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ABSTRACT 
Wireless sensor network is an emerging technology that enables 
remote monitoring of large geographical regions. In this paper, 
we address the problem of distributing attributes over such a 
large-scale sensor network so that the cost of data retrieval is 
minimized. The proposed scheme is a data-centric storage 
scheme where the attributes are distributed over the network 
depending on the correlations between them. The problem 
addressed here is similar to the Allocation Problem of distributed 
databases. In this paper, we have defined the Allocation Problem 
in the context of sensor networks and have proposed a scheme for 
finding a good distribution of attributes to the sensor network. 
We also propose an architecture for query processing given such 
a distribution of attributes. Finally, we present simulations results 
to illustrate the conditions under which our proposed architecture 
is beneficial. To the best of our knowledge, this is the first 
attempt to study the attribute allocation problem of distributed 
databases in the context of sensor networks. 

Categories and Subject Descriptors 
C.2.1 [Computer Communication Networks]: 
Network Architecture and Design; C.3 
[Computer Systems Organization]: Special 
Purpose and Application-based Systems. 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Allocation problem, Data-centric storage, Query dissemination, 
Data retrieval, Aggregation, In-network processing, Minimum 
spanning tree, Correlation tree, Hard threshold, Soft threshold.  

1. INTRODUCTION 
A wireless sensor network is a dense network of a large number of 
low cost miniature wireless sensor nodes driven by a limited 
battery resource. At the node level, data communication is the 

dominant component of energy consumption, and hence protocol 
design for sensor networks is geared towards reducing 
communication in the network. In this paper, we have designed a 
scheme for determining a distribution of attributes in a sensor 
network that minimizes the communication cost involved in 
querying the network. 

Sensor networks are revolutionizing remote monitoring 
applications because of their ease of deployment, ad hoc 
connectivity and cost effectiveness. Such networks might be 
expected to serve multiple applications simultaneously. For 
example, given a geographical area, the user might want to deploy 
a sensor network that assists in ecosystem monitoring, weather 
monitoring, precision agriculture etc. For each application the user 
would want the network to sense specific physical attributes (e.g. 
humidity, temperature, light etc. for weather monitoring 
application; temperature, light, presence of chemicals etc. for 
precision agriculture application and so on.) and consequently 
would expect the sensor network to respond to some user-defined 
queries. Since such large-scale sensor networks would be 
expected to serve a substantial number of queries simultaneously 
for several applications, the number of attributes sensed by the 
network would also be substantial. The proposed scheme is 
designed for minimizing cost of data retrieval from large-scale 
sensor networks serving such real-life scenarios. 

The paper is organized as follows. Section 2 lists some related 
research in the area of data storage in sensor networks. Section 3 
defines the problem that this paper addresses and gives an outline 
of how such a distribution of attributes can be used to facilitate 
query processing in sensor networks. The methodology for 
determining a good distribution of attributes is presented in 
Section 4. The simulation results are discussed in Section 5, while 
Section 6 concludes the paper with future research agenda. 

2. RELATED WORK 
There have been different approaches for storing data in sensor 
networks. Earlier sensor network systems stored sensor data 
externally at a remote base station (External Storage) or locally at 
the nodes which generated them (Local Storage). Recently there 
has been a paradigm shift so that a technique called “data-centric 
storage” now allows events to be stored at specific rendezvous 
points within the network that queries can access directly. Shenker 
et al. [7] proposed the DCS scheme and have shown that DCS 
outperforms other approaches such as External Storage (ES) and 
Local Storage (LS) under certain circumstances. Ratnasamy et al. 
[6] have also proposed a Geographic Hash Table (GHT) to hash 
events into geographic coordinates. In DIFS [2], Greenstein et al. 
have designed a spatially distributed index to facilitate range 
searches over attributes, while Li et al. [5], have built a distributed 
index (DIM) for multidimensional range queries of attributes.  
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In this paper, we also propose a data-centric storage scheme for 
distributing attributes over a sensor network depending on the 
correlations between attributes and hence translate the allocation 
problem of distributed databases to the context of sensor 
networks. The proposed approach differs from the existing data-
centric approaches [2][5][6] in that it attempts to distribute 
attributes instead of specific user-defined events. We reason as 
follows. If an attribute is included in many events, then the values 
for that attribute have to be replicated and stored at different 
places in the network for each individual event. In our proposed 
approach, the attribute need not be replicated at multiple places 
and hence saves communication cost involved in storing and 
replicating data. Instead every attribute is stored at a predefined 
location within the network such that attributes that are a part of 
the same query are stored near each other to facilitate data 
retrieval. Thus it is similar to the Allocation Problem of 
distributed databases where a set of attributes need to be 
distributed over a number of sites such that in serving a 
predefined set of queries the communication between sites is 
minimized. In a similar manner, in this paper we present a scheme 
for storing attributes in the sensor network such that the 
communication involved in serving a predefined set of user 
queries can be minimized. 

3. DISTRIBUTED ATTRIBUTE STORAGE 
Sensor networks can be envisioned as a large distributed database 
where the sensor nodes generate named data against user-
specified queries [1]. In this section we define the Allocation 
Problem of distributed databases in the context of sensor networks 
and illustrate how our proposed approach assists in query 
processing.  

3.1 Problem Definition 
Assume that there are a set of sensed attributes A = {A1, A2, …, 
Am} and a network S of sensor nodes which have to serve a set of 
queries Q = {Q1, Q2, …,Qq}. We attempt to find a distribution of A 
to S such that the energy consumed in serving the set of queries Q 
is minimized. This is similar to the Allocation Problem of 
distributed databases which can be stated as “Given a relation R 
(i.e. a set of attributes), a set of queries Q, and a set of sites S 
where queries in Q run, the allocation problem involves finding 
the optimal distribution of R to S that minimize the cost of 
evaluating Q”. For databases, the Allocation Problem involves 
finding disjoint fragments (group of attributes which are accessed 
together) that are distributed in independent sites. On the other 
hand, for sensor networks all the attributes are distributed over the 
same two-dimensional geographical area, such that the 
communication involved in dissemination of query and retrieval 
of data for the set of queries Q is minimized.  

As in case of distributed databases, some statistics about query 
runs (e.g. query access frequency, attribute affinity) are required 
to solve the allocation problem. We thus assume that a set of 
priorities { }qppp ,,, 21 Κ  for the queries { }qQQQ ,,, 21 Κ  is given. 

The priority pi of a query Qi could depict either the probability 
with which query Qi is issued per unit time or the frequency of 
tuples generated for query Qi per unit time or a combination of 
both. These values may be set by the system designer to specify 
the relative priorities of queries and are normalized such 
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nodes are uniformly deployed over a rectangular region. We thus 
intend to distribute the m attributes over this rectangular field of 
sensor nodes so that the cost querying the network is minimized. 
To do so, we split the rectangular area into a grid G of size 
   mm ×  and each attribute Ai is allocated to a particular grid 
cell. Let GAf →:  be the mapping corresponding to the optimal 
distribution. In order to minimize the total cost of serving the set 
of queries Q, the mapping f should minimize the communication 
involved in disseminating the query and aggregating the resultant 
tuples for each query. To minimize the cost involved in evaluating 
a query (i.e. aggregating resultant tuples), the attributes belonging 
to the same query should be stored near each other in the grid. 
Also to minimize the communication involved in disseminating 
the query from the sink and reporting the results back to the sink, 
the attributes should be stored as close to the sink as possible. We 
thus need to determine a good distribution f for a given set of 
queries and this distribution f should be made available to all the 
nodes in the network so that every node is aware as to where 
every attribute is stored in the network. The method of 
determining the function f is explained in Section 4. Since the 
proposed method for computing function f is topology 
independent, each sensor node may compute f independently. 
However to reduce the overhead involved in performing the same 
redundant computation all over the network, the function f may be 
computed at the sink and then sent to all the nodes in the network. 
For now, we assume that such a function f is available to all the 
nodes in network and analyze how it facilitates query processing 
in a large sensor network. 

3.2 Query Processing  
As mentioned in Section 3.1, the entire network is divided into a 
   mm ×  grid. We assume that each sensor node is location-
aware [10][11] and hence can determine which grid-cell it belongs 
to. The number of sensor nodes in each grid cell depends on the 
density and distribution of nodes in the sensor network. Given a 
distribution function f (as computed in Section 4), each attribute 
Ak is then assigned a grid cell f(Ak) of the network. The grid cell 
f(Ak) is responsible for storing values of the attribute Ak. Thus 
even though the attribute Ak is sensed all over the network 
(assuming complete sensing coverage), the values of the attribute 
are stored in the grid cell f(Ak) and every node in the network 
knows in which grid cell each attribute is stored.  

Let us now consider the attribute Ak and the grid cell f(Ak) where it 
should be stored. Only some of the nodes in the grid cell f(Ak) 
actually store the values for the attribute Ak. These nodes are 
called the storage nodes for Ak. The number of such nodes 
required for an attribute Ak depends on the amount of data values 
corresponding to attribute Ak as also the storage capacity of each 
sensor node. To facilitate data retrieval from these storage nodes, 
one node in every grid cell is appointed as the control node. The 
control node is responsible for fetching data from the storage 
nodes using specialized indexes that it maintains. To disseminate 
a query Qi, the sink node first determines the nearest grid cell 
housing any of the attributes in the query and sends the query to 
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that grid cell. On receiving the query, the control node of the 
corresponding grid cell then uses its stored indexes to retrieve the 
required values of the stored attribute from the respective storage 
nodes. It then computes the optimal route of disseminating the 
query to the grid cells storing the remaining attributes of the 
query. The optimal route for retrieving the remaining attributes 
belonging to Qi would essentially be the minimum spanning tree 
joining the grid cells that store the attributes in Qi. The complexity 
involved in calculating this route is minimal (any minimum 
spanning tree algorithm may be used) since a query will not 
contain a large number of attributes. The computed route is then 
used for routing the query as well as routing the resultant data 
tuples back to the sink. While routing the data back to the sink, 
the control nodes of the grid cells housing the respective attributes 
use aggregation schemes [3][4] and in-network processing 
mechanisms [8] to further minimize the amount of data transfer in 
the network. 

The efficiency in query processing and information retrieval using 
such an underlying architecture is achieved at the cost of 
maintaining updated values of all attributes in the respective grid 
cells where they are stored. To reduce the overhead involved in 
this maintenance a soft threshold scheme may be used. Whenever 
a sensor node senses an attribute, it determines whether the 
difference between the previously sensed value and the new value 
is more than a predefined soft threshold. If the difference is 
greater than the soft threshold, the new value needs to be reported 
to the grid cell housing the corresponding attribute. However 
instead of sending update messages for every individual node 
fluctuation, the sensor node first sends an update message to the 
control node of its own grid cell. The control node then waits for a 
predefined time interval called the update epoch Tk for the sensed 
attribute Ak. All the update messages for the attribute Ak that the 
control node receives from nodes in its own grid cell during the 
epoch Tk are then combined into aggregate update message(s) and 
sent to the grid cell f(Ak) housing Ak. Increasing the soft threshold 
and the update epoch reduces the frequency with which the 
attributes are updated. Reducing the number the update messages 
in turn reduces the communication overhead involved in 
maintaining the updated values of the attributes in the grid cells 
where they are housed. However increasing the soft threshold and 
update epoch also reduces the probability of the grid cell f(Ak) 
having updated values of Ak as sensed in the network. This in turn 
reduces the probability that queries accessing Ak would receive the 
current values for Ak as sensed by the network which might be a 
serious problem for critical data. Thus depending on how critical 
an attribute is, a suitable soft threshold and update epoch may be 
chosen to reduce the update overhead.  

This section described how queries can be processed once the 
attributes are stored in the network in a distributed manner. All the 
underlying routing of query and data messages can be done using 
geographical routing schemes like GPSR [9]. In the next section 
we present a heuristic for obtaining a good distribution of 
attributes over a sensor network given a set of queries along with 
their associated priorities.  

4. ATTRIBUTE ALLOCATION 
METHODOLOGY 

Having discussed the benefits of distributing attributes over a 
sensor network and how it assists in efficient query processing, 
we now focus on the methodology for determining a good 

distribution of attributes such that the total cost of serving a set of 
user-defined queries is minimized. The methodology has two 
phases. In the first phase, the query priorities are used to 
determine correlations between each pair of attributes. In the 
second phase the correlations are used to determine the 
distribution of attributes to the rectangular sensor network. To 
illustrate the proposed methodology, let us consider an example 
set of queries as listed in Table 1.  

Table 1. List of Queries in ascending order of priorities 
Qi Pi Ai Qi Pi Ai 
Q30 .0001 A6 Q10 .0044 A20 
Q29 .0001 A12,A19 Q6 .0052 A7 
Q24 .0001 A10,A16 Q8 .0063 A5,A8,A11 
Q27 .0001 A12,A18 Q22 .0117 A1,A6,A11,A16 

Q18 .0001 A4,A8,A12, 
A19 

Q26 .0136 A14,A20,A6 

Q12 .0001 A13,A16 Q14 .0161 A3,A7 
Q23 .0005 A1,A6,A11 Q4 .0185 A5,A7,A9 
Q15 .0005 A11 Q16 .0189 A15 

Q17 .0007 A19,A3,A7, 
A11,A15 

Q2 .0246 A8,A16,A4, 
A12,A20 

Q28 .0007 A5 Q13 .0510 A19 
Q21 .0008 A16 Q25 .1017 A8 
Q20 .0010 A8,A13 Q19 .1179 A16,A20,A4 

Q3 .0011 A9,A18,A7, 
A20 

Q5 .1185 A6,A16 

Q11 .0015 A4,A7,A10 Q1 .1994 A1,A3,A5, 
A7,A9 

Q9 .0015 A14,A17 Q7 .2833 A2,A15,A17, 
A19 

4.1 Phase 1: Determining correlations 
Query priorities can be used to determine correlations between 
attributes. If a pair of attributes is a part of a high priority query, 
then we consider the attributes to have a high correlation between 
them since they would be accessed together very frequently. 
Similarly, if a pair of attributes is never accessed together in the 
same query, the attributes may be considered to not have any 
correlation between them. The distribution function should then 
store attributes with higher correlations closer to each other. The 
correlations between all the attributes can be represented by a tree 
of attributes where the edge weights between a pair of attributes 
represent the correlation between them. Using this data structure 
and its represented correlations, the distribution of attributes can 
be determined. Also attributes that are accessed more frequently 
should be stored closer to the sink. The individual access 
probability P(Ai) of an attribute Ai can be computed as follows: 

( ) ( ) ( )∑
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Table 2 gives the individual access probabilities for the attributes 
involved in the queries listed in Table 1. To represent the relative  
ordering of attributes with respect to their individual access 
probabilities of attributes, we can further represent the attributes 
in the form of a heap so that if attribute Ai is parent of Aj, then 

( ) )( ji APAP ≥
. We call this heap-like data structure the 

correlation tree and it gives a synoptic view of all the correlations 
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between attributes as also the relative ordering of attributes with 
respect to their individual access probabilities and thereby assists 
in determining a good distribution function f.  

 
Table 2. List of Attributes and their access probabilities 

Ai Pi Ai Pi Ai Pi 

A1 .2116 A8 .1337 A15 .3029 

A2 .2833 A9 .2190 A16 .2737 

A3 .2162 A10 .0016 A17 .2848 

A4 .1441 A11 .0197 A18 .0012 

A5 .2249 A12 .0249 A19 .3352 

A6 .1444 A13 .0011 A20 .1616 

A7 .2425 A14 .0151   
 

To create a correlation tree for a given set of queries, we begin by 
representing each query as a tree of depth 1 and then combine 
these individual query trees to form a comprehensive correlation 
tree. Figure 1 shows the query tree corresponding to query Q7 
listed in Table 1. Since the correlation tree should have a heap-
like structure, the attribute in the query having the maximum 
access probability is made the root of the corresponding query tree 
(refer to access probabilities listed in Table 2). Hence attribute A19 
becomes the root for query tree for Q7. Also as mentioned before, 
the edge weights depict the correlation between the attributes 
joined by the edge. For the initial query tree, the edge weights are 
simply the query priorities. Such a query tree is created for every 
given query. These query trees then need to be combined to form 
the final correlation tree. This is done iteratively by selecting 
query trees in ascending order of their associated query priorities.  
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Figure 1. Query Tree for query Q7 
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Figure 2. Partial Correlation after adding query Q23 

We illustrate the process using the set of queries listed in Table 1. 
For our example, first the query tree corresponding to Q30 is 
selected and set to be the initial partial correlation tree. Next the 
query tree corresponding to query Q29 is combined with the partial 
correlation tree. The process of combining query trees continues 
using usual tree union algorithms, reinforcing edge weights as 
required. However special consideration is required when an 
attribute has different parents in the query tree to be added and the 
partial correlation tree respectively. To illustrate this, let us 

consider the partial correlation tree after query tree for query Q23 
has been added (refer Figure 2). On attempting to add query tree 
for Q17, it is found that attribute A11 has attribute A19 as parent in 
the query tree but attribute A1 as parent in the partial correlation 
tree. We thus need to decide which attribute should be parent of 
A11 in the new correlation tree. We choose the attribute with 
which A11 has higher correlation. This is done because in the 
second stage of the methodology, the attributes would be allocated 
grid cells such that they are stored closer to their parent attribute. 
Also since every child attribute is stored near its parent, the 
sibling attributes also end up being stored fairly close to each 
other in the grid. Thus we make the other parent as a sibling of the 
attribute as shown in Figure 3. 
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Figure 3. Partial Correlation after adding query Q17 

A triplet of values (.0005,1,11) called the virtual weight is 
assigned to both attributes A1 and A11 to signify the correlation 
that attribute A11 has with attribute A1 even though they do not 
share a parent-child relationship in the tree. Also note that 
attribute A11 could be made a child of attribute A19 because 
P(A11)<P(A19). If A19 had a higher individual probability, then the 
position of A11 in the tree had to be adjusted using usual heap 
creation algorithm. If any edge has to be deleted in the process, a 
cost-benefit analysis is performed to ensure that the benefit > cost, 
where cost and benefit are defined as follows, 
Cost = Sum of effective weights of deleted edges        

Benefit = Sum of effective weights of new edges        

where effective weight ( )jiT AAw ,′  of an edge ( )ji AA ,  is,  

( )jiT AAw ,′  = wT(Ai,Aj) + Σ{virtual weights of Aj}        

and value of a virtual weight (v,Ay,Az) is, 

(v,Ay,Az) = v if Ay and Az are siblings 

              = 0 otherwise                                                  
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Figure 4. Correlation Tree 
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The final correlation tree for the set of queries in Table 1 is shown 
in Figure 4. The virtual weights have not been shown to ensure 
clarity of the figure. 

4.2 Phase 2: Allocating Attributes 
Once the correlation tree has been constructed, it can be used to 
determine the distribution of attributes to the grid such that more 
frequently accessed attributes are closer to the sink and the 
attributes with higher correlations are stored closer to each other. 
In this paper, we assume that the sink can be in any random 
location of the network. Hence more frequently accessed 
attributes are stored as close to the centre of the grid since the 
centre is the position that is most easily accessible from any 
random position in the rectangular region. The attribute having the 
maximum access probability is allocated to the central-most grid 
cell. Then attributes are chosen iteratively in descending order of 
their access probabilities and grid cells for storing are determined 
using the correlation tree. If the attribute does not have a parent in 
the correlation tree, it is allocated the grid cell nearest to the 
centre. However there may be multiple available grid cells at the 
same distance from the centre. In that case, the optimal grid cell is 
the one for which adjacent already-allocated attributes have the 
least number of unassigned children. The justification for 
choosing such a cell is that, if a cell C is surrounded with 
attributes that have more number of unassigned children 
attributes, then it would be preferable to leave C for those 
unassigned children attributes when other options are available. 
Now let us consider the case where the correlation that an 
attribute has with its parent is the same as its own access 
probability. This implies that any query that accesses it also 
accesses its parent. In that case, the attribute should be stored 
close to its parent. However there may be more than one cell at 
the same distance from its parent. In this case, the optimal grid 
cell is the one farthest from the centre. The justification is that the 
available cells near the centre are left for attributes that need to be 
stored close to the centre. Finally we consider the case where the 
attribute has correlations with multiple attributes. In such a 
situation we try to allocate the attribute to an available grid cell, 
such that distance of the grid from the attribute with which it has 
correlation is inversely proportional to its correlation value.  

A10 A3 A5 A11

A18 A8 A18 A7 A9

A13 A2 A19 A16 A1

A12 A17 A20 A6

A4A14
 

Figure 5. Allocation of attributes to grid 
 
Figure 5 shows the allocation of attributes to the grid with the 
assistance of the correlation tree of Figure 4. Note that attribute 
A19 has highest individual probability and hence is in the centre. 
Attributes A15, A17, A2 and A16 are then selected in descending 
order of probabilities and stored near A19. Attribute A7 is then 
stored near its parent A16 while A5 is stored near its parent A7 and 

so on. Also note that query Q7 that has the highest priority has 
also its attributes A2, A15, A17 and A19 stored near the centre 
adjacent to each other. Also note that some of the grid cells are 
empty since the number of attributes in our example query set 
(Table 1) is less than the number of grid cells. These empty 
unassigned grid cells can be used later for fault tolerance and load 
balancing. The simulation results demonstrating the enhanced 
performance of our scheme are given in the next section. 

5. SIMULATION RESULTS 
We have implemented our proposed scheme and conducted our 
simulations using Simjava [12], a general discrete event simulator. 
To compare the performance of our proposed scheme, we choose 
the aggregation algorithm TAG [4] in which the sensor nodes 
form a spanning tree in a distributed manner. The parameters used 
in our study are summarized in Table 3. We have assumed that the 
communication between nodes of a grid cell and their respective 
control nodes, the sink and the control nodes, as well as nodes in 
different levels of the aggregation tree pack available data in the 
fewest possible packets. We assume that the sink is at the centre 
of the network. To evaluate the best case performance of our 
proposed scheme, we assume that the attribute queried is stored in 
the central grid cell (i.e. nearest to the sink). To measure the worst 
case performance, we consider the situation when the sink (which 
is at the centre of the region) queries an attribute that is stored in a 
grid cell further away from the centre of the network. We use 
energy consumption as the metric to compare our proposed 
scheme with the aggregation tree algorithm of TAG. To measure 
energy consumption for both the schemes, we assume that only 
those readings greater than the hard threshold are reported to the 
sink. Further for our proposed scheme we assume that the update 
messages are sent only when the ‘soft’ threshold is breached. We 
have conducted experiments for computing energy consumption 
against querying rate and attribute fluctuation frequency as 
described in the following sections.  

Table 3. Simulation Parameters 
Total number of nodes 1030 
Dimensions of the deployed area 630 × 630 meters 
Transmission radius of a node 40 meters 
Data packet size 30 bytes 
Channel bandwidth 20 kbps 
Transmission power 0.81 mW 
Reception power 0.3 mW 
Number of subregions 49 
Length of each subregion 90 meters 
Hard threshold 22 
Soft Threshold 0.6 
Probability of fluctuation 0.3 
Magnitude of change ± 1.8 

5.1 Test # 1:  Varying the query rate  
We first keep the rate of attribute fluctuations as constant and vary 
the query dissemination rate. Figure 6(a) shows results for the best 
case scenario where the attribute stored at the central grid cell 
(CR) is accessed by a periodic query. We observe that our scheme 
shows marginal performance degradation at lower query rates but 
as the number of queries injected per unit time increases, our 
scheme performs significantly better than the aggregation tree 
(AT) algorithm. We reason this as follows. The cost of flooding 
the query down to the leaf level of the AT and then retrieving the 
information requires O(n) transmissions. On the other hand, in our 
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Figure 6(a). Varying Query rate (Best Case) Figure 6(b). Varying Query Rate (Attribute far from sink) 

proposed scheme (and more so for our considered topology), this 
is accomplished in a single transmission between the control 
node in the CR and the sink. Thus we reason that that the 
querying cost is minimized in this configuration. There is 
however, a constant overhead of updating the storage region 
based on the nodes which show a variation in the sensed 
attribute. We note that the AT is preferred when the rate of query 
injection is less. From figure 6(a), we see that when the query 
rate is at about 8 queries/simulation time, both the schemes show 
equal performance for the best case scenario. Figure 6(b) shows 
results for the scenario where the attribute stored at a grid cell far 
from the sink is accessed by a periodic query. Here the break-
even point is reached when the rate of query is 22 
queries/simulation time, after which our scheme performs much 
better than AT. 

5.2 Test # 2: Varying the fluctuation rate 
 In this experiment (Figures 7(a) and 7(b)), we vary the rate of 
attribute value fluctuations while keeping a steady query rate of 
20 queries/simulation time. We observe that with an increase in 
the number of fluctuations per unit time, the proposed scheme is 
no longer preferable to the AT scheme beyond the break-even 
point. The AT performs at a steady energy cost as nodes do not 
report until a query message is disseminated. The minor increase 
in energy cost of AT happens because, with increasing rate of 
fluctuations, more number of nodes have values greater than the 
hard threshold and hence send reports back to the sink. On the 
other hand, the rapid fluctuations result in steady increase in the 
number of update messages sent from the node detecting 

fluctuation to the control node of its own cell as well as the 
aggregated update messages sent to the control node of the grid 
cell where the attribute is stored. Even then, in the best case 
scenario (Figure 7(a)), our scheme performs better than AT till a 
considerable value of 34 fluctuations /simulation time is reached. 
In the worst case scenario (Figure 7(b)), this point is reached at 
10 fluctuations /simulation time. The energy consumed by the 
AT is seen to be almost constant at 23-30 mJ, independent of the 
frequency of fluctuations. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we have proposed a scheme for determining a 
distribution of attributes to a large-scale sensor network based 
on the correlations between them. Our scheme obviates the 
need for queries to be flooded in the network and minimizes 
the average user response time. Moreover our proposed scheme 
minimizes both the query access cost and the query evaluation 
cost. In addition to these benefits, having all values of an 
attribute at one place provides helpful global context for 
evaluating local data. For example, the sensed temperature 
values could be compared against the average temperature 
value of the network to detect fires or other local temperature 
spikes. Also, having user-defined parameters like soft threshold 
and update epoch allows the user to tune the performance of 
the system as per his requirements. The proposed scheme 
works well as long as the overhead of sending update messages 
does not supersede the advantage of minimizing the query cost. 
Since most real-life physical phenomena are localized, the 
fluctuations can be considered to be mostly local and not too 
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Figure 7(a). Varying Fluctuation rate (Best Case) Figure 7(b). Varying Fluctuation Rate (Attribute far from sink) 
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many. Consequently the proposed scheme should perform well 
in most real-life situations. 

As part of future work, we plan to develop detailed protocols for 
query dissemination, data updating and retrieval. We also need to 
ensure that these protocols are fault-tolerant and perform load 
balancing. 
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