non-complete binary trees. The first bar in each set shows the error
incurred when TREG is applied on complete binary tree of varying depths. The best-case error
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Figure 12. (a) Contour plot of our synthetic model in a 400� 400 network; and (b) contour plot of the
attribute in the same region obtained after simulation.
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is 5.62%. The second bar indicates the error incurred when TREG is applied to non-complete
binary trees of varying depth by calling DUMMYREG. In this case the best-case error is
12.1%. The third bar shows the corresponding errors (worst case error is 21%) when TREG is
applied to non-complete binary trees without calling DUMMYREG. Thus we see that
without the dummying of nodes, the entire region is not approximated accurately, giving larger
errors than that the case of full dummying of the sensed region. For a depth of 4 of the
non-complete query tree, we obtain different error levels, respectively, for three cases (i) no
dummying, (ii) partial dummying and (iii) full dummying. In the case of no dummying,
DUMMYREG is not called from TREG at all. In the case of partial dummying, the corrective
cases I and II of DUMMYREG are not applied to the topology thus still incurring
greater error. Full dummying applies all the corrective measures of DUMMYREG thus giving
the best-case error. From Table III, we observe a steady fall in percentage errors different
levels of dummying are applied. Without dummying, readings from locations without tree
nodes do not participate in the DUMMYREG algorithm. By dummying the otherwise absent
nodes of the tree, attribute values are generated at those imaginary nodes and their participation
in the compression method provides better approximate readings of the entire sensed region,
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ERROR LEVEL USING TREG AND DUMMYREG
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instead of only the portions where sensors are actually present. Thus, when attribute values are
regenerated at the root spanning the entire region, the non-dummying case produces attribute
values at some locations highly uncorrelated form the true values since readings from these
locations were not taken into account by the parent nodes due to absence of sensors (children
nodes). But, the dummying case gives better results when values are regenerated back at the root
as readings from the entire spanned region have been reflected by the approximation process.
This reduces the error level considerably, improving our approximation scheme in terms of its
accuracy.

(3) 3-D error plot: Figure 16 shows 3-D percentage error plots for a complete binary QT of
depth of 4. The error plots have a concave shape with peaks at the border. This is because the
tree structure is concentrated at around the central areas of the sub-region and nodes at the
extremities do not report to the query tree. The approximation at the edge of the region is
greater and this results in higher error values as is shown in the plot.

(4) Compression ratio: Figure 17 shows the variation of compression ratio with depth of the
tree and as expected it is found to be almost constant giving a value of 0.02. The descending
nature of the curve in Figure 17 suggests that with increase in depth, compression ratio
expressed as the output data size as a fraction of the input data size, decreases. This is expected
as greater is the depth, better is the degree of compression as further reduction in output data
occurs. A high rate of compression reduces the overall message size thus saving the overall
communication bandwidth. Also, a constant compression ratio is preferred as it makes it easier
to model the hierarchical structure of the QT.

Table III. Different degrees of dummying.

Cases Error level (%)

No dummying 21
Partial dummying 18
Full dummying 12
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Figure 16. 3-D error plot for depth 4.

T. BANERJEE, K. R. CHOWDHURY AND D. P. AGRAWAL850

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:829–856

DOI: 10.1002/dac



(5) Output data packet size at the root: Figure 18 shows the size of the data traffic at the
root with data aggregation by TREG and for normal many-to-one communication where the
root receives all the data without compression. For different depths of QT, the size of
the data packet transmitted by the root to sink is constant when data compression is performed
by all the nodes of QT and is of fixed size (sx+sy+sc) bytes. The data packet size transmitted
from one tree node to another is fixed and is independent of the network size, thus keeping
the overall energy for transmission of data within reasonable bounds. This validates our
assumption that every tree node transmits to its parent, a data packet which contains only
the coefficients and the range of x and y-co-ordinates. This data packet size is independent
of the number of nodes in the tree and therefore the sub-region. In traditional many-to-one
communication, all leaves have to send the attribute readings to the root. Therefore, the size
of the data packet to be transmitted by the root node increases without any bounds with
increase in the network size. Performing data compression with TREG, data traffic is reduced
by 95% as compared to Reference [30] which achieves a maximum data traffic reduction
of 85%.

0.02474

0.02476

0.02478

0.0248

0.02482

0.02484

0.02486

0.02488

0.0249

0.02492

1 1.5 2 2.5 3 3.5 4

Depth of QT(p)

C
o

m
p

re
ss

io
n

 R
at

io
 (

C
R

)

Figure 17. Dependence of compression ratio on depth of QT.
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The next set of results collected for multiple periods of data aggregation, shows the
performance of the approximation process when coefficients obtained from the preceding
rounds are updated using UPDATE COEFF.

To validate UPDATE COEFF in our simulation, real world data (from the 24-h temperature
record on 24 June as Figure 71-3 of Reference [31]) is placed on a synthetic model of grid
400� 400 structure (see Figure 19(a)). This set of simulations are done in Matlab [32] with
parameters used given in Table II, to generate the contour model at a later instant, given a
previous instant.

(6) Contour plot using UPDATE COEFF: At instant g=0, the temperature distribution is
obtained from Figure 71-3 of Reference [31] as shown in Figure 19(a). Figure 19(b) shows the
contour plot of the same region at time instant g+12 (after 22 h with a sampling period of 2)
sensing the actual temperature in the range 24–288C, when a more or less small yet steady
increase in the overall temperature has occurred. Figure 19(c) shows the contour plot of the
regenerated temperature values for QT of depth of 4 when the final set of attribute values are
regenerated by using bg+12 obtained from Equation (13). The values of bap(g+12) are obtained by
recursively updating bg in Equation (13) 12 times. b0 is obtained by performing regression using
Equation (12). In this plot, we measure the temperature in Centigrade scale. A comparison of
the plots shows that updating the coefficients (returning bap(g+1)) does similar kind of
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Figure 19. (a) Temperature contour at instant g; (b) actual temperature contour at instant g+12; and (c)
approximate temperature contour at instant g+12, by regenerated.
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approximation as done by performing Gaussian elimination in Equation (12) (giving bg+1) 11
times, every time the attribute values change. Yet the updating process requires {O(m2.376)
number of computational steps as compared to Gaussian elimination having worst-case
complexity of O(m3).

(7) Percentage error: Figure 20 validates the conclusion drawn by analysing Figure 19(b) and
19(c) by calculating the error as the absolute deviation from the true value and is expressed as
percentage error. The percentage error is calculated by updating the coefficients every 2 h over a
24 h period. Thus, the coefficients obtained at gth interval is updated 12 times to get the final set
of coefficients reflecting the temperature of the region at 23rd hour of the day. In other words,
we consider a sliding window (i.e. the number of most recent data values recorded by the sensor)
of size 12. The percentage error is observed to be strictly increasing with time since increasing
approximation is done with increase in time interval. Until the first five updating steps (till 10th
hour of observation), the error is 5.3% (5eTh) and at the same time, needs to simply update the
coefficients using UPDATE COEFF at every node thus saving computation time and battery
life of the low-power sensors. The coefficients of current interval are similar to that of the
previous interval because of the temporal correlation of sensed attribute.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel data aggregation strategy in environments which exhibit
naturally occurring phenomenon, by building multiple attribute-based trees based on function
approximation. This scheme allows measurement of sensed parameters at locations devoid of
sensor nodes. Also by restricting the number of messages and keeping constant message size
irrespective of the depth of the aggregation tree, we obtained a percentage error that was within
acceptable limits. Our scheme is scalable as the data compression ratio is nearly constant and
accuracy increases with increasing density. Proposed tree construction phase enables distributed
root selection and obviates the need for global root location information at the sink. Our
proposed scheme considers the property of temporal correlation of sensors to regenerate
attribute values over the sensed region. Over a long period of time, the computational
complexity incurred in getting the new attribute values every time they change is significantly
low. TREG is observed to give substantially higher percentage error of the order of 30% in
environments where parameters do not follow a smooth correlation (image contour analysis
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Figure 20. 3-D variation of percentage error with interval of time.
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with random pixel values). TREG works with the assumption that sensors are giving accurate
results. If the entire network is distorted, a bulk of the nodes report wrong readings, thus TREG
fails to detect these to be wrong readings. However, if a localized area of readings is faulty and
the corresponding tree node receives readings only from faulty NT nodes, its coefficients sent to
its parent will be significantly different from its sibling. The parent can infer from the
regenerated data whether this is part of a new event or faulty readings by observing that the
deviation is greater than a factor, Th, i.e. |ig+1–ig|5Th where ig+1 is a data value reported by a
NT node i at the instant g+1 and ig is the data reported by the same node in the previous
instant. Again, there will be tree nodes which receive readings from both faulty and as well
normal nodes. In that case, the corresponding tree node will compare this reading with the other
neighbouring tree nodes and observes that this reading is significantly different from any of its
neighbours. Work is going on currently on this issue of detection of single point failures and
localized faults and also on how to detect event boundaries based on further analysis of the final
polynomial obtained at the root. Future work will include computing the energy required for
communication and latency involved per round of data aggregation. The maintenance of the
tree structure in the event of node failure is a likely step to improve robustness. If the network
gets partitioned in two parts, each part can calculate its own set of coefficients at each of the
roots of the individual QTs. When connection restores, the individual coefficients and the x–y
range spanned by each of the sub-networks can be used to regenerate new data points and new
set of coefficients which gives a globally optimal solution. However, this claim needs to be
validated and will be addressed in our future work. We intend to apply our proposed scheme to
an actual sensor test-bed for validation and observe the actual savings in energy and
communication time. Future work would also involve the application of our proposed
algorithm in a multi-attribute scenario and study of how frequently the coefficients need to be
updated based on the dynamicity of the network.
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Universiẗatsplatz 2, D-39106 Magdeburg, Germany.

20. Finn JD. A General Model for Multivariate Analysis. Holt, Rinehart & Winston: NY, 1974. ISBN: 0-03-083239-X.
21. Fausett L. Numerical Methods: Algorithms and Applications, 0130314005 (Hardback). Pearson Education: NJ,

October 2002.
22. Coppersmith D, Winograd S. Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation

1990; 9:251–280.
23. Kim HS, Abdelzaher TF, Kwon WH. Minimum-energy asynchronous dissemination to mobile sinks in wireless

sensor networks. Proceedings of Sensys, Los Angeles, California, 2003.
24. Yuan W, Krishnamurthy SV, Tripathi SK. Synchronization of multiple levels of data fusion in wireless sensor

networks. IEEE GLOBECOM, San Francisco, California, 2003.
25. Servetto SD. Sensing lena-massively distributed compression of sensor images. Proceedings of the IEEE ICIP,

Barcelona, Spain, 2003.
26. Simjava [Online] www.dcs.ed.ac.uk/home/simjava/doc/index-all.html
27. Mathematica [Online] www.wolfram.com
28. ATG rooftop data [Online] www.atmos.washington.edu/cgi-bin/uw.cgi?20050223
29. ATG [Online] www.atmos.washington.edu/data/difax/maxtemp
30. Wolf T, Choi SY. Aggregated hierarchical multicast for active networks. MILCOM ’01, Mclean, VA, 2001.
31. http://www.physicalgeography.net/fundamentals/7l.html
32. Matlab [Online] http://www.mathworks.com

AUTHORS’ BIOGRAPHIES

Torsha Banerjee received the BTech degree in computer engineering from University
of Kalyani, West Bengal, in 2003. She is currently a PhD student in computer science
and engineering at the Center for Distributed and Mobile Computing Laboratory,
University of Cincinnati. Her research interests include wireless ad hoc networks,
wireless sensor networks with focus on data aggregation and fault tolerance, and
spectrum management in cognitive radio. She is a student member of IEEE.

USING POLYNOMIAL REGRESSION FOR DATA REPRESENTATION 855

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:829–856

DOI: 10.1002/dac



Kaushik Chowdhury received his BE degree in electrical and electronics engineering

from VJTI, Mumbai University, India, in 2003. He received his MS degree in

computer science from the University of Cincinnati, OH, in 2006, graduating with

the best thesis award. He is currently a Research Assistant in the Broadband and

Wireless Networking Laboratory and pursuing his PhD degree at the School of

Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta,

GA. His current research interests include multichannel medium access protocols,

dynamic spectrum management, and resource allocation in wireless sensor networks.

Dharma P. Agrawal is the Ohio Board of Regents Distinguished Professor of

Computer Science and Engineering and the founding director for the Center for

Distributed and Mobile Computing in the Department of ECECS, University of

Cincinnati, OH. His current research interest includes energy efficient routing and

information retrieval in mesh, ad hoc and sensor networks, QoS in integrated

wireless networks, use of smart multi-beam directional antennas for enhanced QoS,

and secured communication in mesh, ad hoc and sensor networks. His co-authored

textbook on Introduction to Wireless and Mobile Systems, published by Thomson has

been adopted throughout the world and revolutionized the way the course is taught

and the second edition has been published recently. His latest co-authored book Ad

hoc & Sensor Networks}Theory and Applications has been published in March 2006

by the World Scientific Publishing. He is an editor for the Journal of Parallel and Distributed Systems,

International Journal on Distributed Sensor Networks, International Journal of Ad Hoc and Ubiquitous

Computing (IJAHUC), International Journal of Ad Hoc & Sensor Wireless Networks, and the Journal of

Information Assurance and Security (JIAS). He has served as an editor of the IEEE Computer magazine,

the IEEE Transactions on Computers and the International Journal of High Speed Computing. He has been

the Program Chair and General Chair for numerous international conferences and meetings. He has

received numerous certificates and awards from the IEEE Computer Society. He was awarded a ‘Third

Millennium Medal,’ by the IEEE for his outstanding contributions. He has also delivered keynote speech

for six international conferences. He is a Fellow of the IEEE, the ACM, the AAAS, and WIF.

T. BANERJEE, K. R. CHOWDHURY AND D. P. AGRAWAL856

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2007; 20:829–856

DOI: 10.1002/dac


