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Abstract—Next generation network access technologies and Internet applications have increased the challenge of providing
satisfactory quality of experience for users with traditional congestion control protocols. Efforts on optimizing the performance of TCP
by modifying the core congestion control method depending on specific network architectures or apps do not generalize well under a
wide range of network scenarios. This limitation arises from the rule-based design principle, where the performance is linked to a
pre-decided mapping between the observed state of the network to the corresponding actions. Therefore, these protocols are unable to
adapt their behavior in new environments or learn from experience for better performance. We address this problem by integrating a
reinforcement-based Q-learning framework with TCP design in our approach called QTCP. QTCP enables senders to gradually learn
the optimal congestion control policy in an on-line manner. QTCP does not need hard-coded rules, and can therefore generalize to a
variety of different networking scenarios. Moreover, we develop a generalized Kanerva coding function approximation algorithm, which
reduces the computation complexity of value functions and the searchable size of the state space. We show that QTCP outperforms
the traditional rule-based TCP by providing 59.5% higher throughput while maintaining low transmission latency.

Index Terms—Reinforcement learning, TCP congestion control, function approximation, dynamic generalization, Kanerva coding.
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1 INTRODUCTION

RAPID advancements in wired and wireless technologies has
triggered the emergence of new network architectures, such

as 60 GHz mmWave WiFi [1], cognitive radio networks [2],
[3], [4] and data center networks [5]. At the same time, the
proliferation of new applications such as video streaming, cloud
storage, on-line gaming, creates higher performance requirements
for the data transmission environment and poses new challenges
on the design of congestion control protocols.

In contrast to these new and evolving networking scenarios
and user applications, the same transport protocol design has been
employed over the past three decades, with TCP NewReno being
one of the de-facto congestion control standards. Despite effort
expended to develop new congestion control protocols (such as
Vegas, FAST, see Sec. 6 for more details), these protocols broadly
share a common limitation of not being able to perform well
across a wide range of networking scenarios, and hence, are
seldom deployed in real world networks. This limitation stems
from the fact that these protocols are built on the common concept
of relying on pre-configured rules to guide the behavior of end
hosts (e.g., how to change the congestion window size) given
specific observations of the surrounding environment (e.g., mea-
sured throughput, RTT). For example, the NewReno protocol uses
the well-known additive increase, multiplicative decrease (AIMD)
strategy, and Cubic adopts a well-crafted function to adjust the
congestion window size (cwnd) given feedback from the receiver.
This rule-based design can cause two problems: First, it causes
congestion control protocols to be unable to adapt to new scenarios
when a network environment changes. Since different kinds of
networks differ in significant ways with respect to bandwidth,
delay and network topology, a given TCP flavor that works well
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for a specific network might not work in another. Second, the rules
of operation are usually built upon standard assumptions or the
network model. When either changes, the fixed mapping between
observation and actions means that TCP does not intelligently
adjust its behavior by learning from experience. As a result, the
protocol repetitively adopts the same cwnd changing rules that
bring sub-optimal performance, without the flexibility to adjust
behaviors for better performance (Sec. 2).
Proposed Approach: In this work, we use reinforcement learning
(RL) to design a congestion control protocol called QTCP (Q-
learning based TCP) that can automatically identify the optimal
congestion window (cwnd) varying strategy, given the observa-
tion of the surrounding networking environment in an on-line
manner. It does not need for manually-crafted rule sets or time-
consuming off-line training process. RL enables agents to adjust
their behavior based on real-time feedback, and avoid repeating
the same mistakes by discouraging ineffective behavior. We utilize
this capability in QTCP to allow senders to dynamically learn
different strategies to better adapt to varying networking scenarios,
instead of mechanically following fixed rules. Specifically, QTCP
continuously updates the values of possible state-action pairs of
the protocol, based on the measurement of performance metrics
collected from a networking environment, and uses Q-learning
algorithm to search for the best action, i.e., how to adjust the cwnd
in specific states so that the long term reward of the sender is
maximized.
Challenges and Innovations: While RL has been shown to
perform well on many hard problems (e.g., Go, automatic driving),
applying it to TCP congestion control is particular challenging due
to the problem’s continuous, high-dimensional state space. The
size of the state space can grow exponentially with the dimension
of the state space, causing an significant increase in the size of the
table needed to store the state-action values. It is usually very time-
consuming to update entries in such a large table, which results in
unacceptably long training time. To speed up the learning process
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and make QTCP tractable, we apply function approximation [6],
which is an effective way to reduce the size of the state space
needed to search and explore using an abstract state representation.

While there are many function approximation algorithms
available, we choose Kanerva coding [7], also known as Sparse
Distributed Memories (SDMs), because of its low complexity,
quick convergence and its effectiveness in solving problems with
large, high-dimensional and continuous state spaces. The idea
of Kanerva coding considers such a setting that the whole state
space is represented by a carefully selected subset of the state
space based on which trained values are stored and derived
policies are evaluated, thus reducing the memory consumption and
computation complexity of value trainings significantly. However,
we found that the performance of original Kanerva coding is
not satisfactory in practice due to the improper selection of the
subset of the state space. To solve this problem, we propose a
novel approach, generalization-based Kanerva coding, that can
adjust the level of abstraction for each entry of the subset of
the state space and thus dynamically reallocate the subset to find
its near-optimal structure when exploring the state space. Our
approach allows the granularity of the state abstraction to be
changeable based on visited states, where less important entries
of the subset with improper levels of generalization are examined
and replaced with ones that provide better generalization. This
overcomes the limitations of the classic Kanerva coding algorithm
and its variants, enabling QTCP to have faster convergence and
better overall learning performance.

In summary, we make following two contributions:

• We describe QTCP, a Q-learning based congestion control
protocol that automatically learns the effective strategies
for adjusting the cwnd to achieve high throughput and low
delay in an on-line manner. This fundamentally changes
the design of previous NewReno-like TCP variants that
require fixed, manually selected rules.

• We propose a new kind of Kanerva coding algorithm that
scales well when applied to large complex state spaces
and greatly speeds up convergence and provides stable
performance. Our algorithm allows the learned values no
longer to be stored in a tabular form and thus eliminates
a vital limitation, e.g., unable to handle enormous states,
of RL technique when applied to large-scale problem
domains.

This paper is organized as followings. In Sec. 2, we give an
overview of congestion control problems and the limitations of
rule-based TCP variants (using NewReno as an example). We
describe the design of QTCP in Sec. 3. In Sec. 4, we introduce
the principles of function approximation used in RL, discuss the
issues of existing Kanerva coding approaches, and then propose
our generalization-based Kanerva coding algorithm. We present
experimental results in Sec. 5. We show related work in Sec. 6
and finally conclude our work in Sec. 7.

2 BACKGROUND AND MOTIVATION

In this section, we quantitatively describe the problem with classic
additive increase multiplicative decrease (AIMD) rule used by
TCP NewReno. Then we discuss the limitations of rule-based
TCP and motivate the need for a more adaptive strategy to control
congestion in a network.
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Fig. 1: TCP cwnd graph for a NewReno flow: (1) slow start (2)
congestion avoidance and (3) fast recovery after duplicate ACK.

2.1 Congestion Control: Problems and a Classical So-
lution
The goal of congestion control is to allow senders to share
limited bandwidth fairly, without overwhelming the network. The
congestion control algorithm does this by maintaining a cwnd that
limits the maximum number of packets each sender can safely
inject into the network without causing traffic congestion. In
general, using larger cwnd allows more packets to be sent into
the network that can potentially give higher throughput. However,
if every sender tries to greedily maximize its own throughput and
keeps increasing cwnd, increased congestion can severely degrade
every sender’s performance.

While many other factors (such as packet size, sender and
receiver buffer size, etc) can influence the value of the cwnd, the
key problem in congestion control is to enable each sender to
independently tune the cwnd that maximizes its own throughput
while co-existing fairly with other competing flows in the network.
For example, the sender should increase the cwnd to increase the
link utilization and reduce the cwnd if the packet loss rate or
the queuing delay increases when the network is congested. The
challenge is that TCP is an end-to-end protocol as it works only on
two end hosts. The sender does not has ground truth information
about path characteristics, such as bottleneck link bandwidth or
the current number of flows that are sharing the same link.
Nor can different senders coordinate or share information with
one another. The end-to-end paradigm significantly increases the
complexity of congestion control protocol design. While there are
some TCP variants that break this rule by assuming the existence
of a centralized controller or the availability of a global view of
the entire network, such designs are limited in generality and can
only be applied to small-scale scenarios such as enterprise or data
center networks.

A classic congestion control protocol is NewReno [8], which
is also one of the most widely used TCP today. It uses the AIMD
rule to control the cwnd. The basic idea of AIMD is to first
slowly increase the cwnd until the bottleneck link buffer has been
saturated and the packets are dropped by the router (additively
increase). Information about packet drops is conveyed back to
the sender with duplicate ACKs indicating network congestion.
After that, sender reduces its sending rate by halving its cwnd
(multiplicative decrease). In summary, the behavior of NewReno
can be broadly modeled as using the following three stages:

• Slow start: cwnd = cwnd + 1 for every ACK received



3

• Congestion avoidance: cwnd = cwnd + 1/cwnd for every
ACK received

• Fast recovery (duplicate ACK): cwnd = cwnd/2

The phases of NewReno are shown in Fig.1. During slow start
(stage 1), the cwnd ramps up quickly, approximately doubling
every RTT until it reaches the slow start threshold. This allows
the new flows to quickly acquire bandwidth. During congestion
avoidance (stage 2), the increasing speed of cwnd slows down
(approximately by 1 MSS every RTT). This is to enable the sender
to cautiously detect the congestion point of the network. Once the
sender receives packet loss information, it halves cwnd when it
receives duplicate ACKs (stage 3) or reduces cwnd to 1 when
severe congestion is observed and the sender fails to receive any
feedback from the receiver. It has been shown that AIMD can
guarantee convergence to a policy that optimally shares bottleneck
bandwidth with respect to both efficiency and fairness [9].

2.2 Limitation of Rule-based TCP Protocols
In addition to NewReno, many other congestion control protocols
have been described to further optimize TCP0s performance for
specific networks or applications. However, we point out that
there are two key limitations faced by these rule-based congestion
control protocols:

• Inability to adapt to new or unseen network scenarios:
Most existing protocols do not adapt their congestion-
control strategies as the network evolves over time. For
example, NewReno will always increase cwnd by one
over one RTT during congestion avoidance stage, even
though it might be too slow for the flow to fully utilize the
bandwidth in some modern Internet routes where the link
bandwidth is high and the round trip time (RTT) is long.

• Inability to learn from historical knowledge: Every time
a flow starts, the classical approach assumes no prior
information of the links. However, much better perfor-
mance can be achieved if TCP can adjust its behavior
based on previously learned information when the same
path was previously explored. For example, if NewReno
already has knowledge learned from previous interactions
with path characteristics such as bandwidth, delay, packet
loss rate, it may be able to adjust its behavior with more
flexibility: it may speed up the cwnd more aggressively
during congestion avoidance to increase the link utilization
on less congested links.

We use the following ns-3 simulation with dynamic spectrum
access links in cognitive radio (CR) network to study a typical
bandwidth-varying scenario that highlights the above problems.
CR allows opportunistic use of under-utilized licensed spectrum
allocated to primary users, where the CR user has to sense
interferences and periodically switch to a new spectrum to avoid
interfering with the primary user. This spectrum sensing and
switching process may lead to short transmission stall and sudden
changing in the available bandwidth, making effective congestion
control more challenging [10], [11].

We can show the performance of NewReno with varying
network conditions (bandwidth, frequent interruptions caused by
PU activity/sensing). We start one NewReno flow from one
source to the CR mobile device. We model the consecutive
transmission On period and the disconnection caused by spectrum
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(b) Varying cwnd of NewReno.

Fig. 2: The real time throughput and cwnd variation of a TCP
NewReno flow. Bottleneck bandwidth is uniformly distributed
between [20,40] Mbps. RTT = 100ms, Buffer size = 150 packets.

sensing/switching as the Off period. We fix the “On” period
to be 9s and the “Off” period to be 1s. The varying range of
channel capacity is chosen between 20Mbps and 40Mbps. Thus,
the bandwidth availability changes by uniformly picking a value
between 20Mbps and 40Mbps every 10 seconds.

As shown in Fig. 2a, the performance of NewReno is far from
satisfactory in this network scenario – it only achieves about 30%
of link bandwidth. Fig. 2b reveals two key reasons behind the
low link utilization: (1) the cwnd will drop to one due to the
timeout event triggered every time the CR user is performing
spectrum sensing/switching, and (2) the slow increase of cwnd
during the convergence avoidance does not allow the sender to
acquire sufficient network resources between two transmission
interruptions. Even worse, this pattern is repeated in each cognitive
cycle, indicating that a rule-based protocol is unable to learn from
previous experience and adapt its behavior to achieve consistent
good performance in evolving practical network nowadays. While
a larger initial cwnd might improve performance, we will show
that our adaptive algorithm can achieve improved performance
even when starting with a suboptimal initial cwnd.

3 QTCP: APPLY Q-LEARNING TO TCP CONGES-
TION CONTROL

In this section, we explore the use of RL to automatically design
congestion control strategies. RL has the potential of overcoming
the problems of rule-based TCP described above as it can enable
agent to learn from past experience, without the need for manually
settled rules or prior knowledge of the networking scenarios.
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Fig. 3: Solution framework of our RL-based TCP congestion
control design.

Specifically, we discuss how to apply Q-learning, a classical RL
algorithm to the domain of congestion control problem and pro-
pose QTCP: a new congestion control protocol that allows sender
to learn the optimal cwnd changing policy through interaction with
the network scenarios.

3.1 Overview of QTCP
The framework of QTCP is shown in Fig. 3. The learning
agent (sender) interacts with the network environments and keeps
exploring the optimal policy by taking sequential actions (e.g.,
varying the cwnd) given feedback as it works to achieve its desired
goal, i.e., large throughput and low latency. Like any typical RL
problem, QTCP consists of the following elements:

• States: defined as informative perceptions or measure-
ments that an agent can obtain from the outside environ-
ment. Here, the state is a unique profile of the network
conditions evaluated through selected performance metrics
(Sec. 3.2).

• Actions: chosen by an agent at each time step, after
perceiving its current state, according to a policy. In the
context of congestion control, the action is the decision to
increase, decrease, or leave unchanged the current cwnd
(Sec. 3.3).

• Reward: this reflects the desirability of the action picked.
As we describe below, the reward is further specified by
the value of a utility function, which is computed based on
the measurement of flow throughput and latency. Higher
throughput and lower latency translates into a higher utility
value and vice-versa (Sec. 3.4).

• Training algorithm: The purpose of the training algorithm
is to learn the optimal policy to select certain action
for each state. This is the central module of QTCP as
it is responsible for developing the congestion control
strategies (Sec. 3.5).

The performance of QTCP depends on appropriate selection
and design of above mentioned elements, and we will further
discuss them in the following sections. In general, QTCP works
by checking the values of selected state variables and passing
these state values to the currently trained policy to generate an
action to adjust cwnd. Then QTCP observes the new state and
the reward and uses them as an input to the training algorithm
that evaluates and improves the cwnd changing policies. Since
we choose Q-learning as the training algorithm, the above process
can be conducted in an on-line manner.

The key challenge of applying learning algorithm to conges-
tion control is sifting through the overwhelming number of state
combinations used to model the environment. To solve this prob-
lem, QTCP takes advantages of advanced function approximation
technique to learn the value functions of encountered state-action
pairs and optimal policies when observing new states from the
network environment. Specifically, we first choose the adaptive
Kanerva-coding as a base-line algorithm and then propose an
improved generalization-based mechanism to further speed up the
learning process and optimize the training qualities (Sec. 4).

3.2 States
Network topologies can be complicated and traffic can un-
dergo dramatic changes, especially when considering competition
among multiple data flows and arbitrary bandwidth changes. The
continuous, high-dimensional state space used to represent the
network can generate a nearly infinite number of states. Many
state variables can describe the characteristics of the network
environment, such as the most-recent sample RTT, average time
between the timestamps when sending packets, average inter-
arrival time between newly received ACKs, the average throughput
in a time interval, the average RTT in a time interval, the threshold,
the immediate cwnd or the average cwnd during a past time
interval, etc. A high-dimensional state space that consists a large
set of state variables would not only exponentially enlarge the
size of the state space to explore, but also significantly delay
convergence. It makes sense to reduce the set of state variables
and only focus on those features of the environment that relate
to the agent’s goal. We therefore need to identify the appropriate
state variables that can capture the performance of actions taken
by QTCP and guarantee the tractability of the learning process.

We consider the state space used in Remy [12] and choose our
three state variables described as followings:

• avg_send: the average interval between sending two pack-
ets.

• avg_ack: the average interval between receiving two con-
secutive ACKs.

• avg_rtt: the average RTT.

We calculate avg_send by taking the average of several packet-
sending intervals in a time window (one RTT) to reduce the esti-
mation bias. The avg_send and avg_rtt are calculated in a similar
way. All values are represented in milliseconds and commercially
rounded to nearest integer values.

We use these three state variables because they are signifi-
cantly affected by network congestion and can be seen as efficient
"congestion probes". For example, avg_send characterizes the
traffic sending rate at the sender side and avg_ack reflects the real
goodput measured at the receiver side. If there is no congestion,
then ideally avg_send should be equal with avg_ack. On the
other hand, avg_send < avg_ack indicates a high possibility of
congestion and the sender should slow down its sending rate.

Note that although we reduce the number of state variables to
three, the state space is still huge because of the large number of
different values these variables can take. For example, assuming
the range for avg_ack and avg_send is from 1 to 175 and the
range for avg_rtt is from 120 to 155, then there will be a space of
1, 115, 136 states. Such a large space poses a great challenge to
the design of QTCP, as it can make the learning process very slow
and could make convergence impossible. We will further discuss
this problem in Sec. 4.
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3.3 Actions

TABLE 1: cwnd modification options

Change in cwnd Extent of change (bytes)
Increase 10
Decrease -1

No change 0

The selection of actions is the key to the QTCP’s performance.
An action specifies how QTCP should change its cwnd in re-
sponse to variations in the network environments. While there are
an infinite number of actions the QTCP can take, we only allow
three actions to simplify our action space (shown in Table 1). The
first action increases the cwnd by 10 bytes. The second action
reduces the size of cwnd by 1 byte making it possible to reduce
the congestion issue in the network flow and the last action does
nothing to the size of cwnd letting the cwnd remains the same
as before. The reason why we assign a relatively large value, i.e.,
10, to increase the size of cwnd and at the same time assign a
relatively small value, i.e., 1, to reduce the size of cwnd is that
we intend to encourage the agent to quickly increase the cwnd to
utilize the bandwidth while still offering an option to decrease the
sending rate when necessary. We pre-set increase/decrease values
for corresponding actions in our design. We found that these values
can achieve satisfactory performance across different networking
scenarios since our RL-based QTCP can adaptively learn a serial
of optimal actions to accommodate the new network scenarios.
Note that in QTCP, the control decisions are learned from actual
experience and thus it eliminates the need for necessary pre-coded
rules to adapt to various scenarios of the network environment.
The set of available actions could also be related to particular
network conditions, e.g., using a function of the packet size to
direct the rate of increase/decrease of cwnd. However, we have
found that this approach does not lead to significant performance
improvements.

Note that when the size of cwnd is changed by one action,
this cwnd will remain unchanged and be applied to the sender
each time it receives an ACK until learning agent makes another
action decision to change the size of cwnd. This is different from
how NewReno updates the cwnd. In NewReno, whenever a new
ACK is received, the cwnd will be adjusted by a numeric value
provided by some predefined strategies. However, when applying
our learning algorithm to TCP congestion control, our learning
agent makes the action decisions in every tinterval time interval,
allowing the action taken in previous state have enough time to
occur on the network flow which also allows the agent accurately
measure resulted throughput and RTT since it takes certain time
for the sender to count ACKs received (the ACKs are used to
measure the throughput and RTT by our learning agent) with
respect to those latest sent packets.

3.4 Utility Function and Reward Definition
A utility function specifies the objective of QTCP. The goal of the
QTCP is to find the decision policy of cwnd that can maximize the
value of the utility function for each sender. While QTCP can take
a variety of different objectives, we choose proportional fairness
and define the utility function as follows [12]:

Utility = ↵⇥ log(throughput)� � ⇥ log(RTT) (1)

where ↵ and � control the relative weight or importance of
throughput and RTT. Intuitively, the function emphasizes that

every flow should try to maximize its throughput while minimizing
delay. The log function ensures that the network can converge to
a proportional fairness allocation of bandwidth resources when
multiple users compete for the same bottleneck link.

While the utility function is the true objective that the QTCP
attempts to optimize, we find that its value cannot be used to
indicate the desirability of the action taken in particular state and
hence cannot be directly used as a reward for the learning process.
To see why this is the case, assume that the cwnd adjusted by
a learning agent has already converged to the optimal cwnd w1

that achieves 100% link utilization. Then suppose a new flow
comes in, now the available bandwidth for each flow is 50% of the
total bandwidth. In this scenario, the optimal action for the first
flow should halve the cwnd to w1/2 to fully utilize the current
available 50% of the total bandwidth. However, this is not the
case for the original flow if using utility value as a reward signal.
Instead of choosing actions that involve an amount of decreases to
the cwnd, the learning agent would still retain the preference of
previously adjusted cwnd w1 since its resulted utility value, while
being reduced to a smaller value, could still be a positive value and
thus continue enhancing the preference of taking previous action to
change the cwnd that proves unsatisfactory in the new case. The
ambiguity in action evaluation comes from the unique dynamic
network environment the learning agent is interacting with, and it
means we cannot simply take the utility value as the reward.

Instead, we consider the difference between consecutive utility
values to define the reward. This is because an increase in the util-
ity value indicates an improvement and hence the corresponding
action should be encouraged, regardless of the original value of the
utility function. This naturally overcomes the ambiguity in action
evaluation brought by varying network scenarios. Therefore, we
define the reward as follows:

• a, if Ut � Ut�tinterval > ✏

• b, if Ut � Ut�tinterval < �✏

where a is a positive value and b is a negative value both of which
are used to indicate the reward (a reinforcement signal) given
the direction of changes between two newly observed consecutive
utility values. The ✏ sets a tolerance of the changes between utility
values. It is a tunable parameter that sets the sensitivity of the
learning agent to changes in the utility values.

3.5 Training Algorithm
The training algorithm attempts to find a policy that selects actions
under specific states to maximize the long term reward received by
the agent. In QTCP, the reward is decided by the utility function, so
the goal of the training policy is to automatically develop the cwnd
varying strategy to maximize the throughput while minimizing
delay. Therefore, the learning speed and quality of the training
algorithm is the key to the performance of QTCP.

3.5.1 Why Q-learning
Many training algorithms can be used to solve the RL problems.
For example, dynamic programming (DP) methods are proved to
be able to compute optimal policies in RL given a complete and
accurate model (i.e., state transition probabilities) of the environ-
ment that can be described as a finite Markov decision process
(MDP). However, DP’s particular need of a perfect model of tran-
sition probabilities about network dynamics makes it unsuitable
to solve our problem since initially in learning, we have no prior
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knowledge on the network environment. Alternatively, two model-
free methods, Monte Carlo and temporal-difference (TD) learning
methods, have been proposed. Unlike DP’s dependence on a model
to calculate the value function of each state, Monte Carlo methods
average all returns starting from a state to calculate its value
function when an episode terminates. However, learning the value
function and optimal policy on this episode-by-episode basis in
Monte Carlo method makes it infeasible to apply to our congestion
control task since the congestion control task is so time-sensitive
that it needs fine-grained step-by-step incremental updates on
value functions to develop satisfactory policies. Moreover, as a
continuing task, it is impractical to divide the task into a sequence
of episodes for learning.

Nowadays, the most widely used technique in RL is the class
of TD learning methods that are not only model-free but also can
be incrementally implemented on a step-by-step basis and with
minimal computational cost. Q-learning, one popular TD method
that has been successfully applied to many practical applications,
can effectively learn value functions and optimal policies in an
on-line manner. Therefore, we use Q-learning as the training
algorithm in our learning-based TCP congestion control design.

3.5.2 Apply Q-learning in QTCP
Q-learning uses a simple value iteration update process. At time
step t, for each state st and each action at, the algorithm calculates
an update to its expected discounted reward, or action-value
function Q(st, at) as follows:

Q(st, at) Q(st, at)+

↵t(st, at)[rt+1 + � max

a
Q(st+1, a)�Q(st, at)] (2)

where rt+1 is an immediate reward, ↵t(st, at) is the learning rate
such that 0  ↵t(st, at)  1, and � is the discount factor such
that 0 < �  1. Q-learning stores Q(st, at) values as entries in a
table, called the Q-table.

Q-learning gives good learning performance and fast conver-
gence for problem domains with small state spaces. However, Q-
learning scales very poorly with large-scale state spaces, especially
when the state spaces consist of continuous variables. In this
case, the enumerated states are infinite and it is impractical to
use Q-table to record value function for each state or state-
action pair. To reduce the memory required to store large Q-
tables and the training time required to update values of visited
states or state-action pairs, generalization technique, also called
function approximation, that relates values among similar states
has been proposed and widely used when applying RL algorithm
to domains with high-dimensional, continuous state spaces.

4 PRACTICAL QTCP WITH FUNCTION APPROXI-
MATION

As described above, it is very challenging, if not impossible,
for the Q-learning algorithm to successfully train the high-
performance policy given the extremely large state space. In this
section we discuss how to make QTCP practical with function
approximation based on Kanerva coding. Kanerva coding is an
effective approach to reduce the number of states needed for train-
ings, making the Q-learning tractable in the presence of a high-
dimensional, continuous state space. We first introduce the basic
adaptive Kanerva coding algorithm. Then, based on the limitation
of the original algorithm, we describe a new generalization-based

Kanerva coding scheme that achieves higher function approxima-
tion ability and more stable policy training performance.

4.1 Basic Algorithm
Kanerva Coding (SDMs): In the architecture of Kanerva coding
[7], a set of prototype states (prototypes) is selected and used to
approximate the value functions, where the state or state-action
values are estimated by a linear combination of values of local
prototypes. In each time step, only prototypes that are adjacent to
the input sample data are updated. A prototype is described by a
sequence of state variables and each state variable has a range of
numerical values. In Kanerva coding, a collection of k prototypes
is selected before learning. Given a state s and a prototype pi,
||s � pi|| represents the number of state variables whose values
differ between them. A state s and a prototype pi are said to
be adjacent if s and pi differ by less than a given amount, e.g.,
differing in at most one state variable or dimension. We define the
membership grade µ(s, pi) of state s with respect to prototype pi

to be equal to 1 if s is adjacent to pi, and 0 otherwise. A value
✓(pi, a) is maintained for the ith prototype pi and action a, and
ˆ

Q(s, a), an approximation of the value of a state-action pair (s,
a), is then the sum of the ✓-values of the adjacent prototypes of
state s with action a, defined as follows:

ˆ

Q(s, a) =

X

i

✓(pi, a)µ(s, pi) (3)

When the learning agent takes action a in a state s, receives a
reward r and transitions to next state s

0 where a new action a

0 is
chosen, the ✓-value for each prototype is updated as follows:

✓(pi, a) ✓(pi, a)+

µ(s, pi)

M

↵(s, a)[r+� max

a0
ˆ

Q(s

0
, a

0
)� ˆ

Q(s, a)]

(4)
where M is the number of adjacent prototypes of the state s.
Adaptive Kanerva Coding: If the set of prototypes is chosen
wisely, Kanerva coding works well [13]. However, its ability to
estimate the value functions accurately is sensitive to the size
and allocation of the set of prototypes [14]. If prototypes are
not well distributed across the appropriate regions of the state
space, many input sample data, in this case, the visited states, will
not be adjacent to sufficient prototypes, or even worse, they will
not have any adjacent prototypes at all to estimate their values.
This scenario is caused by poorly selected prototypes and greatly
reduces the accuracy of value function estimation. As a result, the
learning quality and convergence can be affected.

To solve this problem, an adaptive Kanerva-based ap-
proach [15] was proposed and also effectively used by [16] when
solving an Xpilot-AI video game task that has a high-dimensional
continuous state space. This approach starts with an initial set
of randomly selected prototypes and periodically deletes poorly-
performing/rarely utilized prototypes and generates corresponding
new prototypes (e.g., ones that are adjacent to most frequently
utilized prototypes) to gradually adjust the allocation of original
set of prototypes to cover the region of interest. However, the
scheme that generates new prototypes based on certain prototypes
found in the initial prototype set limits its ability to further explore
better layout of the set of prototypes. Moreover, prototypes should
not be permanently deleted based on their periodically-observed
performance since their performance may fluctuate and also their
long-term importance may be as yet unperceived. In addition,
prototype deletions could lose previously-learned information and
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Fig. 4: Various sizes of receptive fields of 2-dimensional proto-
types. Note that the size of the receptive field indicates the level
of generalization for each prototype and is measured based on the
periodically observed visit frequency of each prototype.

newly-generated prototypes need time to retrain both of which
would slow down convergence time.

4.2 Dynamic Generalization Kanerva Coding Algorithm
We propose a generalization-based Kanerva coding technique that
provides a general methodology for learning agents to automati-
cally adjust and explore potential space abstractions and manage
the levels of generalization for each prototype in a flexible and
adjustable manner.

4.2.1 Prototypes’ Varying Abilities to Generalize
The size of the state space covered by a prototype, also called
the receptive field of the prototype, corresponds to the number
of similar/neighboring states that are adjacent to the prototype.
During the learning process, prototypes encounter differing num-
bers of similar/neighboring states and thus have varying sizes
of receptive fields that may partially overlap with one another.
Fig. 4 shows that prototypes P1 – P14 have varying sizes of
receptive fields within which states S1, S2, S3 and S4 in P1
share the values learned by the prototype P1 that covers them.
The receptive field of each prototype shows how many adjacent
states each prototype is able to share its value with. Note that the
size of receptive field of each prototype indicates the prototype’s
ability to generalize since its acquired knowledge can be applied to
adjacent states. Empirical results show that prototypes in Kanerva-
based approaches usually have varying levels of generalization. As
shown in Fig. 4, prototypes have different generalization abilities
and their levels of generalization decrease from prototype P1 to
prototype P14. Note that we use the number of encountered states,
not the total number of states, that are adjacent to the prototype to
estimate the level of generalization for that prototype.

Generalization, a natural feature of state abstractions, enables
adjacent states to reuse experience gained from previously learned
state samples. To achieve good state abstraction in Kanerva-based
solvers, we must carefully determine the level of knowledge
sharing or generalization. Since the transportation of packets in the
network is complex and incorrect decisions may cause the network
environment to degrade, our learning process can be interrupted in
certain situations that are handled by standard TCP mechanism
such as slow start and fast recovery. Once these mechanisms
have completed, additional time is needed to restore the network
environment and resume the learning process. To mitigate the ef-
fects of this problem, we want our learning algorithm to converge

quickly. The algorithm should have quick convergence through a
relatively small number of trials, and should achieve satisfactory
performance in a short time period.

Inappropriate generalization, such as over- and under-
generalization from the set of prototypes, would result in poor
abstractions and would ultimately degrade the learning quality.
For example, if the receptive field of one prototype, e.g., P1 in
Fig. 4, is very large, making P1 relate to too many states, all
states that reside in P1’s receptive field share the same gained
experience from P1 and in turn use their immediate rewards to
update P1’s value during the value update phase. This allows each
state residing in P1 to be affected by any value updates from other
states that also reside in P1. Since P1’s receptive field is large
and P1 is adjacent to many states, P1’s high generalization can
deteriorate the value updates to many adjacent states in P1.

To make the explanation more clear, we use the states S1 to
S4 in prototype P1 in Fig. 4 as an example. Since S4 is adjacent
to P1, all knowledge gained by P1 will transfer to S4. In this
case, all P1’s adjacent states when encountered, i.e., S1, S2, S3,
etc., would apply their rewards to P1, which would then again be
transferred to S4. Since S4 shares gained knowledge from other
prior state samples and it is very likely that S4 may favor totally
different gained knowledge, its value/knowledge can be learned
very coarsely or arbitrarily making its value less useful, even
after additional learning takes place. We refer to this situation
as over-generalization and we seek to use much finer-grained
generalization to explore the large area that is covered by P1’s re-
ceptive field. In our algorithm, prototypes with over-generalization
are replaced with moderately-generalized prototypes that provide
much finer-grained generalization and hence faster convergence.
If the receptive fields of prototypes, e.g. P14 in Fig. 4, are very
small, they have little or no generalization abilities and should be
replaced with prototypes that provide higher generalization and
more coarsely-grained discrimination.

Our generalization-based prototype optimization algorithm
combines the following steps to construct desired generalization
abilities for considered prototype set. First, we select a number
n of states from the state space as a set of prototypes ~p1 for
learning. Second, in every k time steps, i.e., a time period during
which k number of states are encountered, we calculate the
level of generalization for each prototype. To make the set of
prototypes’ current level of generalization dynamically follow an
appropriate range, we first calculate the prototype set’s average
level of generalization Vavg based on all k encountered states
during current time period. Then we remove prototypes whose
generalization levels are much bigger or smaller than Vavg (see
Line 15 in Algorithm 1 for details). Then the same number of state
prototypes from the candidate prototype set ~p2 that have moderate
(see Line 17 in Algorithm 1 for details) levels of generalization
abilities are selected and introduced to the prototype set ~p1.

4.2.2 Hot Zone and Cold Zone
One contribution of our technique is that it automatically iden-
tifies prototypes with inappropriate levels of generalizations and
replaces those prototypes with alternative ones, giving agent the
ability to adjust the levels of generalization from coarse-grained
to finer-grained over time.

However, some problems arise when dealing with newly
introduced prototypes. First, after new prototypes are added to the
original set of prototypes, their associated ✓-values are typically
set to 0 or other values borrowed from similar states. Since these
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Fig. 5: Illustration of prototype migration between the hot zone
and cold zone.

✓-values are not actually learned by the new prototypes, it takes a
number of learning cycles to correct the initial bias and approach
to the correct ✓-values. It would be useful to avoid this cost to
relearn the values of new prototypes and be able to use their
sufficiently learned values immediately after they are introduced
to the prototype set.

Second, we note that the quality of newly introduced pro-
totypes can be poor. We want the new prototypes to be useful
and effective in the learning process; otherwise, their introduction
may reduce the quality of the abstraction. Therefore, generating
qualified new prototypes is vital part of the reallocation of the set
of prototypes in any Kanerva-based approach.

Finally, we observe that deleting prototypes can unnecessarily
eliminate previously-gained knowledge from the system. The
performance of prototypes can vary over time, and prototypes that
are not effective at one time may be useful later. Regenerating and
training prototypes can take a significant amount of time.

Our new algorithm solves the three problems described above.
Prototype migration, demonstrated in Fig. 5, uses two sets of states
referred to as the hot zone and the cold zone. The hot zone is the
regular set of prototypes used to represent the state abstraction
for learning, used in the traditional Kanerva-based approach. We
apply our generalization-based prototype removal and introduction
on the hot zone. The cold zone consists of a number of random
prototypes and prototypes that have been removed from use in the
hot zone. Prototypes in the cold zone are continuously trained (i.e.,
their values continue to be updated for possible future use). The
cold zone is used to provide qualified prototypes that have desired
levels of generalization and already sufficiently leaned knowledge.

It is worth noting that there is a trade-off between introducing
the cold zone for the sake of unqualified prototypes retraining and
discarding them entirely to achieve less computational overhead.
The design of the cold zone inevitably introduces certain costs,
i.e., extra memory space to store prototypes and learning cycles to
train these prototypes. However, our results show that the use of
a cold zone improves the performance of function approximation
enough to compensate for the additional computation and memory
costs incurred.

4.2.3 QTCP with Generalization-based Kanerva Coding
We apply the regular learning processes to the hot zone, including
updating prototypes’ ✓-values, calculating the approximated Q-
values from prototypes, and calculating prototypes’ levels of
generalization. At the same time, prototypes’ values in the cold
zone are also updated and their levels of generalization are

Algorithm 1: QTCP with Generalization-Based Kanerva
Coding

Input: ~p: a set of prototypes, ~✓: ✓i is the value maintained for
pi, ~g: gi indicates the level of generalization of pi

Output: ⇡: action decisions to adjust the cwnd
1 Procedure Main()
2 Randomly select a set of prototypes ~p from state space and

initialize each ✓i and gi to 0
3 Divide ~p into two sets with different sizes, the set ~p1 with a

small size is hot zone and the set ~p2 with a large size is
cold zone

4 for each new ACK received in congestion avoidance mode
in TCP NewReno do

5 if reward is updated then
6 if encountering accumulatively k number of states

then
7 PrototypeOptimization( ~p1, ~p2, ~g)
8 TraditionalKanervaCoding(pre_s,

pre_a, ~p1, ~✓, ~g)
9 Also update prototypes’ ✓-values and levels of

generalization in cold zone ~p2
10 else
11 Take action pre_a and apply it to cwnd
12 Procedure PrototypeOptimization( ~p1, ~p2, ~g)
13 Vavg = average level of generalization in ~p1
14 for each prototype ~p1i in ~p1 do
15 if gi < Vavg ⇤ (1� �) or gi > Vavg ⇤ (1 + �) then
16 Migrate ~p1i to ~p2
17 Select one prototype ~p2j in ~p2 if Vavg ⇤ (1� �) <

gj < Vavg ⇤ (1 + �)
18 Then migrate ~p2j to ~p1

calculated. Note that prototypes in the cold zone are not used
to do state abstractions and are therefore not directly involved in
the estimation of Q-values.

During the prototype optimization phase, we migrate proto-
types that meet the migration criterion between the hot zone and
the cold zone. Prototypes in the hot zone whose generalizations are
undesirable are migrated to the cold zone and prototypes in the
cold zone that have desired generalization abilities are selected
and migrated to the hot zone to maintain the same amount of
prototypes in hot zone. Through this mechanism, when we need
new prototypes to supply to the hot zone, qualified prototypes
that have desired generalization abilities can be easily found in
the cold zone and when they are migrated to the hot zone, their
✓-values are already preset. These updated prototypes can be
immediately used for state abstractions and to approximate Q-
values. In addition, since inappropriate prototypes are migrated
to the cold zone instead of being deleted, we reduce the risks of
permanently losing previously learned values as well as deleting
prototypes with as-yet undiscovered potential.

Algorithm 1 describes how our learning agent handles inap-
propriate generalization of the set of prototypes and automatically
adjusts the set’s generalization for better abstraction in QTCP.
In our algorithm we combine the generalization-based prototype
optimization and the prototype migration between the hot zone and
the cold zone together. The goal is to employ appropriate levels of
generalization for states that should further share gained knowl-
edge, and prevent states that favor finer-grained discrimination or
different action strategies from being inappropriately generalized.
In addition, we argue that our technique offers the potential to
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Fig. 6: Overview of the network topology.

allow learners to manage and modify the levels of generalization
on the set of prototypes in a flexible way, making it easily adaptive
to other contexts. Note that in Line 5, the reward is updated in
every tinterval time interval. This parameter is adjusted by the
designer to get accurate measurements when updating the rewards
in the given context. In Line 15, � 2 R (where � 2 (0, 1)) is
the generalization tolerance factor we defined to set a customized
range of levels of generalization.

5 EVALUATION

We implement QTCP and evaluate its performance under various
networking scenarios in the ns-3 simulator. We focus on showing
that QTCP is able to automatically learns the right cwnd varying
strategy to achieve high flow throughput while maintaining low
delay without manually crafted fixed rules.

5.1 Experimental Setup
Fig. 6 shows the network topology we used in our experiments.
The topology represents a typical dumbbell-like network model,
where multiple flows compete for the bottleneck link’s band-
width. The congestion control protocol must dynamically adjust
the cwnd of each sender to enable them sharing the bandwidth
resources fairly with each other. We first evaluate QTCP with
fixed bottleneck link bandwidth to demonstrate the characteristic
features of learning and state abstraction in this simpler network-
ing environment (Sec. 5.2). Then we extend the evaluation to
varying bottleneck link bandwidth situation to demonstrate the
ability of QTCP to adapt to more complex, non-stationary network
scenarios. (Sec. 5.3).

We focus the comparison of following three approaches:

• NewReno: classical and default congestion control proto-
col in use today

• QTCP-Baseline: QTCP with the original adaptive Kan-
erva coding algorithm, which is a state of art function
approximation method that serves as a baseline

• QTCP-Generalization: QTCP with our newly proposed
generalization-based Kanerva coding

Parameter setting: The simulation parameters used in our experi-
ments are summarized in Table 2. Note that besides the parameters
shown in Table 2, we also vary the values of three parameters,
generalization tolerance factor �, reward update time tinterval

and exploration rate, to see their impacts on the throughput
performance of QTCP-Generalization algorithm (see Fig. 10 and
Fig. 11).

To run the experiments on adaptive Kanerva coding algorithm,
we randomly generate an original set of prototypes ~

P1 with 300

TABLE 2: Simulation parameters

Parameter Value setting
Learning rate ↵ initially 0.95, reduced by a

factor of 0.995 per second
Exploration rate initially 0.1, reduced by a

factor of 0.9995 per second
Discount factor � 0.9
Generalization tolerance factor � 0.8
Reward update time tinterval 0.23 second
Simulation time 800 seconds
RTT 120 ms
Buffer size 200 packets

randomly selected states and initialize their corresponding ✓-
values to 0. Our generalization-based Kanerva coding algorithm
uses an original set of prototypes (hot zone) to enable state
abstraction and implement the regular learning process. The algo-
rithm also uses another larger set of states (cold zone) to provide
well-trained prototypes with desired levels of generalization. To
fairly compare both algorithms, our generalization-based Kanerva
coding algorithm uses the same original set of prototypes ~

P1 used
by adaptive Kanerva coding. We randomly generate a set of 900

states from the state space to construct the cold zone.

(a) Real-time throughput (b) Real-time RTT

Fig. 7: CDF comparisons in fixed bandwidth network.

5.2 Fixed Bottleneck Bandwidth Network
Fig. 7a shows the CDF of real-time flow throughput with different
congestion control algorithms in a fixed bandwidth network. We
set the bottleneck bandwidth in this network to be 40Mbps. We
observe that QTCP-Generalization achieves better performance
than the alternatives – the median throughput reaches close to
20Mbps, which is 14.7% and 14.9% higher than QTCP-Baseline
and NewReno, respectively. Fig. 8 shows the real-time flow
throughput averaged between two senders. The results show that
our QTCP-Generalization outperforms QTCP-Baseline during the
entire learning process. QTCP-Generalization and QTCP-Baseline
outperform NewReno in terms of both average throughput and
stability, especially after the learning process has converged (after
200 seconds).

From Fig. 8 we can make two further observations: First,
the instantaneous throughput of NewReno fluctuates and cannot
remain stable. The main reason is that the fixed AIMD rule
used by NewReno forces the cwnd to be halved when packet
losses are observed, which results in low and unstable average
throughput. On the other hand, QTCP could learn optimal control
behavior by leveraging the outcomes of different decisions made
to interact with the network environment and eventually gain the
ability to appropriately change cwnd and avoid repetitively taking
ineffective actions. Second, equipped with an effective prototype
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Fig. 8: Real-time throughput comparisons in fixed bandwidth
network.

Fig. 9: Real-time RTT comparisons in fixed bandwidth net-
work.

optimization strategy, QTCP-Generalization achieves even higher
and more stable throughput than QTCP-Baseline. As shown in
Fig. 8, QTCP-Generalization learns the decision policy quicker
than QTCP-Baseline, and is able to achieve and retain a very high
(nearly optimal) and stable throughput until the experiment ends.
In comparison, QTCP-Baseline converges slower and achieves
worse throughput. The key reason is that once the baseline
approach deletes rarely-visited prototypes, it generates new proto-
types by splitting those most-visited prototypes. As a result, many
frequently-visited prototypes with similar layouts may be added.
These prototypes dominate the set of prototypes, causing very
coarse-grained generalization and insufficient detailed exploration
on the state space. Since both Kanerva-based function approxima-
tion approaches start with the same original set of prototypes,
the superior performance of QTCP-Generalization comes from
the generalization-based prototype optimization that introduces
prototypes with fine-grained generalization to reallocate the set of
prototypes in order to guarantee sufficient complexity of needed
approximation to function values for each visited state.

Fig. 7b shows that the high throughput achieved by QTCP
does not sacrifice RTT performance. About 98th percentile RTTs
of QTCP-Generalization are between 120ms to 126ms while only
68th percentile RTTs of NewReno are in this range. QTCP-
Baseline basically does not introduce queuing delays. Fig. 9 shows
the real-time RTT of all three algorithms. Like throughput, the
RTT of NewReno flow also suffers from periodic fluctuations
due to the fixed rule-based policy. QTCP-Generalization achieves
better performance by accumulating only a small number of

Fig. 10: Real-time throughput comparisons of QTCP-
Generalization with various values of generalization toler-
ance factor � in fixed bandwidth network.

(a) Varying reward update time
tinterval

(b) Varying exploration rate

Fig. 11: Real-time throughput comparisons of QTCP-Generalization
with various values of reward update time tinterval and exploration
rate in fixed bandwidth network.

queuing packets, but still keeps queuing delays relatively small.
Note that QTCP-Baseline achieves the optimal performance in
terms of delay at the cost of lower throughput. As we show in
Fig.8, the QTCP-Baseline does not fully utilize the link due to
its insufficient optimization on the layout of prototype set and
conservative sending policy (but still achieves better throughput
than NewReno).

In both Fig. 10 and Fig. 11, we evaluate the sensitivity of the
performance of QTCP-Generalization to variations in the settings
of important parameters, i.e., generalization tolerance factor �,
reward update time tinterval, and exploration rate (the fraction
of time when the agent chooses a random action instead of the
currently learned best one to explore more possibilities), and we
also investigate the convergence of the algorithm.

Fig. 10 shows parameter �’s sensitivity evaluation on the
performance measures. We observe that the learning methods with
smaller � values generally converge faster than ones with larger
� values, e.g., � = 0.1, 0.3 and 0.5 improve the performance
faster than � = 0.7 and 0.9. In addition, we observe that � values
equal to or larger than 0.5 can give more stable and slightly
better throughput performance. We conclude that for QTCP-
Generalization, it is efficient to merely migrate prototypes in the
hot zone whose generalization abilities are far above or below the
average level of generalization.

As shown in Fig. 11a, the methods with larger tinterval values
converge faster but end up with inferior overall performance. The
value of tinterval should not be too big; otherwise, the agent
may not have sufficient opportunity to explore the action space
since a large tinterval reduces the frequency at which the learning
algorithm is triggered.
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(a) Real-time throughput (b) Real-time RTT

Fig. 12: CDF comparisons in varying bandwidth network (periodi-
cally switching between 30Mbps and 60Mbps).

Fig. 11b shows that when the value of the exploration rate is
equal to 0.5, the learning method converges fastest, and when this
value decreases, convergence becomes slower. However, although
an exploration rate of 0.1 makes the agent converge slower than
ones with 0.3 and 0.5, it eventually gives more stable and better
throughput performance.

5.3 Varying Bandwidth Network

We next extend our evaluation to more complex scenarios where
the bottleneck link bandwidth can vary significantly. This model
is used in mobile networks when the user switches between
different wireless accessing links with different capacities (e.g.,
LTE or 60GHz WiFi). In the varying bandwidth network, the
bandwidth switches alternately between 30Mbps and 60Mbps.
When the 60Mbps bandwidth is triggered, it stays at that value
for 40 seconds, and when switching to the 30Mbps bandwidth
it stays at that value for 10 seconds. The varying bandwidth
network challenges both Kanerva-based learning algorithms since
it generates more complex dynamics in the network environment
and the effectiveness of function approximation technique is the
key to learn a practical policy in such a large-scale state space.

The CDF comparisons of our results in the varying bandwidth
network are shown in Fig. 12. In Fig. 12a, we show that ap-
proximate 85th percentile throughputs gained by our approach are
between 15Mbps and 20Mbps while there are only 20th percentile
throughputs gained by NewReno are in this range and almost none
of the throughputs of QTCP-Baseline have reached this range. The
delay comparisons are shown in Fig. 12b. The figure shows that
the delay gained by our approach is almost the same as the link
RTT (120ms) and can be maintained at this value nearly until
the end of the experiments, while there are about 30th percentile
RTTs of NewReno larger than 136ms that are much worse than
our QTCP-Generalization approach.

We repeat our simulation 5 times for each algorithm in both
fixed and varying bandwidth network scenarios and report the
average throughput and delay in Fig. 13a and Fig. 13b. Fig. 13a
shows that in the fixed bandwidth network, the average through-
put of QTCP-Generalization is 18.0Mbps that outperforms both
QTCP-Baseline and NewReno by 9.6%. In the more complex
varying bandwidth network, the average throughput of QTCP-
Generalization is 16.7Mbps that outperforms QTCP-Baseline by
35.2% and is much better than NewReno with improvements of
59.5%. As shown in Fig. 13b, QTCP-Generalization has compara-
ble average RTT with QTCP-Baseline in both network scenarios.

(a) Average throughput (b) Average RTT

Fig. 13: Average throughput and RTT comparisons in fixed and
varying bandwidth network.

5.4 Discussion of Efficient Value Estimation in QTCP-
Generalization
We now analyze the efficiency of value approximation for the
proposed generalization-based Kanerva coding method in QTCP-
Generalization. In our experiments, we found that even when
employing a relatively small set of prototypes, (300 prototypes,
which is 0.0269% of the possible state space), generalization-
based Kanerva coding can provide effective state abstraction, and
improvements in learning performance have been observed in all
experimental evaluations. We argue that it is safe to use a small
set of prototypes with the generalization-based Kanerva coding
approach since the key component that affects the performance
of function approximation is not the large number of prototypes
but the reasonable layout of those prototypes. In fact, as long as
the number of prototypes are not too few, the learning results
with varying numbers of prototypes show no statistically signif-
icant difference [16]. Therefore, the superior performance of our
proposed generalization-based Kanerva coding, as demonstrated
by our experimental results, is mainly a result of the fine-grained
levels of generalization for all prototypes that are dynamically
adjusted based on visited state samples by our RL learner.

6 RELATED WORK
6.1 Congestion Control Protocols
TCP is a well explored topic in both wired and wireless network-
ing. For years, many end-to-end congestion control mechanisms
have been proposed. For example, Cubic uses a cubic function to
tweak the cwnd, and is known for its ability to aggressively search
for spare bandwidth. Vegas [17] uses delay as a congestion control
indication and starts to decrease cwnd when the measured RTT
exceeds expected value. Other well known end-to-end congestion
control protocols include Compound [18], Fast [19] and BBR [20].
While these protocols all have their own unique properties, they
share the similar idea of using some fixed functions or rules to
change cwnd to handle network conditions. As we introduced,
the limitation of this fixed-rule strategy is that they cannot adapt
to the complexity and rapid evolution of modern data networks.
They do not learn from experience or history and are not able to
predict the consequences of each action taken. Even if an action
reduces performance, the algorithm would still mechanically and
repeatedly select the same action.

Meanwhile, we notice that a number of techniques have been
explored by the research community to solve the limitations of
traditional TCP protocols. For example, Remy [12] uses off-
line training to find the optimal mapping from every possible
network condition to the behavior of the sender. Remy works
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well when prior assumptions about the network given at design
time are consistent with the network situations in experiments.
Performance may degrade when real networks violate the prior
assumption [21]. The mappings stored in the lookup table are pre-
calculated, which, as with other traditional TCP variants, cannot
adapt to continuously varying network environment. In Remy’s
approach, the lookup table must be recomputed (which may take
days to train the model) when new network conditions apply.

PCC [22] is a recently proposed protocol that can rapidly adapt
to changing conditions in the network. PCC works by aggressively
searching for better actions to change the sending rate. However,
its performance may diminish in some cases since its greedy
exploration could be trapped at a local optimum, requiring certain
strategy to approach to the globally optimal solution. Both Remy
and PCC regard the network as a black box and focus on looking
for the change in the sending rate that can lead to the best
performance, without directly interpreting the environment or
making use of previous experience.

6.2 Reinforcement Learning and its Applications
RL has achieved a lot of success in solving sequential decision
problems and has been effectively applied to a variety of applica-
tions. The advantage of RL is its ability to learn to interact with
the surrounding environment based on its own experience. For
example, [23] proposed to learn channel assignment decisions
with a linear bandit model to minimize the total switching cost in
a multichannel wireless network. [24] used deep reinforcement
learning (DRL) to handle the large complex state space when
solving the cloud resource allocation and power management
problem. [25] proposed a DRL-based framework for power-
efficient resource allocation in cloud RANs.

Moreover, many reinforcement learning-based schemes have
been proposed to improve the quality of service for network
applications. For example, [26] proposed a RL-based algorithm to
generate congestion control rules to optimize the QoE specifically
for multimedia application. [27] formulated a network resource
allocation problem in a multi-user video streaming domain as a
DEC-POMDP model and applied a distributed RL algorithm to
solve the problem. However, the work in [27] did not provide
practical technique to help RL algorithm adapt to complex net-
work topologies that have continuous state spaces. [28] used a RL
algorithm to adaptively change parameter configuration and thus
improve the QoE of video streaming. Its limitation arises from its
use of a tabular-based algorithm that directly stores and updates
value functions as entries in a table, confining its application to
large, continuous domains.

All above mentioned schemes are task-driven. They are de-
signed for particular applications and cannot be directly applied
to congestion control problem. In fact, to the best of our knowl-
edge, QTCP is the first proposed solution applying RL to TCP
congestion control protocol design directly.

6.3 Related Function Approximation Techniques
Many approximating approaches has been developed to abstract
and compress full state spaces in RL tasks that have enormous
number of states. One effective approach is function approxima-
tion [6], which can reduce the size of the state space by represent-
ing it with an abstracted and parameterized function. The explicit
table that stores value functions is replaced by an approximate
and compact parameterized version. Many function approximation

techniques have been developed, including tile coding (also known
as CMAC) and its variants, i.e., adaptive tile coding [29], and tree-
based state partitions [30]. However, when solving practical real-
world problems, limitations arise from the coding schemes used
in those approaches, e.g., requiring task-dependent criteria-based
heuristics, spending impractical large computation expenses to ex-
plore each dimension for partitions, and the size of state space and
function approximation complexity increases exponentially with
the number of dimensions. All the limitations prevent considered
approaches’ applications to domains that are very large, have high
dimensions, or that have continuous state spaces.

However, Kanerva coding technique proves to scale well with
high-dimensional, continuous problem domains [7]. Our proposed
generalization-based Kanerva coding approach further improves
its approximation ability and reduces the convergence time by dy-
namically optimizing the layout of the prototype set and providing
a finer-grained discrimination on the explored state areas.

7 CONCLUSION

Our work describes QTCP, an effective RL-based approach that
derives high-quality decision policies and successfully handles
highly complex network domains with a broad set of character-
istics. Unlike preprogrammed rule-based TCP, QTCP uses the
reinforcement signals (rewards) to learn the congestion control
rules from experience, needing no prior knowledge or model of
the network dynamics. This allows our approach to be widely
applicable to various network settings. Moreover, our learning
agent applies a novel generalization-based Kanerva coding ap-
proach to reduce the training time and necessary state space to
search. This approach reformulates original function approximator
with adjustable generalization granularity across states, making it
possible to abstract sufficient information from a wide range of
environment signals and even use a very small subset of state
space to accurately approximate the whole state space.

Our QTCP-Generalization achieved better throughput and
delay performance than both NewReno and QTCP-Baseline (a
learning-based TCP with best currently-existing Kaneva-based
function approximator) in our evaluations. We found that the
average throughput of QTCP-Generalization outperformed QTCP-
Baseline by 35.2% and outperformed NewReno by 59.5%.
Our approach also has a slightly better RTT performance than
NewReno. We conclude that QTCP with generalization-based
Kanerva coding can be used to manage congestion in a wide range
of network conditions, and that the technique enables quick on-
line policy development with minimal computation and memory
expenses.
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