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Abstract—Cognitive radio (CR) ad hoc networks are com-
posed of wireless nodes that may opportunistically transmit
in licensed frequency bands without affecting the primary
users of that band. In such distributed networks, gathering
the spectrum information is challenging as the nodes have
a partial view of the spectrum environment based on the
local sensing range. Moreover, individual measurements are
also affected by channel uncertainties and location-specific
fluctuations in signal strength. To facilitate the distributed
operation, this paper makes the following contributions: (i)
First, an experimental study is undertaken to measure the
signal characteristics for indoor and outdoor locations for the
TV channels 21 − 51, and these results are used to identify
the conditions under which nodes may share information.
(ii) Second, a Cooperative reinforcement LearnIng scheme for
Cognitive radio networKs (CLICK) is designed for combining
the spectrum usage information observed by a node and its
neighbors. (iii) Finally, CLICK is integrated within a MAC
protocol for testing the benefits and overhead of our approach
on a higher layer protocol performance. The proposed learning
framework and the protocol design are extensively evaluated
through a thorough simulation study in ns-2 using experimental
traces of channel measurements.

Keywords-cognitive radio; cooperation; learning; TV spec-
trum;

I. INTRODUCTION

Cognitive radio (CR) is an enabling technology that
allows opportunistic transmission in under-utilized or vacant
frequencies, thereby resulting in high spectrum efficiency.
In CR ad hoc networks, owing to the distributed operation
of the nodes, ensuring that the licensed users or primary
users (PUs) of the spectrum are not affected is a challenging
task. CR nodes are neither aware of the global network
topology, including the locations of the PUs, and nor do
they have a priori access to PU transmission schedules [1].
Thus, the CR nodes must rely on learning the local channel
utilization through individual measurements, and share these
results with neighboring nodes. The cooperation between
nodes facilitates quick dissemination of the knowledge of
the spectrum environment, and also reduces missed detection
errors by merging together different data sets from close-by
locations. In this paper we explore how to select the best

channels for cooperation, how to merge together spectrum
knowledge gained by the nodes, and use these learnt channel
utilization models during link-layer transmission.

Prior studies on spectrum utilization have revealed sig-
nificant spectrum availability in the UHF band [1]. Conse-
quently, the FCC has recently opened up the vacant spec-
trum in the TV channels 21 (512 MHz) to 51 (698 MHz),
with the exception of channel 37, for use by unlicensed
devices [8]. However, FCC specifically points out the need
to ensure that the reception of both high and low power TV
signals are not adversely impacted. Thus, any practical CR
deployment must be preceded by a comprehensive study of
the characteristics of the expected received power in these
channels, the utilization in these frequencies, in both indoor
and outdoor environments. In the first part of our work, we
undertake the spectrum study over the complete range of
the TV channels 21−51 and note the variation of the signal
strength with distance, location, and frequency. From this
study, we identify which channels exhibit reliable and time-
invariant behavior at a given location. Moreover, we point
out how a CR node can independently identify these reliable
channels without external administrator help, an important
consideration in an ad hoc network, where nodes rely on
each other’s spectrum measurements.

CR nodes periodically undertake spectrum sensing to en-
sure that the channel knowledge stays current, and the choice
of the channel does not affect the licensed users. While
most works assume on-off Markovian models based on the
birth-death process, recent experiments have pointed out
that the actual PU activity is captured better by long-tailed
exponential distributions [4]. Thus, during actual usage, it
is beneficial if the CR user samples the channels and builds
its own estimation of the PU activity. We propose a Coop-
erative reinforcement LearnIng scheme for Cognitive radio
networKs (CLICK) to achieve this, that differently from
previous works, also takes into account (i) the reliability of
the channel information, and (ii) the level of trust that can be
assigned to the readings of the collaborating node. From our
experimental findings we observe that even CR nodes a few
meters apart from each other may exhibit a widely varying



channel measurement based on location-specific wave reflec-
tions. Thus, both distance between nodes, and the peculiar
characteristics of the wireless channel at the measurement
location are key factors during the collaboration process.

While CLICK allows each CR user to learn about the
channel availability over time, choosing a specific channel
for communication requires the participation of both the
sender-receiver pair. In order to demonstrate the benefit
and the overhead of integrating CLICK in a higher layer
protocol, we propose an extension of an existing multi-
channel medium access control (MAC) protocol for CR ad
hoc networks. We demonstrate how the collaboration among
nodes results in better choice of channels, and the need for
shorter individual sensing times. Both of these factors result
in higher link layer throughput and better PU detection.

The rest of this paper is organized as follows. The exper-
imental study that motivates our approach, and the related
work are given in Section II. In Section III, we describe
our proposed CLICK scheme in detail. The implementation
of CLICK in a MAC protocol is given in Section IV. We
undertake a thorough performance evaluation in Section V,
and finally, Section VI concludes our work.

II. RELATED WORK AND MOTIVATION

A. Related Work

Classical cooperation techniques mainly propose combin-
ing binary decisions (hard decision) made by the deployed
nodes, or their spectrum sensing measurements (soft de-
cision) to a centralized location or fusion center. As an
example of the hard decision, the Bayesian hypothesis rule
is applied in [6]. The authors point out that the main
research problem is the need to appropriately select the
decision thresholds that signal the detection event, both at
the individual node and during combination at the fusion
center. A similar approach using a voting rule is described
in [20], where at least half of the nodes must agree on a
decision. A more general formulation of collaboration based
on K nodes concurring out of N , also called as the K
by N rule, is given in [13], and later extended in [14]
to also incorporate the MAC layer throughput optimization
(note that K

N = 1
2 in [20]). A more realistic case is

presented in [3] where a distinct channel behavior between
a given PU transmitter and a CR receiver is considered.
Our proposed approach, CLICK, does not combine binary
decisions. Instead, it merges together the values of the states
and actions that define the extent of the learning within the
node. These values determine the probabilistic availability
of the channel. Thus, our collaborative approach predicts
long-term spectrum availability information, rather than its
immediate binary availability.

A distributed soft-decision based cooperation scheme for
single channel ad hoc networks is proposed in [10] that
is limited to forming pairs from a larger set of nodes.
However, as we show in our experiments in Section II-B,
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Figure 1. The variation in the mean and the standard deviation in the
received power and pilot signal are shown for indoor location for TV
channels 21− 51
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Figure 2. The variation in the mean and the standard deviation in the
received power are shown for roof-top location for TV channels 21− 51

such a collaboration between any two nodes on any channel
is not guaranteed to return accurate results in a practical
environment. As mentioned in [2] and independently verified
in our experiments, the assumptions of equal SNR for all
nodes with respect to a particular PU transmitter (assumed
in [11] [20] [14]) or perfect channel behavior (assumed
in [19] [12]), are incorrect. Moreover, the locations of the
nodes, say indoors/outdoors, or in an elevated roof, also
have bearing on the accuracy of the sensed data. CLICK
appropriately weights the contributing information for each
<channel,node> pair to account for these variations.
Other node-only weighting schemes have been previously
proposed in [15] [18], under the limited assumptions of per-
fect and non-fading channel behavior. Thus the above works
fail to consider in a comprehensive manner both the effects
of the wireless channel, and the need for location-specific
weighting of the nodes in a practical setting. Moreover, as
in the case of hard decision, the above schemes are useful
for the current sensing instant only, and do not reflect on the
long term suitability, in terms of CR network throughput and
PU protection, when the channel is used.
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Figure 3. The time variation in the received signals at indoor (broken
lines) and outdoor locations (bold lines)

B. Motivation

We believe that for CR networks, network design must
be guided by real world experiments, with parameters
carefully chosen so that the PU operation is not affected.
We note that signal strength, TV transmitter locations, CR
user placements, constructive and destructive effects on
the signal caused by reflections from structures and the
terrain, frequency of the channel, among others, affect the
spectrum sensing performance. Moreover, while cooperating
CR users may be spread over both indoor and outdoor
locations, the PU receiver antennas for the case of the TV
transmissions is typically outdoors, at an elevated surface.
Thus, the TV signal measured by the indoor CR users may
be markedly different, and local decisions by the node based
on signal strength may not capture the received power levels
experienced by the PU receiver antennas. We study these
effects further on the digital TV frequencies corresponding
to UHF channels 21− 51 to motivate the design of CLICK.

1) Experimental Setup and Results: The Northeastern
University campus was chosen as the site for our study
with experiments conducted, both indoors and outdoors,
in two adjacent research buildings. In particular, the sole
outdoor measurement was carried out on a high platform
on the roof, which provided a line of sight (LOS) reception
with a select set of TV transmission towers that were at
approximate distances from 6.8 − 7.3 miles [17]. The non-
LOS transmitters ranged from 32 to well over 100 miles.
To measure the signal strength, we used the Universal
Software Radio Platform 2 (USRP2) equipped with WBX
daughterboard

2) Setting the PU detection threshold: In Figure 1, we
see both the mean received power in the channels 21 − 51
(upper plot) arranged in the increasing order of the standard
deviation σ of the power values (lower plot) for the reference
indoor location X . We verified from [17] that at the time
of experimentation, all the sensed channels were occupied.
We observed that for all the 30 indoor measurement sites,
including X , each channel exhibited a channel power of at
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Figure 4. The pairwise difference of the mean power for near (X-Y) and
far (X-Z) separation distances
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Figure 5. The maximum drop in the mean of the received signals, and
its breaching the noise floor, for sensing time tksense for the channels k =
21− 30

least −87 dBm, which we set as the detection threshold,
i.e., greater than this value signaled the presence of the PU.
This importance of this selection in a learning scheme was
pointed out in [6], but no solution was proposed. From the
mean calculations in the outdoor roof setting in Figure 2
(upper plot), the decision threshold is higher at −81 dBm,
owing to the reduced reflections, and better propagation
paths with some of them being along the LOS.

C. Standard deviation or mean as a channel quality metric?

Though the transmission towers are spread out in large
geographical areas, the mean received power does not show
significant difference over a large extent of the spectrum.
We argue that while the mean power is important in set-
ting the decision threshold, and is indeed used by energy-
detection schemes at the receiver, sudden and indeterministic
fluctuations of the signal about the mean may result in
detection errors. From Figure 3 we observe that for the
outdoor location (bold lines), the signal does not show
significant variation. Yet, for the indoor location X , and
especially for channels 48 and 50, the variance with time



is significant compared to the channels 35 and 43. During
spectrum sensing, the node relies on a small window of
collected samples to measure the signal energy and compare
against a threshold. Hence, large variations in the signal may
not be smoothened out in the short sample window, leading
to detection errors. As an example, from the indoor standard
deviation plot in Figure 1, though the mean powers are
comparable in channels 43 and 48, the standard deviation σ
in the latter is almost 200% higher. Thus, channel 43 exhibits
more consistent behavior with time, and is more suited
for exchanging channel information during collaboration.
CLICK weights these channels with reliable readings (i.e.
with lower σ) higher using a novel concept of the expert
or E-value for a channel. We believe that simply weighting
specific nodes is not sufficient in a CR environment, but the
channel weights must also be considered.

D. Range of collaboration

How large should the physical separation between two
collaborative nodes be? To answer this question, we fixed
the reference location, say X , and considered the following
two sets of nodes. The first set is represented by Y and
composed of nodes y ∈ Y such that their distance from X ,
is within 100 m, i.e., 0 ≤ dX,y ≤ 100 m shown by the dotted
circle. Similarly consider the second set of nodes given by
Z such that 100 m ≤ dX,z ≤ 200 m, shown by the space
between the two circular regions. Let the mean received
PU signal powers at the locations for the nodes in Y and
Z be m̄y and m̄z , respectively. The plots of the pairwise
difference of these means from the mean signal power at
location X , i.e., m̄x is given by |mx−my| (white bars) and
|mx −mz| (shaded bars) in Figure 4, respectively. Results
reveal that distance and orientations of the nodes in an indoor
setting affects spectrum measurements considerably. Though
the TV transmitters are located at distances several order
of magnitude greater than, say, dX,z , the difference in the
means is caused by the varying reflective environment and
paths experienced by the signals. We have repeated this
three way measurements in 30 trials, each time replacing
the reference node X . We find that for our indoor locations,
the mean difference at 100 m is contained within 3 dBm.
Thus, we limit the collaboration radius of nodes to 100 m so
that nodes assimilating the spectrum information from their
neighbors are placed in a similar spectrum environment.

E. Intervals between collaboration events

The difference between the maximum standard deviation
and the mean (a metric represented by ψ) calculated from
different sample lengths is shown in Figure 5 for a limited set
of channels from 21−30 owing to space considerations. The
ψ plot is shown by the bold broken lines, which intersects
the horizontal line representing the difference between the
noise floor and mean power level. Thus for shorter sample
lengths, owing to shorter sensing times, the received signal

is yet to converge to the true mean, and hence, ψ is higher
than the mean to noise floor difference. For channel 21,
this intersection is depicted by the point {t, p}, where t is
the sensing time t21sense = 0.09. This can be interpreted as
follows: for channel 21, the t21sense should be at least 0.09 s.
The minimum time between collaboration messages tC is
a critical design component, as waiting too long may also
result in longer convergence time. At minimum, tC must be
at least

∑|S|
k=1 t

k
sense, i.e. the cumulative time for sensing all

the channels.
We describe later in Section IV how the standard deviation

in a channel is used to calculate a metric called as expert
value for that channel, during collaboration.

III. CLICK: A COOPERATIVE REINFORCEMENT
LEARNING SCHEME

A. Overview

CLICK is a cooperative reinforcement learning scheme,
and adapted from the Q-learning technique. It is composed
of three stages:
Stage 1 -Intra-node Measurement: Each node undertakes
spectrum sensing on the channels 21 − 51 of the TV
spectrum, and records the mean and standard deviation of the
signal power measured for all of these channels. During this
stage, the node detects the presence of the PU by comparing
against the receive threshold (Section II-B2), and returns a
reward r = 1 for those channels where the PU is present.
Stage 2. -Intra-node Learning: Nodes calculate the Q and
expert (E) values defined in Sections III-B1 and III-B2 based
on the channel measurements. Basically, the PU activity on
the channels is captured by the Q-learning tables, where
Q is a function of the total rewards for a given state,
each PU detection event earning a reward of 1. Thus, the
nodes learn about the channel availability for long-term use.
This learning process is gradual, and as the PU may have
intermittent transmissions, or have wireless channel induced
sensing errors, a considerable time is needed before a highly
accurate channel usage information is gathered locally. The
E-values qualify how reliable the Q-values are, based on the
signal deviations of the channel in which the measurements
were undertaken.
Stage 3. -Inter-node Cooperation: The nodes periodically
share their learnt information with the neighbors, while
distinguishing with whom the collaboration is undertaken,
and on which channels. In this stage, the different Q-
table entries of the nodes are merged together after being
appropriately weighted. Thus, collaboration accelerates the
overall learning at a much higher rate than that possible by
local measurements alone.

Stage 1 has been explained in detail earlier in Section II-B,
where the channel measurements were collected. This stage
is periodically repeated to maintain the spectrum information
current. The choice of sensing time tsense for a given
channel was also discussed (further optimization strategies



to reduce the total sensing duration are presented in Sec-
tion IV). The rest of this section describes the stages 2 and
3 in the operation of CLICK, while mainly answering the
following set of questions: How are the experimental channel
measurements, especially the location based uncertainties,
incorporated in the collaboration scheme? Which subset of
nodes from a larger neighborhood pool are suitable for
collaboration, and which channels do they share their infor-
mation on? What is the interval over which the collaboration
is undertaken, and what is the overhead?

B. Stage 2 - Intra-node Learning

The learning model is defined by a Markov Decision
Process (MDP) which is composed of states represented by
S. Each state s ∈ S maps to a specific TV channel numbered
between 21 − 51. The set of actions A maps the transition
between states, which is the formal definition of the function
of channel switching. The probability with which the node
switches the channel (i.e. the state), say from s to s′, through
the action a, is calculated from the distribution function
π(s, a) ∈ [0, 1]. The goal of the learning process is to de-
termine the optimal policy that returns the channel with the
least Q, meaning that it is free from PU activity for longer
durations of time. During Q-learning, the node observes the
current channel s, selects a possible action a, and receives
a reward r from the environment for that specific action.
Different from the classical Q-learning technique that only
maintains the Q (or reward) value table for each state-action
pair, we also propose a new metric called as the expert (E)
value. Here, for a given state action pair (s, a) and a node
i, the value Ei(s) defines how accurate the corresponding
Q-value Qi(s, a) is. The formal expression of the Q and E
values, and their update equations are as follows:

1) Q-Value:

Qi(s, a) = (1− α)Qi(s, a) + αr, (1)

where the reward r = 1 if PU is detected, and 0 otherwise.
α is a tuning parameter that decides the speed of learning.
The probability πi(s, a) of arriving in the state s from a
prior state s′ for node i by choosing action a is given by
the Boltzmann distribution,

πi(s, a) =
eQ

i(s,a)/T∑
j∈A e

Qi(s,j)/T
, (2)

where T is the temperature parameter and adjusts the
tradeoff between exploration and exploitation actions. The
values of α and T are taken as 0.2 and 10 [16], though T
itself being a progressively decreasing metric have also been
explored in the learning literature.

2) Expert or E-Value:

Ei(s) = 1−min[1,
σ

M
], (3)

The E-value 0 ≤ Ei(s) ≤ 1 is a function of standard
deviation σ of the signal received on a channel, represented

by the state s, and the mean M . Each node maintains a
history of the last H signal samples for a sensed channel
s. We use H = 30 to ensure adequate buffer space in
the nodes Thus, the higher is the deviation in the signal
strengths, lesser is the reliability of the channel. Hence,
the PU occupancy predicted by Q(s, a) results in lower
accuracy.

C. Stage 3 - Inter-node Cooperation

The cooperative learning scheme allows the agents to
share their Q− and E− values, in order to increase the con-
vergence speed of the learning. The cooperation is achieved
in the following three steps: (i) The sharing function (Sec-
tion III-C1) allows each node to decide the Q values of
which channels should be shared with the other nodes. (ii)
The combine function (Section III-C2) tells the node how to
combine its own stored Q and E-values, with the respective
values received from other collaborating nodes.

1) Sharing Function: A given node, say i, creates a list
L of only those channels for which the E-value is above
a pre-decided threshold φE , meaning that the channel mea-
surements are reliable, and consistent over time. For these
channels s ∈ L, the respective tuples < Qi(s, a), Ei(s)
are sent to the collaborating nodes. Thus, the list L that
is eventually shared can be formally defined as:

L = {< Qi(s, a), Ei(s) > |s ∈ S, a ∈ A|Ei(s) > φE},
(4)

where φE is the decision threshold set at 1 − σ=1
|M |=80 =

0.9875. The rationale for selecting this value is that our
experimental results show in Figure 1, the average indoor
mean power was found to be at −87 dBm and the deviation
σ for the reliable channels was contained within 1 dB. Thus,
we select φE of a comparative value, while maintaining a
small safety factor. This sharing function is repeated every
tC time steps, with the minimum value of tC derived in
Section II-E. While lower values of tC increase network
overhead, higher values of tC lower the learning rate, and
may lead to PU interference. We investigate the effect of
different intervals of tC on the PU detection and network
overhead in Figure 7(a) during the performance evaluation.

2) Combine Function: When node i receives the sharing
list Lj from the collaborating node j, with Lj = {<
Qj(s, a >,Ej(s, a) >}, it will update its Q-values by
calculating the weighted average as follows:

Qi(s, a) = (1−W i,j(s, a)) ·Qi(s, a)+W i,j(s, a) ·Qj(s, a),
(5)

where W i,j is a weight function which decides how much
the information from node j will contribute to adjust the
learning process of node i. In our formulation, W i,j is a
combination of two weighting factors, ε and η:
• Expert Weight (εi,j(s, a)): When a node i receives
Q-values from another node j, it may only integrate
these new values in its own Q-table if the expert value



or E-value of j is greater or equal to its own. This
prevents dilution of the accuracy of its own measure-
ments on the channels during collaboration. Formally,
this is expressed as the ratio of the difference in the
expert weights for a given collaborating pair to the
cumulative difference of the expert values for all the
K collaborating nodes combined, i.e.,

εi,j(s, a) =

{
Ej(s)−Ei(s)∑K

n=1 E
n(s)−Ei(s)

if Ej(s) > Ei(s)

0 otherwise
(6)

Similarly, if Ej(s) − Ei(s) > 0, then the node i
will increase its expert value Ei(s) as more accurate
channel measurements have been incorporated. This
increase is given by the weighted sum:

Ei(s) = Ei(s) · (1− ηi,j) + ηi,j · Ej(s) (7)

• Trust weight (ηi,j): It measures how much a given
node i can trust the Qj(s, a) values coming from node
j. The difference between η and ε is that the former
depends on the distance between the collaborating node
pair (i.e. the < i, j > pair) and not on the specific
channel behavior represented by the state-action values
(i.e. the < s, a > pair). From Figure 4, neighbors closer
in distance exhibit channel measurements that have a
higher correlation with a node’s own observations, and
can therefore be trusted. Thus,

ηi,j = 1− di,j

R
, (8)

where R is the transmission range, and di,j is the
distance between the nodes i and j.

The cumulative weight function W i,j in eq(5) can now be
written as:

W i,j(s, a) = εi,j(s, a) · ηi,j (9)

IV. LEVERAGING COOPERATION AT THE LINK LAYER

In this section we develop a simple MAC protocol to
demonstrate how the cooperation between the nodes can be
implemented and analyzed in a practical setting. We mainly
study the following effects at the link layer:
• Most existing MAC protocols rely on the transceiver

pair to select a currently vacant channel. Instead,
CLICK selects the channel with the least Q-value with
the aim of maximizing the long term availability, and
enhanced PU protection. The benefit and tradeoff of
such a selection strategy, as opposed to the classical
approach of any vacant channel selection, must be
evaluated.

• The collaboration imposes a load on the network,
resulting in transmission delays and packet losses. The
effect of transmitting this additional state-action infor-
mation on link layer performance must be quantitatively
measured.

Spectrum Sensing

DIFS
RTS

CTS

DATA

ACK

Node A Node B Node C

L: Channel List

L: Channel List

Channel C

Packet TransmissionRadio t R Radio

B

 R r

Figure 6. The MAC protocol design that implements CLICK

• The spectrum sensing time can be reduced though col-
laboration, wherein a node rapidly gains a high expert
or E-value by assimilating other’s state-action tables.
Thus, expending a lot of time for sensing to collect
its own measurements may no longer be needed, and
the radio may instead be used for data transmissions to
improve throughput.

A. MAC Protocol Design

We assume that the CR users are equipped with two
radio transceivers, which we call as the receive radio (Rr)
and transmit radio (Rt) as shown in Figure 6. Each node
also has a default receive channel which is chosen as the
channel with the least Q-value, i.e. least PU activity at its
location. The receive radio Rt is always tuned to this default
channel, unless requested otherwise, and the choice of this
channel is broadcast through hello messages periodically
by the receiver. This packet also contains the Q and E-
values used by the neighboring nodes for collaboration. The
transmit radio Rt tunes to the receive channel of the intended
recipient to begin the link layer packet transfer. Unlike the
work in [5], we do not assume any network administrator
assigned channel, or specialized low power radios.

The two cases for MAC layer coordination when a node
is attempting a packet transfer to node B are as follows:

1) Channel Common to Sender and Receiver: Consider
the interaction between A and B, with say, channel x as the
default receive channel for B. If the Q-value of this default
channel x at node A is lower than the pre-decided threshold
(assumed at 0.4 to have at least greater than 50% safety),
then it immediately tunes its transmit radio Rt to x. It listens
to the channel for DIFS time, sensing both the PU and the
transmission of its neighboring CR nodes, before sending out
the request to send (RTS) packet, as defined in the 802.11



standard. The RTS is received by the node B on channel
x, and the remainder of the interaction follows the classical
clear to send (CTS)-DATA- acknowledgement (ACK) cycle.
If the RTS-CTS handshake is successfully concluded, just
as the data transmission begins, the free radios (Rr for A
and Rt for B) begin the spectrum sensing of the channels,
till all the channels from 21− 51 are sensed.

2) Different Channels between Sender and Receiver:
After successful completion of the transfer between A and
B, consider another data transmission, this time initiated by
node C for recipient B. Unlike the previous case, assume
that channel x has a Q-value greater than the permissible
threshold for C, and it is likely that transmission in this
channel will get interrupted due to PU activity in C’s
neighborhood. Hence, C now proposes a channel list L
to B with permissible Q-values, and allows B to pick the
best channel. B chooses the channel from the entries of the
list L, which has the least Q-value at its own location, say
channel CB = y, and informs the sender C. The receiver
radio Rr for B is now tuned to y for the duration of the
transfer, and the RTS-CTS-DATA-ACK cycle is repeated. If
no permissible channel is found, the channel reply is denied
to node C.

B. Cooperation Benefits in the MAC Protocol

1) Sensing Time Optimization: The time used for col-
lecting the spectrum information results in lowering the
link layer throughput as the transceiver is busy. As seen
in Figure 6, node B is engaged in spectrum sensing, and is
unable to accept new requests from node C, leading to re-
transmissions of the channel list L. Through collaboration,
the individual sensing time can be shortened as the state
table is enhanced by integrating the information contained
by the neighboring nodes. This actual sensing time, T it for
node i considering all the channels in S is,

T it =

|S|∑
k=1

tksense

[
1− Ei(k)− E′i(k)

E′i(k)

]
(10)

where Ei(k) and E′i(k) are the E-values after collaboration,
and from the individual measurements, respectively. This ex-
pression implies that the minimum sensing time tksense for a
given channel k ∈ S (obtained from measurements described
in Section II-E by each node) is scaled by the fractional
increase in the expert or E-value at a node. This results in
a total sensing time savings of 4it =

∑|S|
k=1 t

k
sense − T it .

C. PU protection and Switching Minimization

The Q-value, with time, captures not only the spectrum
availability at the node location, but is also a measure of
its availability in the immediate neighborhood as well. This
is because, the the Q-value table is periodically exchanged
between 1-hop neighbors, and reliable channel readings
integrated. Thus, choosing the channel based on its long
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Figure 7. Overhead of CLICK and K by N scheme.

term availability saves on repeated spectrum switching, and
ensures continued communication without possible service
degradation to the PUs. Moreover, as a control channel is
absent to make the link layer more spectrally efficient, it is
vital that the default receiver channel Rr be available for a
longer extent of time.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed cooperation scheme CLICK and its performance at
the link layer using the ns-2 simulator extended for CR net-
works [9]. We use real measurement traces to derive the PDF
of successful PU detection for different durations of sensing
time. This follows from the discussion in Section II-E, where
we measure the number of samples for which the received
signal strength of an active TV transmitter falls below the
noise floor leading to missed-detection. We consider a grid
topology of 9 cells at the Northeastern University campus, in
a 300×300 m2 area , and the missed detection PDFs for TV
channels 21−51 are obtained by carrying out measurements
in each cell by USRP2 devices. The latter are deployed
randomly, and several sets of time series measurements are
saved to later simulate the real world environment. Thus,
practically observed error probability and signal strength
traces are used for the packet level simulation in ns-2 We
restrict the analysis to a subset of TV channels 25− 29 and
38− 40 which we exhibit higher variance of the PU signal
for different grid locations.

A. PU Protection Analysis

In this analysis, we evaluate the benefits and costs of
cooperation and learning on the PU detection process. The
sensing duration and inter-sensing intervals are fixed at
0.026 s and 0.2 s, respectively to ensure correct PU detection.
For fairness, the sensing time optimization (Section IV-B1)
is disabled in this experiment. We compare the performance
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Figure 8. The probability of correct PU detection for 15 nodes (a) and 30 nodes (b), while the convergence behavior for CLICK is in (c).

of CLICK with (i) Individual sensing, i.e., classical energy
detection using threshold from Section II with no coop-
eration, (ii) Q-learning at the node level, again without
cooperation, and (iii) the K by N collaboration scheme
proposed in [20].

In Figure 7(a), we show the overhead of the K by N
scheme and of two configurations of CLICK with different
collaboration intervals (i.e. every 1.0 s and 2.0 s, respec-
tively). The K by N scheme incurs the highest overhead due
to the fact that each CR node must collect measurements
from other nodes after each sensing interval (i.e. 0.2 s in
our experiments). Figure 7(a) shows that the frequency
of sharing actions has also a critical impact on CLICK,
i.e. higher accuracy can be guaranteed with more frequent
updates. However, the sharing action can be performed
asynchronously and at lower rate than the sensing, and this
explains the overhead reduction of our scheme. In Figures
8(a) and 8(b) we depict the probability of PU detection over
time in the configurations with 15 and 30 nodes, respectively.
In both figures, we notice that the cooperation accelerates
the learning at a higher rate, when compared to the non-
cooperative Q-learning scheme, giving about 12 − 15%
improvement. Figure 8(c) shows the improvement on the
increasing number of nodes on the convergence time of
CLICK.

B. Analysis of MAC Protocol using CLICK

In this section, we study the benefits of CLICK integrated
into our proposed MAC protocol, which we call as CLICK
MAC. We consider a topology with 12 CR nodes with 6
active connections, and we vary the system load produced
by each connection. The traffic type is Constant Bit Rate
(CBR) with the UDP protocol at transport layer. Figure 9(a)
shows the throughput of the proposed MAC scheme for
different sensing time intervals. From Figure 9(a), that the
communication performance at MAC layer is improved by
an accurate setting of the sensing interval. When the sensing
time is set to the minimum value, PU interference may
lead to packet losses during the transmission period of CR
users. However, long sensing time reduces the transmission

opportunities for CR nodes. The CLICK MAC scheme with
Adaptive Sensing is able to balance the tradeoff between
PU protection and CR transmission opportunities, as shown
in Figure 9(a). Figure 9(b) shows the throughput of the
proposed MAC scheme with different underlying sensing
schemes for deciding the default channel for the receiver in-
terface Rr at each node. In the case of Individual, Q-learning
and K by N scheme, channel selection is performed by
receiver node only. By increasing the long-term knowledge
on each channel, CLICK reduces the overhead of channel
switching, and the impact of PU interference. As a result,
the integrated CLICK MAC scheme guarantees the highest
throughput also under high traffic loads. The same benefit
can be seen in terms of end-to-end delay, which is shown
in Figure 9(c).

VI. CONCLUSION

We have undertaken actual channel measurements in
the TV spectrum band covering channels 21 − 51. Using
these measurements, we have drawn inferences on how
cooperation could be achieved in a distributed environment.
Our reinforcement learning approach CLICK takes into
account channel characteristics and node location to decide
which channels and nodes are suitable for collaboration.
Finally, we have demonstrated the benefits of cooperation
by extending a MAC protocol for CR operation. Our future
research directions will involve leveraging cooperation in the
operation of the higher layer network protocols.
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