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ABSTRACT
We present CapBand, a battery-free hand gesture recognition wear-
able in the form of a wristband. The key challenges in creating such
a system are (1) to sense useful hand gestures at ultra-low power so
that the device can be powered by the limited energy harvestable
from the surrounding environment and (2) to make the systemwork
reliably without requiring training every time a user puts on the
wristband. We present successive capacitance sensing, an ultra-low
power sensing technique, to capture small skin deformations due
to muscle and tendon movements on the user’s wrist, which corre-
sponds to speci�c groups of wrist muscles representing the gestures
being performed. We build a wrist muscles-to-gesture model, based
on which we develop a hand gesture classi�cation method using
both motion and static features. To eliminate the need for per-usage
training, we propose a kernel-based on-wrist localization technique
to detect the CapBand’s position on the user’s wrist. We proto-
type CapBand with a custom-designed capacitance sensor array
on two� exible circuits driven by a custom-built electronic board,
a heterogeneous material-made, deformable silicone band, and a
custom-built energy harvesting and management module. Evalu-
ations on 20 subjects show 95.0% accuracy of gesture recognition
when recognizing 15 di�erent hand gestures and 95.3% accuracy of
on-wrist localization.
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1 INTRODUCTION
Hand gesture has long been used as a form of human-computer in-
terface thanks to its intuitiveness [67]. Existing hand gesture recog-
nition techniques are based on sensors that belong to one of the two
broad categories: o�-body sensors (e.g., camera [5, 61, 63, 64, 84], RF
signals [59], LED or IR light [20, 21, 41, 43, 51, 53]), and on-body sen-
sors (e.g., using pressure [12, 32], EMG [14, 36, 65, 66], impedance
tomography [11, 85, 86], accelerometer, and gyroscope [10, 24, 40,
57, 83]). While o�-body sensing approaches often yield high accu-
racy and free users from wearing additional devices, they require
infrastructure support that limits users’ mobility and versatility.
In comparison, on-body sensing approaches provide much better
mobility support at the cost of usability. In particular, these wear-
able sensors often require frequent battery recharging, complex
setup, re-calibration, and sometimes, per-use training. For example,
Myo [76], a commercially-available, arm-worn hand gesture recog-
nition device, requires users to recalibrate the device every time the
user puts it on, and the device needs to be recharged at least once a
day [46]. These requirements are the key barriers that limit on-body
hand gesture recognition from becoming a mainstream interface.
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Figure 1: CapBand and application examples.

These limitations are common across hand-gesture recognition
wearable devices for two reasons. First, those wearable devices
must be able to continuously sense multiple streams of signals in
order to capture complex gestures performed by users. As a re-
sult, power consumption is typically high. At the same time, these
devices’ batteries are usually small for aesthetic appearance and
convenience of use. Therefore, frequent recharging is needed. Sec-
ond, per-use recalibration or training is often required because
every time a user puts the device on, it may be at a position that is
slightly di�erent from the position that the device was trained for.

In this work, we propose CapBand, a battery-free hand gesture
recognition wristband to address these two fundamental problems.
Such a wristband can bene�t diverse applications ranging from
remote object control and gaming, to sign language translation,
as illustrated in Figure 1. The key challenges in creating such a
system are: (1) minimizing the required energy to sense useful hand
gestures so that the device can be powered by the limited energy
harvestable from the surrounding environment, and (2) ensuring
reliable hand gesture recognition without per-use training. Note
that users may vary in their wrist size and shape, and the wristband
may be positioned di�erently every time it is put on, making it
challenging to design robust hardware and software to perform
consistently well across users.

Aiming for limited harvestable energy consumption, we intro-
duce successive capacitance sensing, an ultra-low power sensing
technique to capture small skin movements on the user’s wrist,
which corresponds to speci�c groups of wrist muscles as gestures
are being performed. To increase the sensitivity of the system, we
design a� exible electronic circuit that contains a capacitance array
of 15 pairs of electrodes wrapping around the user’s wrist. The
device is further molded inside a soft band to improve durability
and prevent electronic component exposure. By analyzing human
wrist and hand gesture anatomy, we build a wrist-muscles-to-gesture
model. From this, we develop a hand gesture classi�cation method
using both motion and static features. To eliminate the need for
per-use training, we propose a kernel-based on-wrist localization
technique to detect CapBand’s position on a user’s wrist and in-
struct the user to adjust the wristband position accordingly. To
demonstrate the feasibility of our battery-free scheme, we also fab-
ricate the energy management module to scavenge energy from
the surrounding environment. We also provide the open-source,
open-hardware release of current CapBand prototype 1

More importantly, the techniques in this paper, i.e. capacitance
sensing under battery-free scheme and customized sensor fabrica-
tion process, have high potential in various applications for mobile
1Open-source, open-hardware release: https://github.com/tonys2berry/capband.

and wearable devices. The proposed sensors are not limited to a
standalone wristband prototype as presented in this paper. We envi-
sion the integration of these sensors into commercial-o�-the-shelf
smartbands or smartwatches to capture both the dynamic move-
ment of wrists and the delicate movement of� ngers. Moreover, the
proposed capacitance sensors have great potential to be used in
various skin deformation sensing scheme, such as chest/abdominal
movement (respiration rate measurement), facial skin jaw, and neck
movement (facial gesture detection and silent speech application).

In summary, we make the following key contributions:
• Developing a wrist muscles-to-gesture model that informs
the design of the hardware and algorithm to detect hand
gestures;

• Introducing a successive capacitance sensing technique for
ultra-low-power and highly sensitive detection of small skin
movements on the users’ wrist;

• Developing a kernel-based on-wrist localization technique
that instructs users to adjust the wristband position and
eventually eliminate the need for per-use training;

• Prototyping CapBand to con�rm system feasibility with a
custom-built� exible electronic circuit, a custom PCB hard-
ware, and a custom-built energy harvesting andmanagement
module; and

• Evaluating CapBand on 20 participants with 95.3% accuracy
of on-wrist localization and 95.0% accuracy of gesture recog-
nition for 15 di�erent hand gestures, and conducting a user
study on system usability in terms of responsiveness, ro-
bustness, and form factor.

The remainder of the paper is organized as follows. In Sec. 2,
we� rst present the background of the human wrist and hand ges-
ture anatomy, which guides our muscles-to-gesture modeling and
leads to our design implications of using capacitance array to sense
hand gesture. In Sec. 3, we present an overview of our system, goals,
challenges, and high-level solutions for each systemmodule. Follow-
ing that, Section 4-7 elaborates on each module, including custom
sensor and hardware design, the gesture classi�cation model, the
on-wrist localization algorithm, and the energy harvesting mod-
ule. We show the prototype implementation details in Section 8
and provide performance evaluations in Section 9, including on-
wrist localization, gesture recognition, power consumption, and
user feedback. Section 10 discusses in detail existing approaches
and their advantages and limitations. We conclude the paper with
a discussion of CapBand’s limitations, possible applications, and
future improvements.

2 WRIST MUSCLE AND HAND GESTURE
ANATOMY BACKGROUND

In this section, we analyze the anatomy of the human hand to iden-
tify the relationship between muscle movement and skin surface
deformation. We derive a model to link hand gestures (i.e., the�ring
of di�erent parts of the wrist and hand) with speci�c muscle group
movements, which lead to skin surface deformation. The high-level
intuition in distinguishing gestures is that when a user performs a
hand gesture, the whole wrist and hand structure (i.e., bones, joints,
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Figure 2: Muscle groups and corresponding muscle move-
ment areas (A and B); contraction forces andmuscle contrac-
tion to surface deformation (C).

muscles, and skin) change both their patterns and shapes simulta-
neously. These shape transitions lead to skin surface deformation
and a�ect the measurements of on-body sensors attached to it.

Given a gesture, which muscle groups cause the surface deforma-
tion of our interest? The human hand has an intricately complex
structure in which approximately 35 muscle groups [19] in the hand
and forearm collaborate to perform a hand gesture. Even though
these muscles provide our hands with unsurpassed� exibility, ex-
tremely precise control, and gripping strength, wrist movements are
made of four basic types of movement (without loss of generality,
consider the left-hand structure): up, down, left, right. Furthermore,
these four basic movements are caused by two fundamental muscle
operations: contraction and relaxation.

The muscle groups of interest are those that control each�nger
and the wrist on the human hand. Speci�cally, (i) carpi radialis
moves the thumb up and down; (ii) digitorum is the large muscle
group that activates pointer, middle and ring� ngers as it joins at the
middle point of the wrist; (iii) carpi ulnaris controls the movement
of the pinky; and� nally, (iv) retinaculum is a special muscle group
that wraps around the wrist [73]. Among these muscle groups, there
are subgroups that further control the direction of the movements,
such as: (i) the� exor muscle, a skeletal muscle that contracts to
bring the palm toward the forearm; and (ii) the extensor muscle,
which has the opposite e�ect of� exor muscle, opens a joint and
increases the angle between the palm and the forearm.

We cluster muscle groups near the wrist area and label the clus-
ters from 1 to 8 as illustrated in Figure 2. As such, muscle groups
around the wrist usually belong to one of the following four basic
regions (R1,R3,R5,R7) of interest [35]: (i) Top region, top side of the
forearm of retinaculum and extensor digitorum; (ii) Bottom region,
bottom side of retinaculum and� exor digitorum group; (iii) Thumb
region, abductor pollicis group; and (iv) Pinky region, capri ulnaris
group. Last but not least, movements towards regions R2,R4 (R6,R8)
are the e�ect of carpi radialis (digiti minimi) muscle group [9].

What are the contributions of di�erent muscle groups to skin de-
formation? Hand gestures are the results of contracting the afore-
mentioned muscle groups. Intuitively, the direction of a movement
depends on the relative force magnitude of di�erent muscle groups.
For the purpose of modeling the wrist, we consider the original
wrist position as the point in the middle of the intersection cavity
between the retinaculum and the digitorum muscles. The total con-
traction force at that point is the composition of (1) the projection
of forces from� nger muscle paths denoted as

���!
F1..5, and (2) the

projection of forces from the retinaculum muscle group denoted as

��!
FW1 for the upper wrist muscle portion and

��!
FW2 for the lower wrist

muscle portion. As an example, when the palm is at rest condition,
the wrist (retinaculum) condition is

��!
FW1 +

��!
FW2 = 0 and the side

(ulnar/radial) condition is
�!
F1 +
�!
F5 = 0.

When either of these conditions is violated, the hand will move
to the corresponding direction. For example, if

��!
FW1 <

��!
FW2 , the hand

will move according to the� exor activation direction. Thus each
contraction force above will have a di�erent weight coe�cient to
the total movement of the hand where

��!
FW1 ,
��!
FW2 ,
�!
F1,
�!
F5 contribute

to the wrist direction and
���!
F1..5 contribute to the� nger formation,

which will form a muscle group movement decision function:

f (�esture) = � |
��!
FW1 +

��!
FW2 | + � |

�!
F1 +
�!
F5 | + �

4’
k=2

|
�!
Fk | (1)

We use Hill’s equation [8] to show the relationship between muscle
contraction force and muscle distance change:

F (t) = f (�)f (l)a(t)F0 (2)

where f (�) and f (l) are normalized velocity and length, a(t) is
muscle activation and F0 is the maximum isometric force.

In short, Hill’s muscle model [2] can be transformed to� nd the
muscle contraction distance as follows:

�dmuscle = (b
F0 + a

F + a
� b)�tmuscle (3)

where �tmuscle is the duration of muscle contraction; a and b are
coe�cients that can be found via experimental isotonic records.
Changes of muscle contraction distance lead to corresponding skin
movement at that region: �dskin / �dmuscle . Therefore, if we
obtain movements at those 8 corresponding areas, the relationship
between hand gesture and wrist shape deformation is:

f (�esture) =
8’
i=1

�i�dskini (4)

where �i is the weight coe�cient of skin dislocation at position Ri
and �di is the distance change at Ri .

Since Equation 1 is a non-convex optimization problem [72],
solving the Linear Regression problem of Equation 4 gives the
weight coe�cients of skin deformation at the corresponding 8
de�ned areas (R1..8) and also gives the corresponding solutions.
This observation provides the intuition for preferable positions
for our sensor placement (more details in Section 4) and the basic
foundation to construct the on-wrist localization algorithm which
will be presented in Section 6.

3 CAPBAND SYSTEM OVERVIEW
In this section, we describe the overall design of CapBand, a battery-
free successive capacitance sensing wristband system for hand
gesture recognition. Our design goals include (1) ultra-low-power
consumption; (2) high recognition accuracy for multiple gestures;
(3) no need for per-use training; and (4) battery-free usage. To
achieve those goals, we propose the CapBand system as illustrated
in Figure 3. CapBand consists of four main components includ-
ing ultra-low-power sensing, reliable gesture recognition, on-wrist
localization, and an energy harvesting/managing module.
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CapBand's Hardware

Flexible Sensor Array

Capband's Software on Host Device
Data Stream

Receiver

Ultra-low-power Capacitance 
Sensing Hardware

Energy Harvesting And
Management Hardware

Capacitance-based 
Gesture Recognition

On-wrist Sensor
Localization

Data stream of 15 sensors

Figure 3: CapBand system overview.

Ultra-low-power sensing. Skin surface deformation due to
wrist muscle movement can be detected by multiple sensing modal-
ities including force resistor sensor [32], camera-based [37] or
impedance tomography [86]. However, these sensing techniques
require high energy consumption and have low sensitivity. In
this work, we explore capacitance sensing since it can operate
at very low power (at µW level) [22], with high stability, high res-
olution, and high sensitivity. However, these bene�ts come with
challenges. Since capacitive sensors may accidentally couple with
surrounding electrical objects, they are a�ected by the inherent
non-deterministic� oating ground and high ambient electrical noise.
To overcome this problem, we design two capacitance sensor arrays
consistently spaced with explicit connections to the system ground.
We fabricate these two capacitance sensor arrays using� exible
circuits and embed them in a heterogeneous silicon wristband to
minimize the in�uence of heat and moisture from the surrounding
environment (Section 4.1). Detailed implementation is discussed in
Section 8.

Reliable gesture recognition. The gesture recognition mod-
ule needs to be accurate, lightweight, and low latency while using a
low sampling rate, in order to meet the system requirements of low-
power and real-time operation. We investigate di�erent machine
learning techniques and propose a CNN-based gesture classi�ca-
tion method using both motion and static data from capacitive
sensors. The CNN model can be trained o�ine, and our evaluations
show that the trained CNN model can be e�ciently used for online
gesture classi�cation. (Section 5).

On-wrist localization. In daily use, the position of the wrist-
band may change every time it is put on or due to user activities.
Such changes often shift the sensors to untrained areas and lead to
inaccurate gesture recognition. A naive approach is to require the
user to perform the training again before every time he/she uses
the device. Such per-use training is cumbersome and undesirable.
To address this issue, we propose an on-wrist localization algorithm
to automatically determine the current position of sensors on the
user’s wrist. This helps users to adjust the wristband accordingly
instead of retraining the model. Furthermore, the mismatched po-
sition information may be used for auto-calibration. In this work,
we derive a universal coordinate system based on the human wrist
and hand muscle structure and design a kernel-based localization
algorithm that validates the on-wrist sensor positions (Section 6).

Top layer

Bottom layer
Flexible 

property

Sensor plates

Figure 4: 2� exible sensor arrays. Top connects to the system
ground and Bottom connects to the measurement pins

Battery-free and transient powering. In order to support
battery-free gesture recognition, we face di�culties in (1) harvest-
ing enough energy from a suitable source in the surrounding en-
vironment and (2) stabilizing the harvestable energy that is prone
to� uctuation due to environmental changes. Thus, we design a
custom energy harvesting and a management module which can
provide stable supply voltage to the sensing hardware and manage
the charge/discharge cycle of the energy storage (Section 7). In
addition, we employ solar cell energy harvesting which� ts both
harvest-and-use and harvest-and-use-later scenarios.

4 LOW-POWER CAPACITANCE SENSING
WRISTBAND DESIGN

In this section, we� rst describe an ultra-low power capacitance
sensing technique for recognizing the user’s hand gesture. We then
present a design using a� exible sensing array and heterogeneous
silicone wristband which accommodates the measurement tech-
nique and eliminates the environment noises (e.g.,� oating ground;
heat and moisture condition of user’s wrist). In the following dis-
cussion, we present the basic principles and advantages of using
a capacitance sensing method to detect wrist gestures. We then
present a custom� exible sensor array and silicon wristband holder
to increase the sensitivity and to reduce the impact of�oating
ground to reliably monitor capacitance variations. Last but not
least, we design a method to reduce the energy consumption of the
system and make it work at ultra-low-power mode.

4.1 Capacitance-based Skin Deformation
Sensing

Capacitance sensing has been used to estimate physical proper-
ties such as touch, proximity, and deformation by measuring the
capacitance variations between two or more conductors [22, 49].
These conductors can be made from metal, foils, plastics or human
skin. A capacitance exists when two conductors are separated from
each other by a distance d . They create a capacitance of C = �0�rA

d ,
where A is the area in meters square, d is the distance between the
two plates, and � is dielectric constant (i.e., product of free space
�0 and relative dielectric constant of the material, �r ). In our case,
when a user performs a gesture, the skin deformation will cause a
change in distance between the plates. By capturing the capacitance
variations measured from these sensors, CapBand recognizes the
gestured that being performed.

The capacitance sensing value is indirectly inferred by di�er-
ent methods that measure the variance in voltage, current, and
frequency or pulses which are applied through the capacitor of
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Figure 5: (A) Heterogeneous silicone layering design, (B) Ac-
tual fabricated wristband
interest [79, 80]. For example, relax oscillator, sigma-delta modu-
lation, RC oscillator and pin oscillator are few popular methods
which have power consumption in the range of pW to µW. The
most intuitive measurement method is to charge the capacitor from
a de�ned current source for a known time and measure the voltage
across the capacitor. RC-oscillator method applies the same mecha-
nism and uses a reference resistor to count the charge/discharge
time period when the capacitor reaches a pre-de�ned high/low
thresholds.

The circuit operating voltage and the pre-de�ned threshold level
is denoted as VCC , VH , and VL respectively. In this design, in order
to achieve highly sensitive and low latency capacitance sensing,
the value of the sensor needs to be relatively small (pF-order) and
the reference resistor is chosen to be very large (M�-order). Then
the charge/discharge duration can be expressed as:

tchar�e = RCln(
VCC

VCC �VH
), tdischar�e = RCln(

VCC
VL

)

After counting charge/discharge time, the sensor capacitance value
is inferred by averaging the calculation from the above equations.
In each measuring cycle, the sensor pin of the main MCU will be
switched between high and low output direction, which consumes
power at the order of 20-50pA. These selections for sensor size, ref-
erence resistor, and sensing technique yield the short measurement
times at ms-order and ultra-low-power consumption.

4.2 Custom Flexible Sensor Array
We design capacitance sensor elements and combine them into a

sensor array. Our design implication comes from the basic form of
2-plate-capacitor such that each sensor has the form of a capacitor
with two parallel plates. One plate is connected to the voltage
source and another one is connected to the ground. According to
the wrist analysis, which clusters 8 areas for sensing (Sec. 2), we
construct eight corresponding groups of sensors following those
optimal sensing areas.

4.3 Ultra-low Power Capacitance Sensing
Then, we integrate these two sensor arrays into a wearable

wristband by fabricating two separate layers of sensor plates as
�exible PCB (Figure 4). Each layer consists of an array of� fteen
plates. These plates are clustered to correspond to eight sensing

areas. Among those eight areas, seven contain sensor pairs and
one has a standalone sensor). This custom sensor design and the
standalone sensor pair placement give us (1) reliable control with
the explicit capacitance sensor ground and (2) the convenience in
guiding users the correct orientation of wearing the wristband later.

4.4 Heterogeneous Silicone Wristband
The next task is to integrate this structure of two� exible sen-

sor arrays into a wristband form factor. To realize a sensitive yet
reliable sensor measurement, the challenge here is to keep a consis-
tent spacing between two layers; to maintain enough softness, and
�exibility for the movement of the two layers, and to allow skin de-
formation to be propagated to the sensor whenever the user moves
his/her hand. To that end, the wristband needs to be constructed
from di�erent layers of materials with di�erent levels of softness.

In particular, we construct the wristband from three di�erent
silicone layers as shown in Figure 5 with the middle layer to be
cured separately in order to have the desired thickness. This wrist-
band design with a heterogeneity of silicone materials ful�lls our
requirements to have a consistent spacing between two� exible
plate layers. Furthermore, the inner silicone layer is soft and tacky
enough so that whenever the user’s hand moves, skin deformation
will squeeze the internal middle layer but not the outer one, chang-
ing the distance between the two corresponding plates of sensor
arrays that will lead to the changes in capacitance.

Triggering measurements at all sensors at once requires much
power and sophisticated MCU with large numbers of I/O pins.
This leads to more complicated and expensive hardware which
violates our design goals mentioned earlier. In CapBand, we use
a multiplexer together with a simple MCU to alternatively trigger
di�erent capacitance sensors. There is only one sensor is activated
at a time. Due to this simplicity, the MCU could be very simple and
require at most one ADC pin. Figure 6 shows the CapBand’s overall
architecture. Themultiplexer successively rotates through all sensor
inputs and allows only one signal path from a sensor to the main
processor at any instance. This reduces the power consumption up
to N times (N is the number of the sensor in the array). Note that
this design decision makes a trade-o� between power consumption
and the resolution of sensing data. The data stream consists of
packets which are the combination of all 15 sensing values. In
addition, we use Bluetooth Low Energy (BLE) to streaming data
from the device to a host computer for further processing. BLE is
a popular, low-power technique for communication, and readily
available in smart devices. One could argue that BLE still consumes
too much power for a battery-free application. However, there are
battery-free products on the market that utilize BLE such as LunaR
smartwatch [68] and EnOcean PushButton [15].

Power Analysis. With the above design, assuming the capac-
itance value is at pF-order, charging time is at ms-order, and the
device is operated at 3V, the sensing component requires µW-order.
In particular, low-power MCU [28] and a MUX [29] requires µW
of power. This power consumption is similar to that of force resis-
tor sensor [32]. However, we select capacitance sensing due to its
high sensitivity characteristics to small movements [22]. The power
consumption is much lower than camera-based [37] (400mW) or
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Figure 6: CapBand overall hardware structure

impedance tomography [86] (50mW). BLE components [26] usu-
ally consumes at a peak of 5mA for communication. In order to
compensate for the consumption of BLE communication and to
further investigate the ultra-low-power perspective of our system,
we explore the possibility of rendering the battery-free prototype
by designing an energy harvesting and management module from
a solar cell (Secion 7).
5 HAND GESTURE RECOGNITION
When using CapBand for hand gesture recognition, input data
will be a series of data samples at a given frequency, each sample
containing 15-dimensional vectors of the capacitance sensors on
the wristband. One straightforward approach is to consider the
static phase only (i.e., when the user holds a stationary gesture),
and use traditional machine learning methods, such as support
vector machines or random forest to classify every single sample
in the static phase. However, this approach does not utilize sensor
readings in the motion phase (i.e., when the user is in the process
of making a gesture), which can be useful for more accurate and
even faster gesture recognition. Intuitively, as the user makes a
speci�c gesture, there are distinct gesture-speci�c characteristics
to be captured in both the motion phase and the static phase. As
such, a hybrid hand gesture recognition model that leverages both
the motion and static phases would be desirable.

To accomplish this, we tried to implement traditional supervised
learning algorithms such as SVM and Random Forest. However,
these methods are not good at detecting the skin deformation vari-
ance within a given time series. The recent development of deep
learning algorithms provides a better solution. We propose a tem-
poral deep learning architecture using a series of data samples for
hand gesture recognition. Di�erent from previous hand gesture
recognition approaches that consider only individual data samples,
we combine the sensor readings in a given time frame as a fea-
ture matrix and develop a Convolutional Neural Network (CNN)
based model for hand gesture recognition. CNN [39] is a popular
deep learning technique for learning local structures of the feature
matrix adaptively. It can take advantage of the strong proximity
relation between features and is particularly suitable for captur-
ing the various physical skin deformation relations due to muscle
movement when performing hand gestures. Since skin deformation
variance depends on the physical position of each individual sensor,
a deep learning model to be bene�cial in capturing these kinds of
geometric variance. In addition, CNN is sensitive for detecting edge
patterns; thus it can be more robust with the varying speeds and

Figure 7: The 15 di�erent hand gestures and corresponding
capacitancemeasurementswith dedicated sensor placement
as shown in� gure 4.

magnitudes when people are making hand gestures. In comparison,
traditional machine learning algorithms Support Vector Machine
and Random Forest would link every single dimensional feature
to a singleton equation, makes them less� exible in detecting edge
patterns. Detailed performance evaluation will be explained in Sec-
tion 9. Please note that in our design, the model will be pre-trained
o�ine using training data, and then embedded into cloud for online
recognition. Real-time recognition can be realized by doing this.

Speci�cally, we use a CNN to learn the temporal muscle pressure
patterns for hand gesture recognition, which are encoded as a
two-dimensional feature matrix and are used as input data to the
network for CNN model training. We combine a sequence of 15-
dimensional sensor readings in a gesture cycle. For instance, using
25 samples per second, a 4-second gesture cycle with both the
motion and static phases would contain 100 samples, resulting in a
100 ⇥ 15 feature matrix. The proposed CNN architecture consists
of two convolutional layers, each followed by a MAX pooling layer.
The kernel size for each convolutional layer is 5⇥ 1 and the pooling
size is 2⇥ 2. For the convolutional layers, we use “same padding” to
keep the feature information complete, whereas the max-pooling
layers use the same stride as the� lter size. We also use a Recti�ed-
Linear (ReLU) activation function and local response normalization
is applied after each layer. Dropouts of 0.6 is also applied to the fully
connected layer. The initial training rate is set to 10�3 as commonly
used in CNN-based solutions.

The reason to use a two-layer convolutional structure is to pre-
vent over�tting with our training data. We specify the� lter size to
be 5 ⇥ 1 to tell the network that small clusters of locally-connected
features will contain useful information for classi�cation. After
two convolutional layers and two max-pooling layers, a Multi-layer
Perceptron is used to complete the classi�cation task. The output
layer in our architecture has one neuron for each gesture in the
recognition process. We apply “softmax” as our activation function.
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Figure 8: Sample of sensor measurement while the wrist-
band is rotated at di�erent position.

Our CNN architecture is implemented using the TensorFlow soft-
ware library [1]. We� rst train the CNN model o�ine with sensor
input from CapBand and labeling information using the TensorFlow
framework written in Python. The reason for using Tensor�ow is
that it has a C++ API that can be used on smartphone platforms to
run the inference (recognition)-only part of the CNN model. After
training the o�ine CNN model, the trained weights are used as
a recognition-only structure by removing the back-propagation,
training layers and dropouts. Only the recognition module will be
used for real-time gesture recognition on smartphone platforms.

6 CAPBAND ON-WRIST LOCALIZATION
To achieve higher gesture recognition accuracy and better user ex-
perience, proper positioning of CapBand on users’ wrist is essential.
While it is relatively easy to point out that the wristband is in the
wrong position, it would be much more useful (and user-friendly)
to determine the speci�c (incorrect) position so the user can adjust
accordingly. Accurate on-wrist localization also makes it possible
to automatically calibrate for any position without manual adjust-
ment, which we plan to investigate as future work. The challenge
of on-wrist localization is that there exists no universal coordinate
system for on-body sensors, i.e. on the wrist. Moreover, if we de-
�ne the axes and mark the coordinates based on� xed positions, it
cannot generalize to diverse users with di�erent wrist sizes.
Position de�nition. In order to preserve the generality, we ap-
proach to de�ne the wristband coordination based on wrist muscle
anatomy structure analysis that we did in Section 2. We de�ne
the correct position while the user wears the wristband by align-
ing region 1 (R1) with the group of sensor input number 3 and
4 (sensor input con�guration is shown later in Figure 10). Thus
we denote this wristband position as R1. Each time the user wear
the wristband, the alignment of the pair (4,5) will not be exactly
at the R1 position as the� rst time because the wristband might
rotate a little bit, which leads to the alignment of the pair (4,5)
will belong to other regions of interest (R2..8). Thus we de�ne 8
feasible localization positions of CapBand relatively corresponding
to the alignment of pair (4,5) with given regions of interest R1..8.
Since the design of odd sensor number guides the user the correct
direction of CapBand, we do not consider the case that user wears
the wristband in� ipping position.

Given data input from 15 sensors in a� xed period of time, our
goal is to detect the current location of the wristband (Figure 8

shows the measurement samples while rotating wristband at di�er-
ent locations with gesture ‘stretch’). Thus we can instruct the user
to rotate the wristband back to the correct position if necessary.
Kernel-based localization. We propose a kernel-based localiza-
tion method to automatically identify a user’s wristband position
based on the 15-dimensional sensor readings. The main advantage
of using the kernel-based approach is that the relevance of a user’s
new wristband position can be calculated by aggregating the kernel
similarity with previous training position data in our dataset. In
addition, it provides a structured way to use a linear algorithm in
a transformed feature space, for which the transformation in our
problem is typically nonlinear. As such, the kernel method allows
us to model the nonlinear patterns of wristband position e�ectively.

Speci�cally, given a set of training samples (li ,�i ), i = 1, ...,n,
where li represents one sample of 15-dimensional sensor readings.
Assuming that li follows an unknown distribution �: �i = �(li ).
Our goal is to model � with some function �̂:

�̂ = argmin
�2H

n’
i=1

(�i � �(li ))
2 + � | |� | |2

HK
, (5)

where | |� | |2 is the regularization function.
We de�ne kernel KH(li ) as a multivariate Gaussian Kernel:

KH(x) =
1p

2� |H|

e
�
x xT

2
p
H , (6)

where H is the 15 ⇥ 15 symmetric and positive de�nite covariance
matrix. For simplicity, in our training process, we set H = I.

We then de�ne the function space as: �(l) =
Õn
i=1 �nKH(l � li ),

�(l) =
n’
i=1

�nKH(l � li ), (7)

where � will be learned during the training process by minimizing
the least-squares function | |Ä � K� | |

2
2 using stochastic gradient

descent. The main procedure of our kernel-based wristband local-
ization algorithm is shown in Algorithm 1. The non-linear function
� in Algorithm 1 outputs the estimated wristband position, a real
value that is rounded up and mapped to one of the 8 on-wrist re-
gions (Figure 8). This helps users to adjust the position accordingly
and (as future work) possibly auto-calibrate the wristband without
manual adjustments.

Algorithm 1: Kernel-based On-Wrist Localization
Input: Training data (l1, �1),...,(ln, �n ), the weighting vector � ,

and the regularization parameter �.
Output: variables � , function �, step size �

1 initialization: �0 = 0;
2 repeat
3 for j = 1, 2, ..., n do
4 Learning output: �̂j =

Õj
i=1 �iKH(lj � li );

5 Compute the error: ej = �̂j � �j ;
6 Update the solution:

� j  � j � � (2ej
Õn
i=1 �iKH(lj � li ) + 2�� j );

7 Update the function: �̂(lj ) =
Õn
i=1 �̂iKH(lj � li );

8 end
9 until converge;

10 return �(l ) =
Õn
j=1 � j�jKH(li � l )
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Figure 9: Energy management module schematic and PCB

7 ENERGY MANAGEMENT FOR TRANSIENT
POWERING

To deal with the di�culties in (1) providing a stable supply for the
sensing hardware with the� uctuation of harvesting energy source
and (2) harvesting su�cient energy for the operation of sensing
hardware, we� rst design an energy management module and then
investigate suitable energy sources.

7.1 Energy management design
The energy management module contains (1) the energy harvesting
front-end that scavenges the energy from the surrounding environ-
ment; (2) the power harvester management module that controls
the charge/discharge cycle and provides stable DC output; and (3)
the energy sink that stores the harvested energy. Ideally, this mod-
ule should at� rst provide enough energy for the sensing hardware
(refer to the design in Sec. 4) and communication module boot-up,
process the measurement, send the data to the host device and
maintain the connection in the sleep mode, most of the time.

We denote the supply output to sensing hardware as Vout and
energy sink to be a supercapacitor of size Csink . Since the system
boot-up happens only once, we investigate and design the duty
cycle of the system to be under the coverage of the charge/discharge
cycle of the power harvester management module. One cycle of the
whole system includes the duration to measure all sensor values
tsense , the duration to transmit the measurement ttransmit , and
the sleep duration tsleep , which has the current consumption of
isense , itransmit , isleep , respectively. The charge/discharge cycle
of the module is controlled by managing the appropriate Vhi�h
and Vlow of the energy sink. At Vhi�h , the supercapacitor starts to
discharge and sensing hardware switches to active mode, measures
sensor values, and transmits data. When the voltage across the
supercapacitor reaches Vlow , the sensing hardware switches to
sleep mode and energy module starts to charge the wristband.

Minimum discharge time of energy sink is:

tsuppl� = tsense + ttransmit = Csink (
�Vsense
isense

+
�Vtransmit
itransmit

),

where �Vsense + �Vtransmit = Vhi�h �Vlow .
Minimum charging time of energy sink:

thar�est =
EVhi�h � EVlow

Phar�est � Psleep
=

1
2

Vhi�h �Vlow
Phar�est � Psleep

Csink .

Thus all the values ofCsink ,Vout ,Vhi�h , andVlow must be tuned
to� t the operation scheme of the sensing hardware.
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Figure 10: Custom fabricated PCB of sensing hardware

7.2 Energy harvesting sources
There is a wide range of harvestable energy sources in recent re-
search, which typically can harvest in range of µW tomW (e.g. TV
signal [38, 81],Wi-Fi [52, 75], RF ambient [50, 58], solar cell or photo-
diode [4, 74], piezoelectric [54], and thermoelectric generator [33]).
Including the communication module (i.e BLE), CapBand requires
11.5mW consumption, on average. We note that BLE was selected
for our design to provide reasonable communication range with the
host device while not consuming too much energy. This selection
was motivated by the existence of many battery-free products in
the market that also utilize BLE, such as the LunaR smartwatch [68]
and EnOcean PushButton [15].

Solar energy source. To demonstrate the operational capability
of our system in the battery-free scheme for both indoor and out-
door environments, we employ solar cells as the energy harvesting
front-end. This selection was made due to several advantages: (i)
the availability of small size solar cells that can harvest energy with
various light intensity [23] in both the indoors (500-800 lux) and out-
doors (20k-120k lux), (ii) high power conversion e�ciency, and (iii)
low-cost and easy integration process. This energy source provides
su�cient energy for the hardware to operate in both harvest-and-
use schemes in normal light condition and harvest-and-use-later
schemes in no light condition within 113s.

RF energy source. We also fabricate hardware for a multiband
RF energy harvesting front-end that scavenges energy at LTE700,
GSM850, and ISM900 frequency bands. This component includes a
voltage recti�er that converts the incident RF power into functional
DC power, an adaptive impedancematching network that allows the
circuit to select the excited frequency band according to available RF
power and provides the maximum power delivery from the antenna
to the voltage recti�er for that band. Though we can show that RF
can be used as an alternative energy source, this technique is not
practical for two main reasons. First, it requires a strong incident
RF source (i.e. more than -5dBm) nearby (i.e. within 1 meter) to
provide enough power, which is subject to FCC regulations [16]
that limit the maximum permissible output power. Second, this RF
module requires an additional antenna that impacts its form factor.

8 PROTOTYPE IMPLEMENTATION
Flexible sensor array and wearable wristband. We fabricate
two separated� exible sensor arrays from the �exible circuit mate-
rial Pyralux [60], where each sensor plate has the size of 7⇥7mm.
In order to meet the requirement for a silicone wristband (stated in
Section 4), we construct our wristband carefully by combining three
silicone layers with the di�erent hardness levels of 10A, 00-10, and
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30A Shore hardness silicone, respectively, using the Smooth-On
Dragon Skin [69, 70]) and Eco�ex silicone [71]. The pads between
the two� exible circuits are cured separately to achieve the consis-
tent spacing of 3mm. Given the size of the sensor, and the permit-
tivity of silicone, the estimation of capacitance for each sensor in
normal conditions is 25.34pF.
Custom low-power, low-cost hardware.We choose CC2650mod-
ule [26], TI MSP430G2553 [28], and MUX CD74HC4067 [29] to
fabricate our custom 50.5⇥23.6mm PCB hardware (Figure 10). A
bleeding resistor of 5.1M� gives us the advantages of (1) a higher
resolution in capacitance measurement and (2) small current drain
(588nA with operating voltage of 3.0V). The BLE part in our hard-
ware is implemented as a server so that it will just need to broadcast
data during the connection interval after waking up from the sleep
mode after pairing with the BLE device on the host device side.
Power management for transient powering.We prototype the
energy management module (Figure 9) with the DC-DC buck con-
troller TI BQ25570 [27] and a 47mF supercapacitor as the energy
sink. Hardware peripheral is tuned to stabilize the output voltage of
3V. The high and low voltage thresholds of the supercapacitor are
also tuned at 3.9 and 3.2V, respectively. We choose the amorphous
silicon solar cell AM-5610CAR [55], which has a size of 25⇥20mm
and a maximum power of 16.8mW. The RF front-end uses a 4-stage
Dickson-based recti�er, and we employed an HSMS285C Schottky
diode [7], which has a turn-on voltage of 150mV measured at the
forward current of 100µA as a non-linear component of the recti�er.

9 EVALUATIONS
In this section, we present in detail the set of experiments we
conducted to evaluate the overall performance of CapBand and
demonstrate the feasibility of using our battery-free successive
capacitance sensing wristband for hand gesture recognition in the
real-world under low-power scenarios.

Energy Management 
Module

Solar Cell

Silicon 
Wristband

Sensing 
Hardware

Flexible 
Sensor Array

Figure 11: CapBand prototype

In particular, we aim to evaluate the following aspects of Cap-
Band: (1) E�ectiveness of hand gesture recognition algorithms using
both motion and static phases; (2) accuracy of the kernel-based on-
wrist sensor localization method; (3) power consumption of the
capacitance sensing system; and (4) user experience survey.

9.1 Evaluation Methodology
Experimental Setup: As shown in Figure 11, the user wears Cap-
Band to his/her left wrist (similar to wearing a watch) and follows

the instructions on the computer screen to make the gestures. Dur-
ing the data collection period (i.e. 30 minutes per subject), we use
CapBand with a coin battery to avoid the charging cycles of the
energy harvesting module.

Participant Demographics
Age (years) 18 - 35 years old, average 26.4
Gender Ratio Male: 16, Female: 7
Dominant Hand Right: 19, Left: 4
Static set Gestures: 15, Duration: 1 min
Motion set Gestures: 15, 40 motions
Position data set Positions: 8, Duration: 1 min
Participant rate Position: 10, Static: 20, Motion: 20

Table 1: Data collection details.
Data Collection. To evaluate the e�ectiveness of the proposed

algorithms for hand gesture recognition and on-wrist localization,
we invited testers to collect three di�erent types of data for eval-
uation: (i) static gesture data, (ii) motion gesture data, and (iii)
wristband positions data.

Static gesture dataset is collected by asking each participant to
perform every gesture statically for one minute. We also recorded
the motion gesture dataset from the same 20 participants. The
motion phase includes moving from the rest status to a speci�c
gesture, and moving back to the rest status. We use three seconds of
data for the motion cycle, which is su�cient to perform a complete
gesture cycle in real life. Note that users may� nish the gesture
before three seconds, then he will wait for the next signal on the
screen to start performing the next gesture. Recording this way
would better re�ect a real application scenario. Each motion gesture
was repeated 40 times by each participant.

We instructed ten users to wear the wristband for one minute
in each position in eight di�erent positions as de�ned in Section 6.
The sensing results for these gestures formulated our dataset.

9.2 Gesture Recognition Performance
For hand gesture recognition, we use three metrics: precision, recall,
and F1 measure for multi-class classi�cation, to evaluate whether
the model provides comparatively robust performance.

Method Precision Recall F1

Static-only

LR 0.113 0.102 0.107
DT 0.732 0.741 0.736
SVM 0.896 0.904 0.900
RFC 0.925 0.932 0.928
CNN 0.802 0.796 0.799
LR 0.121 0.115 0.118
DT 0.744 0.741 0.742

Motion + Static SVM 0.773 0.624 0.691
RFC 0.883 0.889 0.886
CNN 0.951 0.949 0.950

Table 2: Comparison of hand gesture classi�cation perfor-
mance of di�erent methods using static-only features and
motion+static features.

We compare our CNN-based method with di�erent machine
learning methods including Logistic Regression (LR), Decision Tree
(DT), Support VectorMachines (SVM), and Random Forest Classi�er
(RFC). These methods have been widely used in gesture recogni-
tion and shown to be e�ective in speci�c settings. We evaluate
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the methods using static-phase features as well as motion-phase
features. For training and evaluation purposes, we use strati�ed
10-fold cross-validation and for each split, 10% data samples are
held out as test data.

Table 2 shows the overall classi�cation performance of di�erent
methods for “static-only” gestures and “static+motion” gestures. As
can be seen from the table, our CNN-based method achieves the
best performance when leveraging both motion and static features
(3-second motion + 1-second static), with 0.951 precision, 0.949
recall, and 0.950 F1 measure.

Figure 12: Confusion matrix of gesture classi�cation using
CNN with motion+static features.

CNN works better when utilizing motion features because it
is e�ective in detecting feature matrix edges and grouping these
nearby features and projecting them to a higher dimensional space
to model the muscle pressure variances when users perform these
gestures in motion. CNN does not perform well with only static
features since they do not contain such variance patterns. Ran-
dom Forest Classi�er (RFC) performs the best for static gesture
classi�cation, achieving 0.925 precision, 0.932 recall, and 0.928 F1
measure. For real-world application scenarios, static classi�cation
usually does not apply. It is more common that a user would per-
form a gesture in motion. As such, improving the performance of
the “static+motion” setting is our ultimate goal in this paper. Note
that linear regression (LR) provides very low performance, with
0.107 F1 measure for the static case and 0.118 F1 measure for the
motion+static case. Thus, a non-linear combination of the capaci-
tance sensor readings can model the muscle group variances more
e�ectively for hand gesture recognition.

To evaluate the run-time latency of gesture recognition, we used
an iPhone X and an Android Pixel 2 to simulate the recognition
process using the trained CNN model. The operating system is iOS
11.3 on iPhone X and Android 8.1 Oreo API 27 on Android Pixel.
For each phone, we measured 10 rounds of testing, each round
recognizing 100 motion+static sensor inputs. The average latency
of each round is 0.15s (1.5ms/recognition) on iPhone X and 0.78s

(7.8ms/recognition) on Android Pixel. These results demonstrate
that our CNN-based model is feasible for real-time hand gesture
recognition in the wild.

Figure 12 shows the confusion matrix when classifying hand
gestures using CNN with both motion + static dataset. Overall, our
proposed method consistently performs well for di�erent types of
gestures, with slightly lower performance when identifying the
“rock” and “phone” gesture. Rock gesture is misclassi�ed the most
with phone gesture since they have similar hand and� nger con�g-
uration and contain both the thumb and pinky side muscle group.

Figure 13 shows the impact of sample size on classi�cation ac-
curacy. Since the static features are less a�ected by the lower sam-
pling rate, RFC performs stably when reducing the sample size. The
motion features are more sensitive to the sample size. CNN still
performs well with above 20 measurements per second, but the
performance degrades quickly with a lower sampling rate.

We further investigate how using di�erent combinations of mo-
tion and static features would impact the classi�cation accuracy
and latency. Speci�cally, we evaluate three di�erent time-series
combinations: (1) 1.5s motion, (2) 1.5s motion plus 1s static, and
(3) 3s motion plus 1s static, which corresponds to a classi�cation
latency of 1.5s, 2.5s, and 4s, respectively. Figure 14 shows the re-
sults. While removing the static features and reducing the motion
features have some impact on the classi�cation accuracy, only us-
ing 1.5s motion features can still achieve 0.91 F1 measure, while
reducing the classi�cation latency from 4s to 1.5s. It proves that
using motion features is bene�cial in real-world scenarios.

9.3 On-Wrist Localization Performance
For on-wrist localization, we evaluate the accuracy of identifying
the wristband position among 8 possible regions. Speci�cally, we
evaluate the accuracy of each region, since the regions correspond
to di�erent muscle groups and deform di�erently when making
hand gestures.

Figure 15 shows the localization accuracy and standard deviation
for each of the eight regions. We can see that our method performs
well for all eight regions, achieving between 92.4% and 99.5% ac-
curacy with a small standard deviation. These results demonstrate
the strength of our hardware design using successive capacitance
sensing as well as the kernel-based on-wrist localization algorithm.
This solution should be robust for real-world usage, which can
notify users when the wristband is worn at the wrong position and
instruct users to adjust the wristband position accordingly.

9.4 Energy consumption
We measure the consumption of CapBand using Monsoon power
monitor. Our hardware can operate normally with the supply volt-
age ranging from 2.2V to 3V. Table 3 shows the highest energy
consumption breakdown for the main processes of sensing hard-
ware is at 3V. The cold start process consumes 27.06 µW during
2.58s happens once to boot up hardware and establishes pairing
with the BLE client in the host device.

After starting up, our hardware takes capacitance measurement
of 15 sensors during 30ms with energy consumption of 69 µW,
where the MUX consumes a maximum of 0.33µW. Then capacitance
measurements are sent by BLE transmission performing in 2.46ms
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Figure 13: Classi�cation accuracy vs.
Sample size

Figure 14: Classi�cation accuracy vs. la-
tency

Figure 15: On-wrist localization accu-
racy and standard deviation for eight de-
�ned location.

Figure 16: Average power of sensor
measurement at di�erent sample size
of measurement numbers.

Figure 17: Current pro�le during mea-
surement of 15 capacitance sensor.

Figure 18: Current pro�le during BLE
module connection interval.

Component Consumption
Cold start 27.06 µW
15 capacitance measurements 69 µW
UART to BLE 375 µW
BLE packet transmission 10.38mW
Sleep mode 40 µW

Table 3: Power consumption breakdown at 3V

with consumption of 10.38µW for each operation cycle. Figure 17
and 18 show the current pro�ling of capacitance measurement
and BLE transmission with the average consumption of 148 µA
and 3.46mA respectively. Figure 16 shows the average power of
sensormeasurements with the di�erent sample size ofmeasurement
numbers. After� nishing measurement and BLE transmission, the
sensing hardware goes to standby (de�ned as sleep mode - LPM3 in
both MCUs) and consumes 1.5 µA in total. In various light condition
of 30k lux (outdoor clear sky), 2k lux (indoor hallway), 500 lux
(o�ce condition), the energy module with the solar cell can harvest
23.1mW, 7.7mW and 1.6mW respectively.

9.5 User Study
We also conduct a user questionnaire involving 12 users who par-
ticipate in the data collection session to collect feedback of our
CapBand. The survey includes questions to ask users’ perspective
on the usage convenience, interaction smoothness, research idea
importance and future integration feasibility. Results show that
63.6% users like the idea of CapBand and think it is easy to use;

72.7% feel in control of the wristband when they are making ges-
tures. Regarding smart device integration necessity, 50% provide
positive responses while 41.7% selected “Maybe”. In addition, 58.3%
of the testers believe the battery-free idea is necessary for this kind
of wristband. In summary, we receive positive feedback on the idea
of our wristband in terms of gesture recognition and battery-free.
At the same time, users also mention concerns about whether long-
time wearing of our CapBand would make their wrist tiring. There
are also participants who are not very familiar with similar devices
express doubt about its stability and sensitivity for long-term use
in real-life. All of these concerns should be carefully considered in
our future improvement.

10 RELATEDWORKS
Sensors and gesture recognition. Camera-based recognition for
human hand gestures has been developed for a long time [61, 63, 84]
including breakthrough techniques integrated into smart TVs [5,
64]. However, this approach is limited due to inherent constraints
on the relative position between users and cameras, the environ-
ment, heavy computational workload, etc. [61]. To address these
challenges, other approaches have been built to utilize the IMU
embedded in mobile devices such as AcceleGlove [24], ASG [57],
ViBand [40], GestGlove [3], and Finexus [10]. Furthermore, various
devices such as Myo [76], EMPress [45], Force Myography [31, 82],
EchoFlex [44] have been introduced to exploit special bio-signatures
extracted from the electromyographic signal (EMG) or ultrasound
images captured from human muscles as a new input type.
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Wrist-worn devices. One of the ongoing research focus is to rec-
ognize gestures [17, 25, 30] by analyzing the tension of carpus mus-
cles [12, 18, 32, 42, 47]. These studies measure and calibrate data
captured from di�erent skin sources. For example, cameras [63],
accelerometers, and gyroscope attached to the user’s wrist and�n-
ger [10] can be used to measure the changes of the outer skin. Other
approaches such as WristWhirl [21], SkinWatch [51], SensIR [43]
captures the change of muscles from the light re�ected o� the skin
when a chain of multiple IR emitters and receivers are attached on.
On the other hand, inner skin source method measures the muscle
signal (EMG), i.e. Myo product [76]; or the impedance tomography
(tomo [85] and tomo2 [86]). However, none of these techniques are
battery-free or require minimum training as CapBand

The works that are most relevant to CapBand are capacitive-
sensing wearable devices. Swedish glove [34] introduces a capac-
itive sensor attached to each� nger and an on-wrist air pressure
sensor to capture� nger� exions. GestureWrist [62] measured ca-
pacitance caused by wrist-shape changes and forearm movements
using a system of 6 receiver electrodes and 1 transmitter electrode
placed on top of the user’s wrist. These devices and our previous
works [77, 78] are di�erent from CapBand in that (1) we have the
dedicated sensors and wristband design that eliminate the in�u-
ences of surrounding factors such as user’s sweat and ambient heat
and (2) wemeasure the capacitance changes of those capacitors with
an ultra-low-power sensing technique which makes battery-free
possible.
Low power wristband. Times in operation is one of the key char-
acteristics of a wearable device [56]. Users always have the demand
to reduce charging time of their smart phone, smart watch or even
a laptop. The development of wristband is also required to follow
the trend of prolonging operation time by cutting down the power
consumption. One of the relevant work on low-power consumption
of wrist-worn device is Wristband Vital [6] which can track down
human activity for approximately 60 hours with a lithium-ion coin
battery. However, their device only has a very simple function of
tracking. The other one, WristFlex [13], designed to recognize hu-
man hand gestures, can put in operation for up to one week. In
our work, we demonstrate the capability of CapBand to operate
with transient powering from both solar cell and RF-based energy
harvesting module. In fact, most of COTS devices are not optimized
to obtain ultra-low power consumption due to their use of sensors
that are not speci�cally designed wearables.

11 DISCUSSION
Comparative studies. We have reported gesture classi�cation ac-
curacy of 0.95 using “motion+static” data and 0.93 using “static-only”
data. Prior research has reported performance with inconsistent
gesture set and their prototypes are lack of open-source materials,
making it di�cult to construct a direct comparison. As a result, we
have focused primarily on a relative comparison with widely-used
machine learning methods. In addition, the reported result in this
paper is per-person trained. We are working on collect enough
training data in order to build a generalized model and eliminate
the per-person training process. Even though CapBand shows high
recognition accuracy with the current set of 15 gestures, there are
still other hand gestures that are not included, e.g. pinch gestures

and small� ngers only gestures. It will be part of our future work
to test our system with a larger set of gestures.
Future integration.CapBand includes the energy harvestingmon-
itor, the custom sensing hardware, and the host device (either PC
or BLE-enabled smartdevice) along with CapBand localization and
hand gesture recognition software. One of our main goals is to
reach low power consumption of the sensing mechanism on cus-
tom hardware. Therefore, we do not pay much attention to the
optimization and evaluation of the energy consumption on the host
device in this work, which can be an interesting topic for future
studies. The current prototype is still at POC stage. Our future
goal is to reduce the size and cost of CapBand and integrate all the
modules into one piece. Moreover, the techniques in this paper, i.e.
the capacitance sensing and customized sensor fabrication, along
with the PCB fabrication improvement and the sensor size reduc-
tion, not only have great potential to be integrated into commercial
products, such as smartbands or smartwatches. Some of these de-
vices have already employed BLE component and battery. They are
also promising to be utilized in other applications related to skin
deformation detection such as respiration rate measurement, facial
gesture recognition [48] and silent speech system.

12 CONCLUSIONS
In this work, we designed CapBand, a battery-free wristband sys-
tem for hand gesture recognition. We analyzed human wrist and
hand gesture anatomy to build a wrist muscles-to-gesture model,
introduced a successive capacitance measurement technique for
ultra-low-power and highly sensitive sensing of small skin move-
ment on the human wrist. We designed a CNN-based model for
classifying 15 hand gestures using both motion and static features.
To help users adjust the wristband position, we also developed a
kernel-based on-wrist localization method. A prototype CapBand
system has been implemented to demonstrate its feasibility with a
custom-built� exible electronic circuit, custom PCB hardware, and
custom-built RF-based energy harvesting hardware module. Evalu-
ations with 20 participants provide promising accuracy, with 95.0%
for classifying 15 hand gestures and 95.3% for on-wrist localization.
We also conducted a user study to understand the usability of the
system in terms of its responsiveness, robustness and form factor.
As our future work, we would like to investigate more e�ective use
of the motion and static features to further improve classi�cation
accuracy and reduce system latency. We will investigate the robust-
ness of the system manufacturing process and its impact on system
performance. Since CapBand is battery-free and robust across users
and per-use variations, we expect CapBand to be readily usable
for many real-world settings for accurate hand gesture recognition.
Our kernel-based on-wrist localization method may also prove to be
generally applicable to other on-body sensing wearable solutions.
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