
Attribute Allocation in Large Scale Sensor Networks

Ratnabali Biswas Kaushik Chowdhury Dharma P. Agrawal
OBR Research Center for Distributed and Mobile Computing, Dept. of ECECS,

University of Cincinnati, Cincinnati, OH 45221-0030

{biswasr,kaushir,dpa}@ececs.uc.edu

ABSTRACT
Wireless sensor network is an emerging technology that enables
remote monitoring of large geographical regions. In this paper,
we address the problem of distributing attributes over such a
large-scale sensor network so that the cost of data retrieval is
minimized. The proposed scheme is a data-centric storage
scheme where the attributes are distributed over the network
depending on the correlations between them. The problem
addressed here is similar to the Allocation Problem of distributed
databases. In this paper, we have defined the Allocation Problem
in the context of sensor networks and have proposed a scheme for
finding a good distribution of attributes to the sensor network.
We also propose an architecture for query processing given such
a distribution of attributes. Finally, we present simulations results
to illustrate the conditions under which our proposed architecture
is beneficial. To the best of our knowledge, this is the first
attempt to study the attribute allocation problem of distributed
databases in the context of sensor networks.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]:
Network Architecture and Design; C.3
[Computer Systems Organization]: Special
Purpose and Application-based Systems.

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Allocation problem, Data-centric storage, Query dissemination,
Data retrieval, Aggregation, In-network processing, Minimum
spanning tree, Correlation tree, Hard threshold, Soft threshold.

1. INTRODUCTION
A wireless sensor network is a dense network of a large number of
low cost miniature wireless sensor nodes driven by a limited
battery resource. At the node level, data communication is the

dominant component of energy consumption, and hence protocol
design for sensor networks is geared towards reducing
communication in the network. In this paper, we have designed a
scheme for determining a distribution of attributes in a sensor
network that minimizes the communication cost involved in
querying the network.

Sensor networks are revolutionizing remote monitoring
applications because of their ease of deployment, ad hoc
connectivity and cost effectiveness. Such networks might be
expected to serve multiple applications simultaneously. For
example, given a geographical area, the user might want to deploy
a sensor network that assists in ecosystem monitoring, weather
monitoring, precision agriculture etc. For each application the user
would want the network to sense specific physical attributes (e.g.
humidity, temperature, light etc. for weather monitoring
application; temperature, light, presence of chemicals etc. for
precision agriculture application and so on.) and consequently
would expect the sensor network to respond to some user-defined
queries. Since such large-scale sensor networks would be
expected to serve a substantial number of queries simultaneously
for several applications, the number of attributes sensed by the
network would also be substantial. The proposed scheme is
designed for minimizing cost of data retrieval from large-scale
sensor networks serving such real-life scenarios.

The paper is organized as follows. Section 2 lists some related
research in the area of data storage in sensor networks. Section 3
defines the problem that this paper addresses and gives an outline
of how such a distribution of attributes can be used to facilitate
query processing in sensor networks. The methodology for
determining a good distribution of attributes is presented in
Section 4. The simulation results are discussed in Section 5, while
Section 6 concludes the paper with future research agenda.

2. RELATED WORK
There have been different approaches for storing data in sensor
networks. Earlier sensor network systems stored sensor data
externally at a remote base station (External Storage) or locally at
the nodes which generated them (Local Storage). Recently there
has been a paradigm shift so that a technique called “data-centric
storage” now allows events to be stored at specific rendezvous
points within the network that queries can access directly. Shenker
et al. [7] proposed the DCS scheme and have shown that DCS
outperforms other approaches such as External Storage (ES) and
Local Storage (LS) under certain circumstances. Ratnasamy et al.
[6] have also proposed a Geographic Hash Table (GHT) to hash
events into geographic coordinates. In DIFS [2], Greenstein et al.
have designed a spatially distributed index to facilitate range
searches over attributes, while Li et al. [5], have built a distributed
index (DIM) for multidimensional range queries of attributes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DMSN’05, August 29, 2005, Trondheim, Norway.
Copyright 2005 ACM 1-59593-206-2/05/0008...$5.00.

27

In this paper, we also propose a data-centric storage scheme for
distributing attributes over a sensor network depending on the
correlations between attributes and hence translate the allocation
problem of distributed databases to the context of sensor
networks. The proposed approach differs from the existing data-
centric approaches [2][5][6] in that it attempts to distribute
attributes instead of specific user-defined events. We reason as
follows. If an attribute is included in many events, then the values
for that attribute have to be replicated and stored at different
places in the network for each individual event. In our proposed
approach, the attribute need not be replicated at multiple places
and hence saves communication cost involved in storing and
replicating data. Instead every attribute is stored at a predefined
location within the network such that attributes that are a part of
the same query are stored near each other to facilitate data
retrieval. Thus it is similar to the Allocation Problem of
distributed databases where a set of attributes need to be
distributed over a number of sites such that in serving a
predefined set of queries the communication between sites is
minimized. In a similar manner, in this paper we present a scheme
for storing attributes in the sensor network such that the
communication involved in serving a predefined set of user
queries can be minimized.

3. DISTRIBUTED ATTRIBUTE STORAGE
Sensor networks can be envisioned as a large distributed database
where the sensor nodes generate named data against user-
specified queries [1]. In this section we define the Allocation
Problem of distributed databases in the context of sensor networks
and illustrate how our proposed approach assists in query
processing.

3.1 Problem Definition
Assume that there are a set of sensed attributes A = {A1, A2, …,
Am} and a network S of sensor nodes which have to serve a set of
queries Q = {Q1, Q2, …,Qq}. We attempt to find a distribution of A
to S such that the energy consumed in serving the set of queries Q
is minimized. This is similar to the Allocation Problem of
distributed databases which can be stated as “Given a relation R
(i.e. a set of attributes), a set of queries Q, and a set of sites S
where queries in Q run, the allocation problem involves finding
the optimal distribution of R to S that minimize the cost of
evaluating Q”. For databases, the Allocation Problem involves
finding disjoint fragments (group of attributes which are accessed
together) that are distributed in independent sites. On the other
hand, for sensor networks all the attributes are distributed over the
same two-dimensional geographical area, such that the
communication involved in dissemination of query and retrieval
of data for the set of queries Q is minimized.

As in case of distributed databases, some statistics about query
runs (e.g. query access frequency, attribute affinity) are required
to solve the allocation problem. We thus assume that a set of
priorities { }qppp ,,, 21 Κ for the queries { }qQQQ ,,, 21 Κ is given.

The priority pi of a query Qi could depict either the probability
with which query Qi is issued per unit time or the frequency of
tuples generated for query Qi per unit time or a combination of
both. These values may be set by the system designer to specify
the relative priorities of queries and are normalized such

that∑
=

=
q

i
ip

1
1. Each query Qi can be modelled by the set of

attributes included in the query i.e. { }
kiiii AAAQ ,,,

21
Κ=

{ }()kpAAAA mip
,...,1,,,, 21 =∈ Κ . We also assume that the sensor

nodes are uniformly deployed over a rectangular region. We thus
intend to distribute the m attributes over this rectangular field of
sensor nodes so that the cost querying the network is minimized.
To do so, we split the rectangular area into a grid G of size
   mm × and each attribute Ai is allocated to a particular grid
cell. Let GAf →: be the mapping corresponding to the optimal
distribution. In order to minimize the total cost of serving the set
of queries Q, the mapping f should minimize the communication
involved in disseminating the query and aggregating the resultant
tuples for each query. To minimize the cost involved in evaluating
a query (i.e. aggregating resultant tuples), the attributes belonging
to the same query should be stored near each other in the grid.
Also to minimize the communication involved in disseminating
the query from the sink and reporting the results back to the sink,
the attributes should be stored as close to the sink as possible. We
thus need to determine a good distribution f for a given set of
queries and this distribution f should be made available to all the
nodes in the network so that every node is aware as to where
every attribute is stored in the network. The method of
determining the function f is explained in Section 4. Since the
proposed method for computing function f is topology
independent, each sensor node may compute f independently.
However to reduce the overhead involved in performing the same
redundant computation all over the network, the function f may be
computed at the sink and then sent to all the nodes in the network.
For now, we assume that such a function f is available to all the
nodes in network and analyze how it facilitates query processing
in a large sensor network.

3.2 Query Processing
As mentioned in Section 3.1, the entire network is divided into a
   mm × grid. We assume that each sensor node is location-
aware [10][11] and hence can determine which grid-cell it belongs
to. The number of sensor nodes in each grid cell depends on the
density and distribution of nodes in the sensor network. Given a
distribution function f (as computed in Section 4), each attribute
Ak is then assigned a grid cell f(Ak) of the network. The grid cell
f(Ak) is responsible for storing values of the attribute Ak. Thus
even though the attribute Ak is sensed all over the network
(assuming complete sensing coverage), the values of the attribute
are stored in the grid cell f(Ak) and every node in the network
knows in which grid cell each attribute is stored.

Let us now consider the attribute Ak and the grid cell f(Ak) where it
should be stored. Only some of the nodes in the grid cell f(Ak)
actually store the values for the attribute Ak. These nodes are
called the storage nodes for Ak. The number of such nodes
required for an attribute Ak depends on the amount of data values
corresponding to attribute Ak as also the storage capacity of each
sensor node. To facilitate data retrieval from these storage nodes,
one node in every grid cell is appointed as the control node. The
control node is responsible for fetching data from the storage
nodes using specialized indexes that it maintains. To disseminate
a query Qi, the sink node first determines the nearest grid cell
housing any of the attributes in the query and sends the query to

28

that grid cell. On receiving the query, the control node of the
corresponding grid cell then uses its stored indexes to retrieve the
required values of the stored attribute from the respective storage
nodes. It then computes the optimal route of disseminating the
query to the grid cells storing the remaining attributes of the
query. The optimal route for retrieving the remaining attributes
belonging to Qi would essentially be the minimum spanning tree
joining the grid cells that store the attributes in Qi. The complexity
involved in calculating this route is minimal (any minimum
spanning tree algorithm may be used) since a query will not
contain a large number of attributes. The computed route is then
used for routing the query as well as routing the resultant data
tuples back to the sink. While routing the data back to the sink,
the control nodes of the grid cells housing the respective attributes
use aggregation schemes [3][4] and in-network processing
mechanisms [8] to further minimize the amount of data transfer in
the network.

The efficiency in query processing and information retrieval using
such an underlying architecture is achieved at the cost of
maintaining updated values of all attributes in the respective grid
cells where they are stored. To reduce the overhead involved in
this maintenance a soft threshold scheme may be used. Whenever
a sensor node senses an attribute, it determines whether the
difference between the previously sensed value and the new value
is more than a predefined soft threshold. If the difference is
greater than the soft threshold, the new value needs to be reported
to the grid cell housing the corresponding attribute. However
instead of sending update messages for every individual node
fluctuation, the sensor node first sends an update message to the
control node of its own grid cell. The control node then waits for a
predefined time interval called the update epoch Tk for the sensed
attribute Ak. All the update messages for the attribute Ak that the
control node receives from nodes in its own grid cell during the
epoch Tk are then combined into aggregate update message(s) and
sent to the grid cell f(Ak) housing Ak. Increasing the soft threshold
and the update epoch reduces the frequency with which the
attributes are updated. Reducing the number the update messages
in turn reduces the communication overhead involved in
maintaining the updated values of the attributes in the grid cells
where they are housed. However increasing the soft threshold and
update epoch also reduces the probability of the grid cell f(Ak)
having updated values of Ak as sensed in the network. This in turn
reduces the probability that queries accessing Ak would receive the
current values for Ak as sensed by the network which might be a
serious problem for critical data. Thus depending on how critical
an attribute is, a suitable soft threshold and update epoch may be
chosen to reduce the update overhead.

This section described how queries can be processed once the
attributes are stored in the network in a distributed manner. All the
underlying routing of query and data messages can be done using
geographical routing schemes like GPSR [9]. In the next section
we present a heuristic for obtaining a good distribution of
attributes over a sensor network given a set of queries along with
their associated priorities.

4. ATTRIBUTE ALLOCATION
METHODOLOGY

Having discussed the benefits of distributing attributes over a
sensor network and how it assists in efficient query processing,
we now focus on the methodology for determining a good

distribution of attributes such that the total cost of serving a set of
user-defined queries is minimized. The methodology has two
phases. In the first phase, the query priorities are used to
determine correlations between each pair of attributes. In the
second phase the correlations are used to determine the
distribution of attributes to the rectangular sensor network. To
illustrate the proposed methodology, let us consider an example
set of queries as listed in Table 1.

Table 1. List of Queries in ascending order of priorities
Qi Pi Ai Qi Pi Ai
Q30 .0001 A6 Q10 .0044 A20
Q29 .0001 A12,A19 Q6 .0052 A7
Q24 .0001 A10,A16 Q8 .0063 A5,A8,A11
Q27 .0001 A12,A18 Q22 .0117 A1,A6,A11,A16

Q18 .0001 A4,A8,A12,
A19

Q26 .0136 A14,A20,A6

Q12 .0001 A13,A16 Q14 .0161 A3,A7
Q23 .0005 A1,A6,A11 Q4 .0185 A5,A7,A9
Q15 .0005 A11 Q16 .0189 A15

Q17 .0007 A19,A3,A7,
A11,A15

Q2 .0246 A8,A16,A4,
A12,A20

Q28 .0007 A5 Q13 .0510 A19
Q21 .0008 A16 Q25 .1017 A8
Q20 .0010 A8,A13 Q19 .1179 A16,A20,A4

Q3 .0011 A9,A18,A7,
A20

Q5 .1185 A6,A16

Q11 .0015 A4,A7,A10 Q1 .1994 A1,A3,A5,
A7,A9

Q9 .0015 A14,A17 Q7 .2833 A2,A15,A17,
A19

4.1 Phase 1: Determining correlations
Query priorities can be used to determine correlations between
attributes. If a pair of attributes is a part of a high priority query,
then we consider the attributes to have a high correlation between
them since they would be accessed together very frequently.
Similarly, if a pair of attributes is never accessed together in the
same query, the attributes may be considered to not have any
correlation between them. The distribution function should then
store attributes with higher correlations closer to each other. The
correlations between all the attributes can be represented by a tree
of attributes where the edge weights between a pair of attributes
represent the correlation between them. Using this data structure
and its represented correlations, the distribution of attributes can
be determined. Also attributes that are accessed more frequently
should be stored closer to the sink. The individual access
probability P(Ai) of an attribute Ai can be computed as follows:

() () ()∑
=

=∀=
q

j
jiji miQAPQPAP

1
,,1,| Κ ,

where () mjpQP jj ,,1, Κ=∀= and ()
ji

ji
ji QA

QA
QAP

∉
∈

=
,0
,1

|

Table 2 gives the individual access probabilities for the attributes
involved in the queries listed in Table 1. To represent the relative
ordering of attributes with respect to their individual access
probabilities of attributes, we can further represent the attributes
in the form of a heap so that if attribute Ai is parent of Aj, then

())(ji APAP ≥
. We call this heap-like data structure the

correlation tree and it gives a synoptic view of all the correlations

29

between attributes as also the relative ordering of attributes with
respect to their individual access probabilities and thereby assists
in determining a good distribution function f.

Table 2. List of Attributes and their access probabilities

Ai Pi Ai Pi Ai Pi

A1 .2116 A8 .1337 A15 .3029

A2 .2833 A9 .2190 A16 .2737

A3 .2162 A10 .0016 A17 .2848

A4 .1441 A11 .0197 A18 .0012

A5 .2249 A12 .0249 A19 .3352

A6 .1444 A13 .0011 A20 .1616

A7 .2425 A14 .0151

To create a correlation tree for a given set of queries, we begin by
representing each query as a tree of depth 1 and then combine
these individual query trees to form a comprehensive correlation
tree. Figure 1 shows the query tree corresponding to query Q7
listed in Table 1. Since the correlation tree should have a heap-
like structure, the attribute in the query having the maximum
access probability is made the root of the corresponding query tree
(refer to access probabilities listed in Table 2). Hence attribute A19
becomes the root for query tree for Q7. Also as mentioned before,
the edge weights depict the correlation between the attributes
joined by the edge. For the initial query tree, the edge weights are
simply the query priorities. Such a query tree is created for every
given query. These query trees then need to be combined to form
the final correlation tree. This is done iteratively by selecting
query trees in ascending order of their associated query priorities.

19

15 172

.28
33

.2
83

3

.2833

Figure 1. Query Tree for query Q7

19 16 1

6131084 1112

18

.0005.0
00

5

.0001

.0001.0
00

1

.00
02

.0
00

1

.0
00

1

Figure 2. Partial Correlation after adding query Q23

We illustrate the process using the set of queries listed in Table 1.
For our example, first the query tree corresponding to Q30 is
selected and set to be the initial partial correlation tree. Next the
query tree corresponding to query Q29 is combined with the partial
correlation tree. The process of combining query trees continues
using usual tree union algorithms, reinforcing edge weights as
required. However special consideration is required when an
attribute has different parents in the query tree to be added and the
partial correlation tree respectively. To illustrate this, let us

consider the partial correlation tree after query tree for query Q23
has been added (refer Figure 2). On attempting to add query tree
for Q17, it is found that attribute A11 has attribute A19 as parent in
the query tree but attribute A1 as parent in the partial correlation
tree. We thus need to decide which attribute should be parent of
A11 in the new correlation tree. We choose the attribute with
which A11 has higher correlation. This is done because in the
second stage of the methodology, the attributes would be allocated
grid cells such that they are stored closer to their parent attribute.
Also since every child attribute is stored near its parent, the
sibling attributes also end up being stored fairly close to each
other in the grid. Thus we make the other parent as a sibling of the
attribute as shown in Figure 3.

12

19

184 311 7 15

618 5

10 13

16

.0
00

1

.0001
.00

01

.0
00

5

.0001

.0
00

1.0007
.0007

.0007

.0002

.0007

Figure 3. Partial Correlation after adding query Q17

A triplet of values (.0005,1,11) called the virtual weight is
assigned to both attributes A1 and A11 to signify the correlation
that attribute A11 has with attribute A1 even though they do not
share a parent-child relationship in the tree. Also note that
attribute A11 could be made a child of attribute A19 because
P(A11)<P(A19). If A19 had a higher individual probability, then the
position of A11 in the tree had to be adjusted using usual heap
creation algorithm. If any edge has to be deleted in the process, a
cost-benefit analysis is performed to ensure that the benefit > cost,
where cost and benefit are defined as follows,
Cost = Sum of effective weights of deleted edges

Benefit = Sum of effective weights of new edges

where effective weight ()jiT AAw ,′ of an edge ()ji AA , is,

()jiT AAw ,′ = wT(Ai,Aj) + Σ{virtual weights of Aj}

and value of a virtual weight (v,Ay,Az) is,

(v,Ay,Az) = v if Ay and Az are siblings

 = 0 otherwise

19

15 16 17 2

11 8 7 4 12 20 6

141531091813

.00
1

.00
11

.2
19

.0
01

5 .2155

.2179

.1944 .0136

.1302
.1425

.0246

.1425

.0246.0117

.2833.2833

.284

.

Figure 4. Correlation Tree

30

The final correlation tree for the set of queries in Table 1 is shown
in Figure 4. The virtual weights have not been shown to ensure
clarity of the figure.

4.2 Phase 2: Allocating Attributes
Once the correlation tree has been constructed, it can be used to
determine the distribution of attributes to the grid such that more
frequently accessed attributes are closer to the sink and the
attributes with higher correlations are stored closer to each other.
In this paper, we assume that the sink can be in any random
location of the network. Hence more frequently accessed
attributes are stored as close to the centre of the grid since the
centre is the position that is most easily accessible from any
random position in the rectangular region. The attribute having the
maximum access probability is allocated to the central-most grid
cell. Then attributes are chosen iteratively in descending order of
their access probabilities and grid cells for storing are determined
using the correlation tree. If the attribute does not have a parent in
the correlation tree, it is allocated the grid cell nearest to the
centre. However there may be multiple available grid cells at the
same distance from the centre. In that case, the optimal grid cell is
the one for which adjacent already-allocated attributes have the
least number of unassigned children. The justification for
choosing such a cell is that, if a cell C is surrounded with
attributes that have more number of unassigned children
attributes, then it would be preferable to leave C for those
unassigned children attributes when other options are available.
Now let us consider the case where the correlation that an
attribute has with its parent is the same as its own access
probability. This implies that any query that accesses it also
accesses its parent. In that case, the attribute should be stored
close to its parent. However there may be more than one cell at
the same distance from its parent. In this case, the optimal grid
cell is the one farthest from the centre. The justification is that the
available cells near the centre are left for attributes that need to be
stored close to the centre. Finally we consider the case where the
attribute has correlations with multiple attributes. In such a
situation we try to allocate the attribute to an available grid cell,
such that distance of the grid from the attribute with which it has
correlation is inversely proportional to its correlation value.

A10 A3 A5 A11

A18 A8 A18 A7 A9

A13 A2 A19 A16 A1

A12 A17 A20 A6

A4A14

Figure 5. Allocation of attributes to grid

Figure 5 shows the allocation of attributes to the grid with the
assistance of the correlation tree of Figure 4. Note that attribute
A19 has highest individual probability and hence is in the centre.
Attributes A15, A17, A2 and A16 are then selected in descending
order of probabilities and stored near A19. Attribute A7 is then
stored near its parent A16 while A5 is stored near its parent A7 and

so on. Also note that query Q7 that has the highest priority has
also its attributes A2, A15, A17 and A19 stored near the centre
adjacent to each other. Also note that some of the grid cells are
empty since the number of attributes in our example query set
(Table 1) is less than the number of grid cells. These empty
unassigned grid cells can be used later for fault tolerance and load
balancing. The simulation results demonstrating the enhanced
performance of our scheme are given in the next section.

5. SIMULATION RESULTS
We have implemented our proposed scheme and conducted our
simulations using Simjava [12], a general discrete event simulator.
To compare the performance of our proposed scheme, we choose
the aggregation algorithm TAG [4] in which the sensor nodes
form a spanning tree in a distributed manner. The parameters used
in our study are summarized in Table 3. We have assumed that the
communication between nodes of a grid cell and their respective
control nodes, the sink and the control nodes, as well as nodes in
different levels of the aggregation tree pack available data in the
fewest possible packets. We assume that the sink is at the centre
of the network. To evaluate the best case performance of our
proposed scheme, we assume that the attribute queried is stored in
the central grid cell (i.e. nearest to the sink). To measure the worst
case performance, we consider the situation when the sink (which
is at the centre of the region) queries an attribute that is stored in a
grid cell further away from the centre of the network. We use
energy consumption as the metric to compare our proposed
scheme with the aggregation tree algorithm of TAG. To measure
energy consumption for both the schemes, we assume that only
those readings greater than the hard threshold are reported to the
sink. Further for our proposed scheme we assume that the update
messages are sent only when the ‘soft’ threshold is breached. We
have conducted experiments for computing energy consumption
against querying rate and attribute fluctuation frequency as
described in the following sections.

Table 3. Simulation Parameters
Total number of nodes 1030
Dimensions of the deployed area 630 × 630 meters
Transmission radius of a node 40 meters
Data packet size 30 bytes
Channel bandwidth 20 kbps
Transmission power 0.81 mW
Reception power 0.3 mW
Number of subregions 49
Length of each subregion 90 meters
Hard threshold 22
Soft Threshold 0.6
Probability of fluctuation 0.3
Magnitude of change ± 1.8

5.1 Test # 1: Varying the query rate
We first keep the rate of attribute fluctuations as constant and vary
the query dissemination rate. Figure 6(a) shows results for the best
case scenario where the attribute stored at the central grid cell
(CR) is accessed by a periodic query. We observe that our scheme
shows marginal performance degradation at lower query rates but
as the number of queries injected per unit time increases, our
scheme performs significantly better than the aggregation tree
(AT) algorithm. We reason this as follows. The cost of flooding
the query down to the leaf level of the AT and then retrieving the
information requires O(n) transmissions. On the other hand, in our

31

4 12 20 28 36
0

5

10

15

20

25

30

35

40

45

50

Queries/Simulation time

E
ne

rg
y

C
os

t (
m

J)
Proposed Scheme
AT

4 12 20 28 36

0

5

10

15

20

25

30

35

40

45

50

Queries/Simulation time

E
ne

rg
y

C
os

t (
m

J)

Proposed Scheme
AT

Figure 6(a). Varying Query rate (Best Case) Figure 6(b). Varying Query Rate (Attribute far from sink)

proposed scheme (and more so for our considered topology), this
is accomplished in a single transmission between the control
node in the CR and the sink. Thus we reason that that the
querying cost is minimized in this configuration. There is
however, a constant overhead of updating the storage region
based on the nodes which show a variation in the sensed
attribute. We note that the AT is preferred when the rate of query
injection is less. From figure 6(a), we see that when the query
rate is at about 8 queries/simulation time, both the schemes show
equal performance for the best case scenario. Figure 6(b) shows
results for the scenario where the attribute stored at a grid cell far
from the sink is accessed by a periodic query. Here the break-
even point is reached when the rate of query is 22
queries/simulation time, after which our scheme performs much
better than AT.

5.2 Test # 2: Varying the fluctuation rate
 In this experiment (Figures 7(a) and 7(b)), we vary the rate of
attribute value fluctuations while keeping a steady query rate of
20 queries/simulation time. We observe that with an increase in
the number of fluctuations per unit time, the proposed scheme is
no longer preferable to the AT scheme beyond the break-even
point. The AT performs at a steady energy cost as nodes do not
report until a query message is disseminated. The minor increase
in energy cost of AT happens because, with increasing rate of
fluctuations, more number of nodes have values greater than the
hard threshold and hence send reports back to the sink. On the
other hand, the rapid fluctuations result in steady increase in the
number of update messages sent from the node detecting

fluctuation to the control node of its own cell as well as the
aggregated update messages sent to the control node of the grid
cell where the attribute is stored. Even then, in the best case
scenario (Figure 7(a)), our scheme performs better than AT till a
considerable value of 34 fluctuations /simulation time is reached.
In the worst case scenario (Figure 7(b)), this point is reached at
10 fluctuations /simulation time. The energy consumed by the
AT is seen to be almost constant at 23-30 mJ, independent of the
frequency of fluctuations.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a scheme for determining a
distribution of attributes to a large-scale sensor network based
on the correlations between them. Our scheme obviates the
need for queries to be flooded in the network and minimizes
the average user response time. Moreover our proposed scheme
minimizes both the query access cost and the query evaluation
cost. In addition to these benefits, having all values of an
attribute at one place provides helpful global context for
evaluating local data. For example, the sensed temperature
values could be compared against the average temperature
value of the network to detect fires or other local temperature
spikes. Also, having user-defined parameters like soft threshold
and update epoch allows the user to tune the performance of
the system as per his requirements. The proposed scheme
works well as long as the overhead of sending update messages
does not supersede the advantage of minimizing the query cost.
Since most real-life physical phenomena are localized, the
fluctuations can be considered to be mostly local and not too

4 12 20 28 36
0

5

10

15

20

25

30

35

Fluctuations/Simulation time

E
ne

rg
y

C
os

t (
m

J)

Proposed Scheme
AT

4 12 20 28 36

0

5

10

15

20

25

30

35

40

45

50

Fluctuations/Simulation time

E
ne

rg
y

C
os

t (
m

J)

Proposed Scheme
AT

Figure 7(a). Varying Fluctuation rate (Best Case) Figure 7(b). Varying Fluctuation Rate (Attribute far from sink)

32

many. Consequently the proposed scheme should perform well
in most real-life situations.

As part of future work, we plan to develop detailed protocols for
query dissemination, data updating and retrieval. We also need to
ensure that these protocols are fault-tolerant and perform load
balancing.

7. REFERENCES
[1]. Govindan, R., Hellerstein, J. M., Hong, W., Madden, S.,

Franklin, M. and Shenker, S. The Sensor Network as a
Database. Technical Report 02-771, USC Computer
Science Department, 2002.

[2]. Greenstein, B., Estrin, D., Govindan, R., Ratnasamy, S. and
Shenker, S. DIFS: A Distributed Index for Features in
Sensor Networks. In Proceedings of the First IEEE
International Workshop on Sensor Network Protocols and
Applications. May 2003, 163-173.

[3]. Intanagonwiwat, C., Govindan, R. and Estrin, D. Directed
Diffusion: A Scalable and Robust Communication
Paradigm for Sensor Networks. In Proceedings of the Sixth
Annual ACM/IEEE International Conference on Mobile
Computing and Networking (Mobicom 2000). Boston,
Massachusetts, August 2000.

[4]. Madden, S., Franklin, M. J., Hellerstein, J. M. and Hong,
W. TAG: a Tiny AGregation Service for Ad-Hoc Sensor
Networks. In Proceedings of the 5th Annual Symposium on
Operating Systems Design and Implementation (OSDI).
Boston, MA, December 2002.

[5]. Li, X., Kim, Y. J., Govindan, R. and Hong, W. Multi-
Dimensional Range Queries in Sensor Networks. In
Proceedings of the 1st International Conference on
Embedded Networked Sensor Systems. Nov. 2003.

[6]. Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D.,
Govindan, R. and Shenker, S. GHT: A Geographic Hash
Table for Data-Centric Storage. In Proceedings of the First
ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA 2002). Atlanta, GA, September,
2002.

[7]. Shenker, S., Ratnasamy, S., Karp, B., Govindan, R. and
Estrin, D. Data-centric Storage in Sensornets. ACM
SIGCOMM Computer Communication Review, Volume 33
Issue 1, January 2003.

[8]. Kumar, R., Tsiatsis, V. and Srivastava, M. B. Computation
Hierarchy for In-network Processing. In Proceedings of 2nd
ACM International Conference on Wireless Sensor Networks
and Applications. San Diego, CA, September 2003.

[9]. Karp, B. and Kung, H.T. GPSR: Greedy Perimeter Stateless
Routing for Wireless Networks. In Proceedings of Sixth
Annual ACM/IEEE International Conference on Mobile
Computing and Networking (MOBICOM). Boston,
Massachusetts, August 2000.

[10]. Doherty, L., Pister, K. S. J. and Ghaoui, L. E. Convex
Position Estimation in Wireless Sensor Networks. In
Proceedings of the IEEE Infocom.. Alaska, April 2001,
1655–1663.

[11]. HighTower, J. and Borreillo, G. Location systems for
Ubiquitous Computing. IEEE Computer, Vol. 34 (Aug
2001), 57-66.

[12]. Howell, F. and McNab, R. Simjava: A Discrete Event
Simulation Package for Java with Applications in Computer
Systems Modelling. In Proceedings of the First
International Conference on Web-based Modelling and
Simulation. Society for Computer Simulation, San Diego,
CA, Jan 1998.

33

