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Abstract

In a world dominated by wearable IoT devices, malicious security threats have become a common

concern in system design. Guided by this notion, we propose a secure transmission system through

body-guided channels using Galvanic Coupling (GC). The GC-method injects weak electrical current

into human tissue, primarily propagating through the skin. The proposed design provides impermeability

to malicious attacks, (e.g. side-channel sniffing) when sending biometric data, as the body behaves

as a natural waveguide. The following contributions are: (i) Analytical formulation and empirical

verification of a 3D tissue equivalent circuit model for GC-signal propagation of the human arm-wrist-

palm channel, (ii) Simulation study of numerous modulation schemes, drawn from the validated results

of the GC-channel model, (iii) The design and implementation of a transceiver prototype using optimal

communication parameters (modulation, frequency, power) for transmission on a dielectrically equivalent

tissue phantom, and (iv) through experimental trials, we demonstrate the eavesdropping susceptibility

of GC-signals, and similar body communication techniques, over-the-air and while in direct contact

with the medium. Performance results of the GC-transceiver prototype yield a bit error rate of 10−6

with a transmit power of -2 dBm, in addition to over 7x reduction of signal radiation outside the body

compared to capacitive coupling.

I. INTRODUCTION

With the expansion of the wearable technology ecosphere, the pervasiveness of the Internet

of Things (IoT), and more recently, the tactile IoT, are enabling the human-in-the-loop in
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Fig. 1: A biological signal is acquired by a wrist-worn device and transmitted through the human

skin to unlock devices by physical contact.

unprecedented ways. From body worn sensors to actively controlling smartphones via touch

inputs, we continuously communicate large amounts of personal data with the outside world.

The prevalent secure communication methods rely on antiquated biometrics or the transmission

of secure keys through wireless channels. However, as we argue next, these forms of inputs can be

easily spoofed and are highly susceptible to intentional eavesdropping and privacy-manipulation

enabled by off-the-shelf but sophisticated software defined radios. Instead of using an over-the-

air channel and traditional biometrics, we propose a radically different communication pathway

to transmit biological signals containing advanced biometric information collected (via on-body

sensors) in real-time. Our approach uses on-skin conduction through a technique called galvanic

coupling (GC), where weak electrical currents are modulated with information and then injected

into the human tissue [1].

•Limitations of existing biometrics and passwords: Despite the ubiquitous use of biomet-

rics like fingerprints, retina/iris and facial features for commercial use, mobile devices still

utilize auxiliary passwords for additional forms of secure communication. The use of traditional

passwords often yields drawbacks in terms of user recollection, password strength and scale.

Fingerprints, although unique, are transferable and can be left on various surfaces that users have

daily interaction with. Such vulnerabilities are exploited via plastic, latex or gelatin based molds,

used to forge a copy of the individuals biometric. Additionally, high resolution images/videos

are used in counterfeiting retina and facial recognition software [2]. Hence, we believe that a

new class of biophysical signals drawn from within the user’s own body, such as the well-known

electrocardiogram (ECG) signal [3], can yield high levels of individual distinction [4] and have

found increasing use in secure communication [5]. Capturing and relaying these signals to an

external point remains an open challenge, which we propose to tackle in this paper.
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•Limitations of over-the-air RF: Although research on key generation and sharing for wireless

sensors have made rapid strides, increasingly sophisticated sniffing attacks, coupled with limited

computational resources within the sensors, pose practical limitations [2]. Instead, we propose

an alternate method of transmitting information securely using GC that bypasses the vulnerable

RF transmission channel. GC uses weak electrical current (0.5mA) that is modulated by the

information to be transmitted. This data carrying signal is coupled to the body tissue, here the

skin surface, by simple, small form-factor electrodes. By setting the operating frequency in the

range 100kHz-1MHz, the signal energy is largely retained within the human tissue. Thus, with

negligible amount of external radiation, it mitigates sniffing attacks. The only way to intercept

the signal is to physically touch the subject with a pair of receiving electrodes.

•Galvanic vs Capacitive Coupling: Coupling based intra-body communication is classified into

two types based on the nature of propagation. The first method, which we utilize in this work, is

known as Galvanic Coupling (waveguide based). The second, Capacitive Coupling (electric-field

based), also employs a pair of electrodes at the transmitter and receiver terminals [6]. In the

GC method, both transmitter and receiver electrodes are attached to the body (with individual

references) and alternating current is injected differently between the transmitter electrodes.

A dominant source of current will flow between the positive and negative terminals of the

transmitter, but a weaker, secondary current will flow throughout the tissues where the receiver

electrodes will measure the potential difference across them [7]. In the Capacitive Coupling

(CC) method, the signal electrode of the transmitter and the receiver are typically attached (or

placed in close proximity) to the human body while the ground electrodes are floating, thereby

capacitively coupling the human body to its surrounding environment. The signal electrode of

the transmitter induces an electric field into the human body. The induced electrical signal is

controlled by an electrical potential and the body acts as a floating conductor with the ground as

the return path [8]. Unfortunately, this behavior makes capacitive coupling more susceptible

to motion and external interference (e.g., power line, objects with conducting surfaces and

potentially neighboring capacitively coupled body networks) [9]. Galvanic coupling signals,

although more sensitive to body locations, body composition, electrode orientation and inter-

electrode distances, are confined within the human tissue layers and thus are virtually unaffected

by outside environmental conditions [7]. We exploit this feature to enable secure side-channel

communication for the transmission of biometric data.

•Galvanic Coupling Equivalent Circuit Channel Modeling: Extensive work has been done
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in [1], [10] to analytically model the human body channel as a complex network of impedances,

representing the different layers of human tissue and their boundaries. For example, in [1], each

layer of human tissue is modeled as combination of electrical circuits that constitute a 2-port

network for the computation of signal gain at an output terminal. The implementation of the 2-

port circuit model allows easy modification of parameters (center frequency, electrode separation,

electrode dimensions, etc.) and flexibility in terms of transmitter and receiver placement. Previous

methods of channel modeling, although highly complex and well inclusive of the dielectric

properties of human tissue, assume uniformity across all signal paths and tissue layers, such

as an end-to-end propagation cross-section as a single, homogeneous medium. Therefore, the

channel modeling conducted in this work focuses on a 3D tissue equivalent circuit model with

varying dimensions that adequately reflect the portion of the body used as a communication

medium.

•Galvanic Coupling Communication Systems: Experimental platforms and testbeds using GC

have been proposed in [11], [12]. In [11] differential binary phase-shift-keying (DBPSK) modu-

lation is selected given its robustness to amplitude variations and minimal hardware complexity

when compared to coherent schemes. The work conducted in [12] proposes a pulse position

modulation ultra wideband system and follows the specifications of the physical layer outlined

in IEEE 802.15.6 for Wireless Body Area Networks. However, these systems offer macro-scale

representations of the transmitter and/or receiver architecture, characteristics not yet applicable

for the wearable device arena. Additionally, there is no example application with packet-level

framing of data demonstrated earlier, as the main focus is to conduct empirical analysis to verify

channel behavior. In contrast, our work focuses on the sending and receiving of biological data

via GC, with a system design focused on operation in the wearable domain.

•Body-Guided Authentication Systems:

In the commercial space, the Nymi Band [5] is a wearable authenticator designed to work with

other devices (desktop computers, doors, etc.) and perform authentication based on proximity to

the locked device. The Nymi band employs a biological signal (e.g., Lead I ECG measurements)

as a biometric. Once a user is authenticated, it uses Bluetooth Low Energy and NFC to pair with

devices running the Nymi supported application. The works presented in [13] and [14] enable

continuous authentication with commodity devices using capacitive coupling body communi-

cation. Specifically, [13] proposes an impedance measurement biometric system with a touch

sensing mechanism. This data is modulated through the user’s body using an On-Off Keying
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approach. Additional CC-based examples of touch based authentication systems are listed in

[8], where a wrist-worn tag, containing a unique ID key, exchanges information with a receiver

through touch. Similarly, the work in [15] and [16] present a touch enabled body communication

system for multimedia-based applications by encoding information on captured touch instances

and electromagnetic interference data, respectively. The above-mentioned studies show great

potential for using biological data as a biometric and the utility of proximity/touch-based com-

munication for authentication. However, all the above wireless communication methods using

classical RF or CC still operate over-the-air, and thus are susceptible to eavesdropping, data

interception, or data/fault injection (as we show later in Section V). To the best of our knowledge,

the only system that employs GC for the transmission of biometric data can be found in [17].

Thus, we are motivated to develop a secure GC-based surface-to-surface communication by

avoiding the over-the-air medium and mitigating the effects of contact-based susceptibility.

•Proposed Approach: Secure biometric transmission with GC: Our proposed system, envi-

sioned in Figure 1, is composed of a wearable (here, we show a specific use-case for the upper

forearm band that allows transmission of ECG signals, though any other signal/body location can

be chosen), as opposed to intrusively implanting devices that are not required for improving one’s

quality of life. The device non-invasively acquires a biological signal, extracts unique features

and modulates a weak electric current to create the non-radiating GC-waveform. This GC-signal

is transmitted wirelessly through the arm, wrist and palm of the subject to the receiver, be it a

data logging entity, actuation interface (e.g., door handle) or a smart-device. The receiver has a

GC front-end that captures the signal and then feeds it to a classifier for pattern matching.

The main contributions of our work are as follows:

1) We design and experimentally validate an electrically-equivalent circuit model of the human

arm-wrist-palm tissue channel and characterize the behavior of the GC-signal. We use

the results of our channel studies to optimize the design of transmission parameters and

modulation schemes for the galvanic coupling communication system.

2) Through experimental evaluation, we show how the GC-signal emits minuscule levels of

signal radiation outside the body compared to the well-studied Capacitive Coupling (CC)

and similar solutions for body-guided communication. Furthermore, we show that our use

of the GC-signal makes it virtually unfeasible to decode data over-the-air at an adversarial

receiver.

3) We evaluate the impact of an adversarial receiver when in contact with the surface of the
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human body channel, demonstrating that results do not produce a significant increase in

eavesdropping advantage when compared to over-the-air side-channel attacks.

4) We present a method for identifying disadvantageous changes in channel behavior, brought

on by direct contact to the human body channel during data transmission, and provide an

analysis of the suitable FEC schemes that mitigate a loss in link performance.

5) We implement a proof-of-concept secure biometric transmission system using the TeensyTM

microcontoller unit that supports analog front-end hardware for transmission and reception

of GC-signals.

6) We measure the achievable energy consumption metrics and demonstrate the link perfor-

mance of our prototype by transmitting sample ECG data (provided by PhysioNet [18])

with a bit-error-rate (BER) of 10−6 and a transmit power of -2 dBm. Moreover, all data

files and software code are available to the community for repeatability of experiments.

II. GC CHANNEL MODEL FOR ARM-WRIST-PALM

Our approach relies on a carefully tuned physical layer design optimized with respect to the

arm-wrist-palm path that is employed to relay biometric information. This is a generic pathway,

which can be adapted for other tissue segments. We depart from the assumption of tissues

resembling homogeneous cylinders in [1], but we retain the concept of creating an electrical

equivalent circuit. Key assumptions that we make in this work (also validated later through

experiments) are: (i) the section of the arm where the biometric signal is retrieved, and then

forwarded through the wrist area, is cuboidal in shape; and (ii) the thickness and properties of

each tissue layer, i.e., skin, fat, tendon, muscle, bone are uniform within the separate partitioned

segments that form the arm, wrist and palm.

We separately analyze the propagation from the three parts of the path: the arm, wrist and

palm. We first begin by identifying typical tissue thickness and propagation characteristics of

each of these three segments. For example, a segment consists of four layers: skin, fat, muscle

and bone for the arm and skin, fat, tendon and bone for the wrist (Figure 2). Through cubical

approximation for the arm and wrist segments, the final representation of the path is simplified

to three rectangular shapes with four tissue layers of specific thicknesses. The next step is to

analyze the path to estimate its channel gain based on the dielectric properties and dimensions

of the tissue layers.
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Fig. 2: Cubical approximation of arm, wrist and palm parts, and location of electrode attachments

for galvanic coupling

A. Tissue Equivalent Circuit

GC requires two transmitting and two receiving electrodes attached on the skin. Thus, we

formulate a tissue equivalent circuit (TEC) model to estimate the channel gain of the path

between the arm and the palm. The impedance between two nodes of the TEC is calculated

using an RC-circuit equivalent expression of the given path. The resistance and capacitance

values of each path are calculated as R = ρL
Ac

and C = εA
D .

The resistivity (ρ) and permittivity (ε) values for each tissue layer are frequency dependent

and obtained from a published, standardized database [19]. Here, L represents the length of the

path between the two nodes, Ac gives the cross-sectional area of the path, A is the surface area

of the capacitance measured and D is the depth of the tissue. After calculating the resistance

and capacitance of the path between two nodes, the impedance of the specific path is calculated

using Z = R + 1
Cω j .

The impedance, resistivity, permittivity, length, cross-sectional area, surface area and thickness

values are inputs to the model that we formulate next. The TEC for the entire path requires the

calculation of five impedance values: ZL (longitudinal), ZD (inter-electrode), ZC (cross) and Zt

(transverse), trivially obtained by replacing the respective ρ, ε , L and A values depending on

the geometry of the path and using the above standard equations. The topview of the TEC is

shown in Figure 3. The transverse impedance Zt is between each layer and its adjacent one. A

3D representation of the TEC including the Zt is depicted in Figure 4. The nodes are shown

via capitalized letters; the arm-wrist and wrist-palm junctions share nodes. Hence, the ZD and

Zt values are calculated by adding the two inverse impedances of the specific paths, as these
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Fig. 3: Circuit (a) is the TEC of the skin layer in 2D. (b) is the equivalent of (a) used for channel

gain calculations

Fig. 4: 3D tissue equivalent circuit with transverse impedances for arm-wrist-palm path. The

labeling of transverse impedances is Zt−i j , for i ∈ [S, F, M, T, B] corresponding to skin, fat,

muscle, tendon, bone and j ∈ [A, W, P] for arm, wrist, palm

impedances are parallel to each other, as also seen in the top-view of Figure 3.

We perform a nodal analysis using Kirchoff’s Current Law (KCL) with the impedance of all

paths to obtain an admittance matrix for the entire four-layer, thirty-two node equivalent circuit.

For a sample node A, the nodal equation is:

I =
VA − VB

ZD
+

VA − VC

ZL
+

VA − VD

ZC
+

VA − VE

Zt
(1)

Similarly, the equations for all nodes were derived, but not repeated here for space conserva-

tion. A simplified representation of the 32 KCL equations is the admittance matrix (A) of the

4-layer 3D circuit in equation (1).
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A =



∑
i∈C,L,D,t

1
ZiS A

− 1
ZDsa

− 1
ZLsa

. . . . . . . . . . . . 0

− 1
ZDsa

∑
i∈C,L,D,t

1
ZiS A

− 1
ZCsa

− 1
ZLsa

0 − 1
Ztsa

. . . 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 . . . . . . . . . − 1
ZTmp

− 1
ZCbp

− 1
ZLbp

− 1
ZDbp


(2)

To obtain the gain of the TEC if a voltage is applied at the input terminals, an equivalent Pi-

network is derived (Figure 3 (b)). The purpose of this step is to analyze the TEC as a two-port

network with Z-parameters for the gain calculation. The Z-parameters of the circuit in Figure 3

(b) are calculated with Equations (3) - (6) which were derived from a 3-loop mesh analysis

(loops A, B and C in Figure 3(b)), adhering to the two-port network parameter definitions.

z11 = Rs + 2Zco +
Zin(ZLeq + Zout)
ZLeq + Zin + Zout

(3)

z21 =
ZinZout

ZLeq + Zin + Zout
(4)

z12 = −
ZinZout

ZLeq + Zin + Zout
(5)

z22 = 2Zco +
Zout(ZLeq + Zin)
ZLeq + Zin + Zout

(6)

For example, Equation (3) calculates the z11 parameter (expressed as a ratio of the input

voltage over the input current), by setting the current in Loop C equal to zero. The expressions

for input voltage and current are subsequently derived from the resulting 2-loop circuit (loops

A and B).

In summary, our model takes as input the length of the arm, wrist and palm, the size and

distance between transmitting and receiving electrodes as well as the signal frequency. The

admittance matrix is then constructed using the equations and inputs of the model. The gain of

the entire arm-wrist-palm path is then calculated as the logarithmic ratio of the impedance over

the output (between nodes S and T) and that of the input (between nodes A and B). The gain

of the channel can be investigated using the model under several configurations and plays an

important role in the design parameters of the GC communication system. The 3D arm-wrist-palm

model is validated experimentally, in the next subsection, for various scenarios. Subsequently,

we utilize the knowledge of the channel response to test and compare various aspects of the
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GC communication system design in MATLAB, before we demonstrate the implementation of

a real system.

B. Experimental Model Validation

The proposed model is used to obtain (i) distances at which the gain of the channel is high

(as we shall show later, the gain shows non-uniform behavior), and (ii) to set the frequency of

operation and inter-electrode distance. For these reasons, we first validate the arm-wrist-palm

model through an experimental setup. We conduct experiments on an electrically equivalent

synthetic tissue phantom from Syndaver LabsTM that represents the human arm, wrist and

palm components. For all reported experimental results, the gain between different parts of

the phantom is calculated by measuring the input and output Peak-to-Peak voltage of a sinusoid

at various distances. The Analog Discovery TM module is used as both a waveform generator

and oscilloscope to transmit a sinusoid and read the signal at different parts of the phantom,

respectively. To avoid the use of a common ground between input and output, two Analog

Discovery devices are employed, each with its own PC connection. Balun circuits (Schaffner

IT239) bridge the connection between the phantom and the Analog Discoveries. This aids in

additional isolation of the common ground return path that can be caused by the lack of EMI

shielding and large base of the laptops (transmitter and receiver) attached to the same surface.

The skin-to-skin channel gain is important as it is the main propagation path of the smart-device.

Therefore, to ensure optimal contact in the setup, the wires of the oscilloscope measuring voltage

as well as the function generator are minimally inserted into the skin layer, without penetrating

the subsequent tissue layers of the phantom. We model the edge of the wires that are attached

on the skin as electrodes with <1 mm2 surface area to accurately represent the experimental

configuration [17].

Figure 5a depicts the results of the model validation. Both the experimental setup and our

model maximize the gain between 200 and 500 KHz. The gain over a 10 cm distance are

overall higher than those for 15 cm, as expected, and match the trends associated with the

model predictions for all frequencies. The varying hydration levels of skin layer measurements,

shown in [1], support the claim that a deviation between model and experimental data of 5 dB or

less provides suitable results. Henceforth, we specifically focus on the gain prediction at around

10 cm distance, which is most relevant to our biometric-based secure communication.
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Fig. 5: 3D tissue equivalent model validation

Noting the frequency range where the gain is the highest, we conducted a series of experiments

with varying distances between the palm and the arm, to test the reliability of the model as the

input parameter of distance changes. This captures possible relative positions of the wristband

and the mobile device. Figure 5b shows the gain of a sinusoidal input operating at 400 kHz

over various distances by altering the palm and arm lengths. We draw two conclusions from the

results: the model closely predicts the gain with varying distances, though varying the length

of the palm portion of the path leads to increasing variation in gain than the arm portion. A

possible explanation of this phenomenon is the increased thickness of the palm skin layer. Since

the gain is calculated on the skin layer, the thickness of the skin affects the gain to a significant

extent. When we vary the arm and palm distances around the wrist, we see that the predicted
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versus observed gain values lie within an acceptable experimental margin of error (Figure 5c).

As expected, the gain is highest for shorter distances between transmitter and receiver.

Finally, we study the impact of the inter-electrode separation for the two GC transmitting and

receiving electrodes. Results indicate that greater inter-electrode distance between the individual

pairs of the transmitting and receiving electrodes leads to a higher gain between the transmitter-

receiver nodes, when all other parameters remain constant. Greater inter-electrode distance in

galvanic coupling leads to a higher potential between the two electrodes, and therefore, a higher

gain between transmitter and receiver. Similar to the previous experiments, the model predictions

match closely with the experimental results, proving once again that the arm-wrist-palm model

can predict the channel behavior with high accuracy (Figure 5d).

With the theoretical model validated, we focus next on the communication system and its

prototype design.

TABLE I: Tissue thickness values (mm)

Skin Fat Muscle Tendon Bone

Arm 1.00 7.00 15.00 - 20.00

Wrist 1.00 7.00 - 1.50 15.30

Palm 1.40 7.00 9.00 [20] - 9.17 [21]

III. CHOICE OF GC MODULATION SCHEME

The GC channel model, proposed in Section II-A and experimentally validated in Section II-B,

is the starting point of our communication system design. We employ the use of the analytical

channel model to store the channel frequency response for reproducible simulations. We then

create multiple realizations of the channel behavior by flexibly controlling the center frequency,

inter-electrode separation and the amount of arm and palm channel lengths to find the transmitter

and receiver link configurations that yield the highest gain values. We select the best combinato-

rial approach from these parameters and formulate a channel frequency response to test multiple

candidate narrow-band modulation schemes with various transmission bandwidths (those that

yield flat fading characteristics) using MATLAB. Since we have a tighter constraint on power

consumption as opposed to available bandwidth, non-coherent systems and/or techniques with

lower modulation orders are more suited for our application. Our goal is to achieve a target BER
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TABLE II: GC-IBC PHY layer performance comparison

System Occupied Bandwidth Min. Tx Power Max Bit rate Energy Consumption Modulation Order

BFSK 209.5 kHz -8 dBm 50 kbps 590.5 µJ 2

BPSK 52.3 kHz -13 dBm 50 kbps 2.75 mJ 2

OOK 52.57 kHz -9 dBm 50 kbps 158.2 µJ 2

Fig. 6: BER vs trasnmit power for various modulation schemes

of 10−4 or better by selecting one of: Binary Frequency Shift Keying (BFSK), On-Off Keying

(OOK) and Binary Phase Shift Keying (BPSK).

A. Power Consumption Analysis

In order to investigate the power consumption of each system, we model the power required

for all analog front-end components depicted in the aforementioned modulation schemes in

the MATLAB environment. This model is based on [22], where equations for calculating the

power consumption of ASIC implementations are presented. Here, the signal bandwidth, peak-

to-average-power ratio (PAPR), modulation order, and channel gain at various frequencies have

an affect on the performance. The overall energy consumption of a system, which depends on

its front-end components, is calculated in [22] with Equation (7).
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Ec = ((PT x + Pout) · Ton) + (PRx · Ron) (7)

The variables PT x and PRx represent the total power consumption from the transmitter and

receiver electronics, respectively. These values are obtained from the sum of the contribution

from the individual components of each system design, which consist of a variation of one

or more of analog front-end devices modeled above. The output power (Pout) required for the

desired level of link reliability is obtained from the data presented in Figure 6. The factors of Ton

and Ron, represent the time that the transmitter and receiver elements are active, respectively and

are derived from packet size and data rate. The front-end components of the design are based

on the modulation schemes investigated in this section can be found in Table III. The hardware

components are simulated with their respective systems for the purpose of calculating the BER

and energy consumption of each modulation scheme.

TABLE III: Front-end components for system design with BPSK, OOK and BFSK modulation

Modulation Transmitter Receiver

BPSK DAC, mix, VCO, PA ADC, PLL, mix, VCO, filter

OOK DAC, mix, VCO, PA ADC, filter

BFSK DAC, 2 mix, 2 VCO, PA ADC, 2 filters

The transmitted and received power of a system designed to perform BFSK modulation is

calculated as follows:

PT xBFSK = PDAC + 2(Pmix + PVCO) + PPA (8)

PRxBFSK = PADC + 2P f ilter (9)

The power of each component is calculated using equations from [22]. These are defined as

PPA, Pmix , P f ilter , PDAC , PADC , PPLL and PVCO and represent the power consumption for the

power amplifier (PA), the mixer, the analog filter, the digital to analog converter (DAC), analog

to digital converter (ADC), phase locked loop (PLL) and the voltage controlled oscillator (VCO),

respectively. We use the operating characteristics of the Teensy MCU, specified in the data sheet,

to set parameters of the components utilized in eventual system design in Section IV such as

the supply voltage, ADC clock frequency and VCO operating frequency.

Similarly, with the components listed in Table III and equations (8)-(9), the transmitted and

received powers for all modulation schemes are calculated. The energy consumption of the entire
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system for the three candidate modulation schemes is also calculated and represented in Table II

using Equation (7).

B. Performance Comparison

Constrained by the physical limitations of the synthetic tissue phantom that is used for empir-

ical validation and the optimal center-frequency gain, we select the channel response generated

from the following parameters to compare various systems in the MATLAB environment: a

center frequency of 400 kHz, an inter-electrode separation distance of 3 cm, and a total channel

length of 10 cm. Figure 6 plots BER versus transmit power (an important limiting factor when

considering GC communication within the body). The minimum transmit power needed to obtain

the target BER for each modulation scheme is listed in Table II. To fairly compare each technique,

the symbol rate is fixed to a value of 50 kbps. Results indicate that the BPSK system offers an

improvement in terms of power efficiency and a gradual improvement in terms of bandwidth

efficiency, as it is able to achieve the same target BER while occupying less spectrum, and

transmitting with less power. However, the performance increase is approximately 3dB when

compared to the modulation techniques of OOK and BFSK. At the same time, it can be seen

that the energy consumption of BPSK is approximately 18x of the OOK for the GC channel

(Table II). These results indicate that the marginal increase in BER performance does not justify

the need to increase system complexity, hardware footprint and energy consumption for a low-

power wearable. Based on these characteristics, we determine that OOK modulation is better

suited at the PHY layer for integration into an embedded system platform for simple biometric

signal like ECG transmission via GC.

IV. GALVANIC COUPLING SYSTEM DESIGN

Our prototype system consists of a Teensy microcontroller unit (MCU) with supporting analog

front-end hardware for signal modulation and detection. At the fundamental level, the components

within the system have the flexibility to implement either of the modulation schemes discussed

in Section III.

A. System Overview

Figure 7a illustrates our design and implementation of a complete system that securely trans-

mits biometric data. The transmitter MCU is configured to transmit with a biometric signature
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(a)

(b)

Fig. 7: Physical GC communication system testbed

unique to the individual (in our scenario, the ECG signal). To prepare for signal transmission,

the pulse width modulation (PWM) output of the Teensy-Tx, combined with controllable internal

logic, is toggled based on the binary data and pre-selected bit duration. A low pass filter removes

the signal harmonics in the frequency domain, while preserving the center tone ( fc = 100kHz).

This center frequency is chosen, despite the knowledge of an operating frequency that can yield

higher channel gain, due to the gain bandwidth product limitation of the operational amplifier

used in receiving chain. The remainder of the parameters utilized in the MATLAB simulation

are translated over to the physical domain, and are thus represented in the prototype testbed

setup.

The data is sent through the tissue wireless channel within the payload of a frame, which

consists of a preamble (13-bit Barker code) for synchronization, data length field (8 bits),

payload (64 bits) and an 8-bit CRC. Once the signal propagates through the human body

channel, the analog front-end receiver hardware utilizes a high pass filter (HPF) to remove any

low-frequency noise associated with power-line interference and/or baseline drift. The receiver

amplifier (MAX4488 by Maxim IntegratedTM) counteracts the attenuation of the channel and high

pass filter, while raising the signal level to meet the turn-on voltage requirements of the schottky
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Fig. 8: Transmitted and reproduced signal in time and frequency domain

diode (used in the subsequent system block). Next, we employ an envelope detector circuit to

convert the signal back to baseband and to remove any possible carrier wave oscillations that

could have an adverse affect on the input to the comparator (MAX4488) trigger at the final stage.

The comparator threshold is dynamically controlled through a potentiometer, and it is designed

to reproduce the original binary bit sequence delivered from the transmitter. Data packets are

detected by the Teensy-Rx, decoded and forwarded through the serial port to MATLAB for

subsequent processing.

B. System Performance

•Hardware Validation: The transmitter and receiver performance is illustrated through the

output of an Analog Discovery module. The OOK pulse and its corresponding center tone are

generated at the transmitter end. Figure 8 portrays the transmitter and receiver performance

in both the time (top) and frequency (bottom) domain. The latter provides validation of the

comparator output, returning the original bit sequence that is fed into the ADC of the Teensy-Rx.

The former depicts the transmitted signal output. The time domain plots indicate the equivalent

bit duration of the two signals, and the frequency domain plots indicate the appropriate operating

frequency and that the received signal has been translated from passband to baseband.

•Power Consumption: We determine the current and subsequently the power consumed by

the transmitting and receiving hardware using the shunt resistor method. We leverage high-side

insertion, or placing the 1Ω shunt between the positive supply and the load, in order avoid

potential ground loops. For our setup, we used the adafruit PowerBoost 1000C circuit with

a 3.7V rechargeable battery to power the Teensy, which then delivers 3.3 V of power to the

remaining Tx and Rx circuitry.

We use the Analog Discovery module to measure the voltage drop across the shunt resistor

and employ it’s hardware support package with MATLAB to export the data into a host PC for
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TABLE IV: Average current and power consumption for Teensy Tx and Rx

Mode Current Power

Tx Idle 938.87 µA 3.098 mW

Rx Idle 3.29 mA 10.87 mW

Rx Listen 14.307 mA 47.20 mW

Tx On 39.77 mA 131.25 mW

Rx On 17.32 mA 57.15 mW

processing. We then calculate the current consumed by using the relationship between resistance

and voltage in Ohm’s law (V = IR). We subsequently calculate the power consumption by

multiplying the current drawn by the supply voltage (P = V I). For the transmitting Teensy, we

consider the transition between an idle mode and a mode in which the Tx is on and actively

sending modulated bits. At the receiver, we account for a transition between an idle mode, an

Rx listening mode and an Rx on (receiving) mode. During the idle modes, the MCU is placed

in a deep sleep state, via software, where most peripherals are completely shut off. In the Rx

listening mode and Rx on modes, we achieve additional energy saving by placing the MCU in

a low power state where the peripheral clocks run at a lower speed.

During the operations in which the system is not transmitting or receiving, the operational

amplifiers used within the Tx and Rx chain are in shutdown mode and consume approximately

.01µA. In the active states of transmission and reception, the operational amplifiers draw 2.2 mA

of current. Table IV presents the current and power consumption for all of the aforementioned

modes for the transmitter and receiver, with the inclusion of their accompanying front-end

hardware. We observe that the transmitting mode consumes the most power, followed by the

receiving mode. This behavior is caused by the inability of the Tx-Teensy to initialize the

necessary transmitting functions in a low power state and thus, the normal operating mode must

be used. Figures 9a and 9b illustrate the total measured current drawn by Teensy Tx and Rx,

plotted against time, for different modes of operation. Using the relationship between, power

and time, (Ec = [PT x · TT Xon] + [PRx · TRXon]), we determine that the total average energy

consumption of the Tx and Rx are 523.95 mJ and 565.07 mJ, respectively. When comparing

the simulated energy consumption results for OOK modulation, presented in Section III, there

exists a significant performance difference. In order to more accurately compare these two energy
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(a) (b)

Fig. 9: Measured current draw by Tx (a) and Rx (b) Teensy

consumption numbers, it is best to implement the system on an application-specific integrated

circuit (ASIC) and apply industry caliber research and development for ideal power savings to

be achieved [23].

•Energy Per Bit: We define the energy per bit as the ratio of the amount of energy delivered

into the synthetic tissue medium over the total amount of bits sent through that same medium.

We derive its value from the energy consumption values of the transmitter, while in an active

state, over the total amount of bits used to transmit one sample ECG recording. Using this

description, we measure the energy per bit to be approximately 51 µJ/bit. For an RF-intra-

body communication link presented in [24], whose signals still substantially leak into the area

surrounding the human body, an energy efficiency of 2.90 nJ/bit is achieved. The difference in

performance can be attributed to the RF case employing an ASIC implementation, while our

design, which is built from COTS device is not optimized for low power operation.

•Bit Error Rate: We tested the end-to-end link performance by using actual ECG signal traces.

Figure 10 depicts the BER for various transmit powers for a link distance of 10 cm. The transmit

power is calculated by measuring the impedance of the synthetic tissue phantom across the

input terminals of the transmit electrodes, and using the equation PT x = V2/R. To alter the

transmit power levels, we vary the output voltage through the use of a basic attenuator circuit.

Observations indicate the experimental capability of achieving a BER of 10−6 for a transmit

power of -2 dBm (0 BER for simulated trials) and no errors for a transmit power of 0 dBm

for both experimental and simulated tests. Longer distances can be supported, at the expense of



1536-1276 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2019.2921964, IEEE
Transactions on Wireless Communications

20

10
-6

10
-4

10
-2

BER

-15 dBm

-10 dBm

-5 dBm

-2 dBm

P
T

X
 [
d
B

m
]

Experimental

Simulation

Fig. 10: BER vs transmit power for GC-transceiver OOK modulation

higher BER and consequently, higher transmit power, or by introducing forward error correction

code.
V. EAVESDROPPING SUSCEPTIBILITY

To substantiate the claims of a secure biometric transmission system with minimal signal

leakage outside the body, we experimentally confirm the level of received signal strength that

may be overheard by an over-the-air entity and one that comes in direct contact with the human

body medium.

A. Over-the-Air Signal Susceptibility

We evaluate the over-the-air signal susceptibility of our system against the work conducted

in [13]-[16], which leverage the use of capacitive coupling (CC) and apply the work in [25]

to motivate the use of a hybrid coupling method (GC configuration at the transmitter and CC

configuration at the receiver). The purpose of this comparison is to evaluate the susceptibility of

our design to over-the-air (OTA) sniffing against the most commonly used non-RF intra-body

communication methods in wearables. We perform a series of experiments where we measure the

received signal strength (RSS) and BER of an adversarial receiver with the adequate hardware

and software means to attempt signal interception. Thus, the malicious receiver is designed as an

exact replica of the receiver presented in Section IV only it does not come in physical contact with

the phantom. The adversary also consists of two copper electrodes measuring at 3x3 cm with an

electrode separation of 5 cm when configured for GC. The RSS and BER are measured at various

arrangements representing distances (as shown in Figure 7a and 7b) displaced horizontally (with
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Fig. 11: Average RSS (a) and BER (b) at over-the-air adversary Rx at various distances from

Tx

the palm facing up), vertically and on the outer part of the phantom arm, opposite the side of

the tissue where the true receiver is located. Results from Figure 11a illustrate that the RSS at

the adversary receiver decreases as we move away from the transmitter in any direction. For

all three displacement orientations, the signal strength at the adversary Rx is lowest for the GC

method, followed by the hybrid method and then lastly, the CC method. This behavior can be

explained from [25] as the hybrid method forms a return path through the environment (as in

the CC case) but its range is confined to a portion of the body, that in which the transmitter is

located, as opposed to the entire body. Ultimately, these results show the use of GC to transmit

a signal in the body provides a more secure channel where the average RSS at the adversary

Rx is at the noise floor at a distance of 13 cm, making decoding very difficult. To confirm the

level of decoding at the adversary Rx, we conduct the second set of experiments to measure the

adversary BER at different positions around the phantom, identical to those in the RSS studies.

The results of Figure 11b indicate that the adversarial Rx with GC configuration does not have

the capability to decode the signal at any distance or orientation. The CC configuration, however,

allows for significantly lower BER values in distances up to 15 centimeters with nearly a 10−4

BER at distance of 1 cm away from the tissue, which can lead to a sniffing attack. We thereby

conclude that the choice of GC as the method of intra-body communication for our system is

advantageous in establishing a secure channel to transmit biometric data.
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Fig. 12: Average RSS (a) and BER (b) at contact adversary Rx at various distances from Tx

B. Contact-based Susceptibility

We evaluate the impact of an adversarial receiver that lies in direct contact with the human

body, during data transmission, at various places throughout the channel. We utilize a synthetic

tissue slab (also provided by Syndaver Labs) to act as the medium in which the transmitter and

intended receiver operate. The adversarial receiver, whose system design is an exact replica of

the intended receiver, takes the form of the synthetic tissue hand that we have utilized in all

testbed experiments conducted thus far. The electrode placement options include fingertip, palm

and wrist electrode positioning. However, prior experimental work indicated that the fingertip

method of electrode placement yielded the highest results in terms of received signal strength.

Thus, we connect both the signal and ground electrodes on the fingertips of the index and middle

finger, with an electrode separation of 4 cm. We place the adversarial receiver in contact with

synthetic tissue slab at positions (shown in Figure 13) dubbed inside line-of-sight (iLOS) and

reverse line-of-sight (rLOS), and measure the RSS and BER over distances displaced from the

location of the Tx. Figure 12a and 12b depict the RSS and BER plots versus displaced distance

from the transmitter, respectively. Here we observe that the adversarial Rx can still obtain a

BER of > 10−2, up to 7 centimeters away from the transmitter. The values observed in this

experiment are higher than those seen in the OTA test, as we expect. However, the adversarial

receiver does not obtain a significant advantage in choosing to intercept data using one method

versus the other. The results shown in Figure 12a and 12b also reveal that when there is contact

on the channel of interest, the intended receiver also suffers a loss in RSS and increase in BER
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Fig. 13: GC Communication testbed for contact-based experiments

(as opposed to the OTA case). As the adversarial Rx moves further away from the Tx, the

RSS of the intended Rx begins to improve, subsequently causing a decrease in BER. However,

this performance when compared to the case when there is no contact with the channel is

still significantly degraded. These experiments indicate that the presence of human body contact

(whether accidental or intentional), in close proximity to the Tx and intended Rx during any part

of the data transmission process, can cause erroneous results. To further understand this behavior,

we perform channel sounding experiments in a similar manner to [26], in the subsequent section,

to gain a better understanding of what phenomenon is occurring at the channel level.

VI. DETECTION OF ADVERSE CHANNEL CONDITIONS

In this section, we present findings that provide a categorization of the channel behavior

observed when direct contact is made during the data transmission and reception process. We

also present a means of detecting and mitigating the effects of direct contact by providing

alternative transmission parameters for the sending and receiving of biophysical data.

A. Impact of Channel Contact

We design and implement a correlative channel sounder in order to measure and and record

(for post processing) the channel impulse and frequency response of the tissue slab channel

in situations where there is no contact and direct contact. This method of channel modeling

is based on the observed behavior when applying a white noise signal to the input of a linear

system. The output of such a system is cross-correlated with a delayed replica of the input

producing a scaled version of the system impulse response. However, in practice the goal is
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Fig. 14: Channel impulse (a) and frequency response (b) for different contact scenarios

to leverage a deterministic waveform that resembles noise-like characteristics. [27]. Therefore,

we design a maximum length Pseudorandom Noise (PN) sequence using a linear-feedback shift

register (with 2m − 1 cyclic shifts and m = 14) to modulate and send through the channel. We

specifically employ single-carrier BPSK modulation ( fc = 550kHz) on this PN-sequence with

a chip duration of 250 nanoseconds, which equates to approximately 4 MHz of bandwidth. We

adhere to the general design criteria of the PN-sequences for channel sounding, which prefers a

signal that yield an auto-correlation function with a high correlation peak at the zero-shift point

and produce a high peak-to-off-peak ratio. We selected the signal bandwidth to ensure we could

resolve any possible multi-path components while adhering to the frequency range of our GC

channel (100 kHz to 1 MHz).

We perform channel sounding measurements for three specific cases that relate to scenarios

of no contact and channel contact. The baseline case, or case 1, we take measurements when no

external contact is made with the channel, while maintaining the same link distance and electrode

separation. For cases 2 and 3 we repeat the same measurement setup but with external contact

that causes a visible increase and decrease in the RSS, respectively. Using a similar testbed

setup to what is depicted in Figure 13, we replace the custom Tx and Rx hardware each with

an Analog Discovery module. The PN-sequence was designed in the MATLAB environment,

exported to the .csv file format, and loaded into the signal generation software on the Analog

Discovery. At the receiver side, we use the oscilloscope feature of the Analog Discovery to

export the data into MATLAB for the generation of the channel impulse response and channel

frequency response.
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Figure 14a depicts the channel impulse response for all three cases, superimposed for visual

purposes. Results for the baseline case present two multi-path components with almost equivalent

amplitude. When examining the channel frequency response for the baseline case, the AWGN

channel nature that is observed within the GC-research community is validated for our target

range of transmission bandwidth (1 Khz to 50 Khz). However, we observe that the presence of

touch changes the nature of the impulse response. For example, an external touch in a location

that causes an increase in RSS (channel geometry dependent) alters the impulse response such

that the first tap is greater in magnitude when compared to the second tap. The opposite case takes

place in locations in which external contact decreases the RSS. These effects are also displayed

in the channel frequency response presented in Figure 14b. For our maximum transmission

bandwidth range, we still observe a relatively flat fading channel. However, the channel gain can

increase or decrease based on location-dependent, external contact with the human body medium.

These results validate the behavior observed at both the intended Rx and adversarial Rx that we

present in our contact-based experiments within Section V. Regardless of the intention behind

eliciting contact upon the human body medium, the intended receiver can still undergo periods

of performance degradation. In order to account for such an occurrence, we design a system for

detecting periods of channel contact that produce an abrupt change in received data quality. We

also provide insight on the appropriate levels of forward error correction (FEC) codes to apply

in order mitigate this drop off in performance. Both of these contributions are described in detail

in the subsequent subsection.
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B. FEC Selection for Adverse Channel Conditions

We experimentally induce contact-based events into the synthetic tissue medium, during

data transmission, specifically focusing on improving the BER performance of the intended

receiver. The preamble sequence, originally used solely for frame synchronization, is modified

to encompass the PN-sequence used in the previous subsection. The inclusion of a CRC8 (located

in the trailer) for error detection is used to track an instantaneous packet error in between correct

frames. If this occurrence continues, the received preamble is cross-correlated with the original

data sequence to obtain the channel impulse response and examine if a morphological change

has occurred that indicates a touch. In our current system, we experimentally uncover what

change in transmission parameters are necessary to combat the channel degradation brought

on by touch. Thus, we evaluate the impact of various levels of FEC to determine what code

rates are appropriate for this use case. We compare the performance of the system for uncoded

transmission, and transmission with Hamming codes for rates of 1/3 and 4/7, notated as FEC1

and FEC2 respectively. As seen in figure 15, introducing the simplistic FEC1 scheme provides

a large improvement to the average BER from approximately 43% to 18%. The adoption of

FEC2 yields very little increase in the performance, resulting in a BER of approximately 17%.

Thus, we included trials with a larger, more efficient Hamming code of (15,11), which we call

FEC3. These results show a further reduction in BER, validating the need to incorporate adaptive

transmission of multiple FEC schemes, for future system designs, where channel state feedback

is provided by the receiver.

VII. DISCUSSION AND CONCLUSIONS

We developed a model of the tissue communication channel by using equivalent electrical

circuits that matched closely with experimental testbed measurements. We identified OOK as

the preferred modulation technique for our application, and developed a proof-of-concept testbed

composed of an embedded system implementation with supporting hardware and a synthetic

tissue phantom. The system functions reliably, transmitting a sample ECG signal over a 10

cm human tissue path with a transmit power of -2 dBm, while maintaining a BER of 10−6.

We demonstrated the GC-secure method of transmitting biometric information by measuring

the level of over-the-air signal leakage from the vantage point of an adversarial receiver with

satisfactory knowledge of our system design. We also presented the adversarial Rx advantage

when in direct contact with the body medium, while providing a means to characterize and
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mitigate the observed channel behavior by detecting the manifestation of any touch-based event.

Our future approach will be focused on exploring the utility of ECG and other biological signals

for the development of an end-to-end biometric authentication system and developing ways to

transmit the GC-signal over longer distances. Furthermore, we will devise adaptive modulation

schemes and reconfigurable front-ends that may adapt the link/physical layer operation based on

changing authentication needs or wearable sensor data reporting rates.

APPENDIX A

ECG SIGNAL CLASSIFICATION CASE STUDY

We conduct a preliminary proof-of-concept study with ECG signals to demonstrate the pos-

sibility of recreating similar levels of ECG classification accuracy with those values reported in

literature, albeit with the intention of implementing a much simpler algorithm. Within the MAT-

LAB environment features are extracted from the signals provided from the ECD-ID Database

by PhysioNet [18], which consists of measurements sampled at 500 Hz, taken over a 6 month

period from 90 subjects in a Lead I configuration. The experimental setup for this portion of

the study utilizes 20 subjects with 5 recordings each, for training and testing, evaluating them

individually against all other subjects and recordings of each subject. An additional 67 subjects

with 1 recording each are strictly used to test known instances of the opposing class.

In contrast to authentication methods that utilize a database to compare pre-existing biometric

inputs from multiple subjects, this form of pattern recognition is designed to distinguish a partic-

ular class from all other possible inputs into the system (one vs. rest or one-class classification).

This strategy solely necessitates learning from the class or person of interest and no information

about the other classes are present. The basic approach involves producing a result that is a

representation of a confidence score used in the decision making. Decision boundaries are formed

around the class of interest, with the objective of accepting or rejecting the incoming data based

on the measure of certainty. This method is chosen for the sake of resembling a suitable scenario

for mobile device authentication, where typically only one user is registering for access.

•One-Class Classification Performance: Our one-class classifier (OCC) implementation con-

sists of a simplified enrollment and authentication process. In the enrollment phase, we detect

the QRS portion of an ECG signal (exemplified in Figure 16), separate the entire ECG recording

into non-overlapping segments (one segment equals one PQRST portion) and averaging off all

separated beats to form a template. During this enrollment phase, the segments of one recording
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Fig. 16: Illustration of one ECG PQRST segment

Classified

Not Sub. 1 Sub. 1
A

ct
ua

l

Not Sub. 1 3026 54

Sub. 1 88 292

Total Accuracy = 95.89 %

False Positive 0.0174

True Positive 0.768

TABLE V: Confusion Matrix for One-Class Classification using 4 beats in the authentication

are cross-correlated on a segment-by-segment basis to determine an average value to set as

the detection threshold for the subsequent step. In the authentication stage, a similar process is

conducted. In order to simulate a faster authentication phase by a mobile system, only beats from

the first 2-5 detected segments are averaged to form a testing template. The two templates are

time normalized and then cross-correlated to produce a similarity score. The score is compared to

the threshold learned in the enrollment phase and any correlation coefficients above the threshold

are accepted as the target class, while others are rejected.

The performance of the one-class classifier for all data sets tested solely against subject 1

lies within in Table V, indicating that the subject was correctly identified with an accuracy of

95.89%. We next evaluate the classification performance of the remaining subjects, in the same

manner as we did Subject 1, by using one recording from each subject set as the target class and

all other recordings from the same subject and other subjects as test cases. These trials produced

a classification accuracy above 97% for all subjects (Figure 17b), and a false positive rate not

exceeding 2.6% (Figure 17a). The ECG authentication algorithm designed specifically for our

application provides high accuracy and low false positive rate, similar to pre-existing algorithms,
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(a) ECG classification false positive rate of 100

recordings from 20 subjects

(b) ECG classification accuracy of 100 recordings

from 20 subjects

Fig. 17: Statistical results of ECG classification

while offering low-complexity feature selection.

•Performance Discussion: The dominant source of confusion in the classification process comes

from the lack of additional distinguishing features to support our correlation-based method. The

dynamic threshold, in almost all cases, is set extremely high which causes a low false positive, but

also degrades the true positive performance. Although results still generate a high classification

accuracy and indicate strong potential to use ECG signals as a biometric, additional analysis

must be undertaken to support the wide adoption of such a method. For this study in particular,

an improvement in the false positive and true positive rate are necessary steps in ensuring

classification stability. For future experiments, we seek to improve algorithm performance and

provide experimental results that emphasize the limitations that exists in a real-time measurement

scenarios. Specifically, we aim to conduct a large-scale measurement campaign where the ECG

signals from multiple subjects are measured in real-time, an under ambulatory conditions where

different physiological states can be observed [28].
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