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Abstract—Due to the unprecedented scale of the Internet
of Things, designing scalable, accurate, energy-efficient and
tamper-proof authentication mechanisms has now become more
important than ever. To this end, in this paper we present
ORACLE, a novel system based on convolutional neural networks
(CNNs) to “fingerprint” (i.e., identify) a unique radio from a
large pool of devices by deep-learning the fine-grained hardware
impairments imposed by radio circuitry on physical-layer 1/Q
samples. First, we show how hardware-specific imperfections are
learned by the CNN framework. Then, we extensively evaluate the
performance of ORACLE on several first-of-its-kind large-scale
datasets of WiFi- transmissions collected ‘“in the wild”, as well
as a dataset of nominally-identical (i.e., equal baseband signals)
WiFi devices, reaching 80-90% accuracy is many cases with the
error gap arising due to channel-induced effects. Finally, we show
through an experimental testbed, how this accuracy can reach
over 99% by intentionally inserting and learning the effect of
controlled impairments at the transmitter side, to completely
remove the impact of the wireless channel. Furthermore, to
scale this approach for classifying potential thousands of radios,
we propose an impairment hopping spread spectrum (IHOP)
technique that is resilient to spoofing attacks.

I. INTRODUCTION

Sensing the wireless spectrum and identifying active radios
within the bands of interest directly impacts spectrum usage.
This paper takes the first step in distinguishing radios in a
shared spectrum environment by using machine learning to
detect characteristic reference signatures embedded in their
transmitted electromagentic waves, a process known as RF
fingerprinting. Our goal is to achieve this with information
that can be leveraged at the radio hardware front-end. We
separately consider situations where the channel is unchanging
between training and validation (idealized) and when the
channel is dynamic (practical). The key innovation in our
approach, termed ORACLE (Optimized Radio clAssification
through Convolutional neural nEtworks), is that it learns
the unique modifications present within the in-phase (I) and
quadrature-phase (Q) samples that are introduced in the signal
as it passes through the transmitter chain. ORACLE uses
Convolutional Neural Networks (CNNs) to learn and then
identify individual radios through device-specific variations
contributed by the inherent randomness in the manufacturing
process. These so called imperfections are present within the
analog components (digital-to-analog converters, band-pass
filters, frequency mixers and power amplifiers) that compose
a typical transmission chain, differentiating radio devices even
if their manufacturer and make/model are identical. ORACLE
can transform many emerging areas, such as the Internet of

Things (IoT), which will result in billions of devices deployed
worldwide [1]. For this reason, one of IoT’s most crucial
issues is designing scalable, reliable and energy-efficient au-
thentication mechanisms. Most of the existing authentication
mechanisms are not directly applicable to the IoT since they
are based on energy-expensive cryptography-based algorithms
and protocols [2]. ORACLE proposes a way forward for
achieving such authentication at a device level, which cannot
be be tampered with software-based code insertion.

A. Signatures contained within 1Q samples

Radio fingerprinting leverages tiny imperfections of off-
the-shelf wireless circuitry that make a number of wireless
devices operating on the same baseband signal necessar-
ily transmit two slightly different waveforms [3]. These so
called imperfections are present within the analog components
(digital-to-analog converters, band-pass filters, frequency mix-
ers and power amplifiers) that compose a typical transmission
chain, differentiating radio devices even if their manufac-
turer/make/model are identical. Physical (PHY) layer, medium
access control (MAC) layer, and upper layers have also been
utilized for fingerprinting [4]. However, simple unique identi-
fiers such as IP addresses, MAC addresses, international mo-
bile station equipment identity (IMEI) numbers can easily be
spoofed. Location-based features such as radio signal strength
(RSS), angle of arrival (AoA) and channel state information
(CSI) are susceptible to mobility and environmental changes.
ORACLE, instead, focuses on those transmitter features that
are inherent to a device’s hardware makeup, which are un-
changing and cannot be easily replicated by malicious agents.

Fig. 1 indicates an example scenario of these so called
transmitter signatures (rigorously studied in Sec. III) for 16-
QAM constellation. The red circles indicate the ideal constel-
lation points formed by the I (x-axis) and Q (y-axis) samples,
and the black crosses indicate actual constellation points that
are shifted due to a specific type of hardware imperfection.
Practical transmitters have a combination of these shifts that
form their unique signatures, though we show only three
plots caused by IQ imbalance, nonlinear distortion and phase
noise in the figure. ORACLE aims to learn and intentionally
modify some of these features on the transmitter through
USRP Hardware Driver (UHD) software API commands,
thereby enhancing identifiability/classifier efficiency. We note
that ORACLE can be easily used in conjunction with other
existing and higher layer classification approaches.
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Figure 1: Typical transceiver chain with various sources of RF
impairments.

B. Machine learning for RF fingerprinting in ORACLE

Machine learning (ML) techniques have shown great
promise in image and speech identification problems, and are
steadily gaining traction in applications within the wireless
domain. ORACLE is solely built on a convolutional neural net-
work architecture that has not only seen success in the above
areas, but has also been previously used for modulation [5]
and protocol identification [6]. ORACLE adopts a stagewise
approach towards achieving practical classification. We attain
this in the first step by demonstrating 99% accuracy on an
externally obtained data set of 100+ COTS WiFi radios (not
all of which are bit-similar), as well as on our testbed of 16
bit-similar USRP X310 radios that we configure to be exactly
similar in terms of waveforms generated (same 802.11a PHY
frame, modulation/protocol/mac ID).

C. The ORACLE approach

For radios operating in a channel-invariant environment
(henceforth referred to as a static channel), ORACLE can
identify radios by using both raw IQ samples as well as by
estimating the channel from training datasets and removing,
wherever possible, channel dependent shifts in a process
that we call as undermodulation for brevity. Though this
feature engineering step of undermodulation does increase
the resilience of the CNN for certain test scenarios reaching
80-95%, the variation of the wireless channel (henceforth
referred to as a dynamic channel) generally has a dominant
impact on the transformation of the IQ samples in the complex
plane. Here we make an interesting observation: training with
undermodulated symbols makes low-end SDRs (such as the
Ettus N210 USRP) robust to channel variations. However,
high-performance SDRs (such as the X310 USRP) that are
manufactured with components with lower variability need an
additional step. For such high-end bit-similar devices, OR-
ACLE has a principled method for intentionally introducing

impairments to increase differentiability while minimizing the
bit error rate (BER) for each transmitter. The key insight here
is that controlled addition of impairments in a bit-similar radio
generates a unique pattern in the demodulated signal at the
receiver, which is independent of channel variations.

In summary, the main contributions of this paper are:

e We study the different causes of transmitter-side reference
signatures, and visualize their impact on the IQ constellation
space. We identify specific features that are amenable to fine
tuning by the receiver feedback using software APIs.

e Using an SDR testbed and an external database of signals
collected from 50-500 mixed WiFi device transmitters, we
propose the design of ORACLE, which includes a robust CNN
architecture returning 99% device classification accuracy on
quasi-static channel conditions using only raw samples and
83.5% of accuracy on dynamic channel conditions using I/Q
samples with impairment obtained with the undercomplete
demodulation approach.

e We propose and implement a scalable and secure iden-
tification technique, called as impairment hopping spread
spectrum (IHOP), which identifies a radio through a random
pseudo-noise (PN) binary sequence, termed as ’identification
key’. The transmitter conveys this key by switching between
pairwise impairments. With experimental evaluations, IHOP
achieves identification accuracy of > 99%, while ensuring
the BER constraint for each radio. The identification key
and the pairwise impairments change after every successful
identification, thus making it difficult for an adversary from
performing a spoofing attack.

II. RELATED WORK

Traditional techniques for radio fingerprinting [7], [8],
[9], [10], [11], [12], [13] rely on complex, hand-made, ad-
hoc features that are tailored to address specific classes of
wireless devices and protocols. In this paper, we approach
the problem from a different perspective and use techniques
based on deep learning [14] to design general-purpose and
high-accuracy radio fingerprinting algorithms. Deep learning
models go beyond legacy “shallow” neural networks and
can autonomously extract extremely complex features without
the need of application-specific and computational-expensive
feature extraction/selection algorithms [15], [16], [17]. Fur-
thermore, different models can be trained on the exact same
input data, providing a common test bench for researchers to
test the performance of their algorithms.

While there exists a vast literature on the theory and
applications of machine learning, we only review works that
are directly relevant to the problem of RF fingerprinting.
Given the ground truth to facilitate model creations, we follow
the supervised learning paradigm, where a large collection
of labeled samples are applied for training, prior to network
deployment.

The vast majority of existing work has applied carefully-
tailored feature extraction techniques at the physical layer
to fingerprint wireless devices [7], [8], [9], [10], [11], [12],
[13]. In particular, Brik et al. [8] considered a combination
of frequency offset, transients, and constellation errors to
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fingerprint 130 IEEE 802.11b cards with an accuracy of
99%, similarly to our approach. However, conversely from
ours, the experiments in [8] were performed in an RF-
insulated environment (i.e., without any channel effect), thus
their effectiveness in real-world environments has yet to be
established. Vo et al. [10] proposed a series of algorithms
with features based on frequency offsets, transients and the
WiFi scrambling seed. The algorithms were validated with data
collected from a series of COTS WiFi cards in a non-controlled
RF environment, achieving accuracy between 44 and 50% on
93 devices. Recently, Peng et al. [11] proposed fingerprinting
algorithms for ZigBee devices, showing that their features
achieve almost 95% accuracy on a 54-radio testbed.

The key drawback of feature-based fingerprinting tech-
niques is that they are inherently tailored for a specific technol-
ogy only, which ultimately limits their applicability. Moreover,
existing work has not considered the problem of optimizing
the algorithm’s accuracy in real-time. On the other hand, deep
learning is a more general method that offers a powerful
framework for learning complex functions, leveraging large
datasets. For this reason, research has started developing deep
learning models to address physical-layer classification prob-
lems such as modulation recognition, and OFDM parameter
identification [15], [18], [19], [20], [17]. Wang et al. [21]
present a general deep learning framework for RF sensing
in the IoT, along with several experimental case studies such
as location fingerpinting [22] and healthcare sensing [23]
applications. Ferdowsi and Saad [24] use an LSTM to extract
stochastic features from IoT signals and dynamically water-
mark these features inside the original signal, in order to avoid
eavesdropping attacks in IoT devices deployments. O’Shea and
Corgan [5] and O’Shea and Hoydis [25] apply deep learning at
the physical layer, specifically focusing on modulation recog-
nition using IQ samples and convolutional neural networks.
They classify 11 different modulation schemes. However, this
approach does not identify a device like ORACLE, but only
the modulation type used by the transmitter. In our previous
work [26], [27], we have explored CNNss to fingerprint 16 bit-
similar USRP X310 devices (i.e., same hardware, protocol,
physical address, MAC ID) using only IQ samples at the
physical layer, showing that by using artificially-introduced
hardware impairments the accuracy can be improved to 99%.
This paper builds on this work, but explores many additional
experimental scenarios and the impact of feature engineering
on large populations of devices (50-500).

To the best of our knowledge, ORACLE is the first work
that allows training a CNN for bit-similar device identification
such that the same classifier may operate in unknown/dynamic
channel conditions without the need for new trials.

III. A CLOSER LOOK AT DEVICE SIGNATURES

In this section, we first study RF hardware impairments that
cause variations in IQ samples, resulting in a unique signature
for each device. We focus on IQ imbalance and DC offset, the
two impairments that (i) are independent of the environment,
and (ii) do not apply only in context of a specific transmitter-
receiver pair (as opposed to, say, relative phase offset). Then,
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Figure 2: Effect of IQ imbalance quantified through IMRR.

we present a method of introducing controlled impairments
using GNU Radio UHD API at the receiver. Subsequently, we
explain the experimental testbed setup for trace data collection.

A. RF impairments

Using the MATLAB Communications System Toolbox, we
simulate a typical wireless communications processing chain
(see Fig. 1, with the shifts in the received complex valued
IQ samples), and then modify the ideal operational blocks to
introduce RF impairments, typically seen in actual hardware
implementations. This allows us to individually study the 1Q
imbalance, DC offset, phase noise, carrier frequency offset
and nonlinear distortions of power amplifier. In this paper,
we focus on the two impairments (IQ imbalance and DC
offset) owing to space constraints, though our approach can
be trivially extended for others as well.
oIQ imbalance: Quadrature mixers are often impaired by
gain and phase mismatches between the parallel sections of
the RF chain dealing with the I and Q signal paths. The
mismatch in their gains causes amplitude imbalance, whereas
phase deviation from 90° in the quadrature signal results in
phase imbalance. IQ imbalance varies only with frequency
due to frequency-dependent low pass filters, and thus, it
carries a unique signature of a transmitter for that frequency.
oDC offset: This is caused within the quadrature mixers due
to the finite isolation between Local Oscillator (LO) and RF
ports of a mixer, and a direct feedthrough from the LO signal
often gets coupled to the output.

B. Software-based control of impairments

We first explain the use of self-calibrations utilities provided

by Ettus to set IQ imbalance and DC offset in the transmitter
chain using GNU Radio functions.
o I1Q imbalance compensation: Let s(t) € C be the transmit-
ted baseband complex signal at time ¢ before being distorted
by IQ imbalance. Then, the distorted baseband signal in the
time domain is:

Sa(t) = ues(t) + ves™(t), (1)
where the distortion parameters p; and v, are related to
amplitude and phase imbalances in the I and Q paths of the
quadrature mixer in the transmitter chain.

In a simplified model, we define these distortions parameters
as iy = cos (& o o

L)+ joy sin (%—t) and v; = oy cos (%) —jsin (%),
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Table I: A snapshot of IMRR levels of IQ imbalance recorded using
uhd_cal_tx_iqg_balance utility

. Power of Power of IMRR
Correction factor . .
main tone image tone (dB)
—0.272 — 0.636 —49.036 —66.138 —17.102
—0.636 — 0.636 —48.852 —66.306 —17.454
—0.454—-0.0909 —49.091 —67.326 —18.235

where «; and 6, are the amplitude and phase imbalance be-
tween the I and Q signal paths at the transmitter, respectively.
The phase imbalance 6; is any phase deviation from the ideal
90°. The amplitude imbalance is defined as «; = z’} :gs,
where o; and o are the respective gain amplitudes on the I
and Q paths.

1Q imbalance causes interference in the signal by generating
its image at a mirror frequency. It is quantified by measuring
the power of the image with respect to the desired signal, also
called as Image Rejection Ratio IMRR), as shown in Fig. 2.
The IMRR is calculated by sending a complex sinusoidal e/,
and by taking ratio of the power of the signal at the image
frequency (—w) and desired frequency (w). Thus, IMRR at

desired center frequency w is defined as:

_ Y2 (w) + 1 = 2y;(w) cos (B (w))

IMRR(w) A2 (w) + 1+ 2y (w) cos (6 (w))

2

where v:(w) = oy(w) + 1; ay(w), 0;(w) are amplitude im-
balance and phase difference respectively measured at center
frequency w.

While many theoretical time and frequency domain
methods allow compensation for the IQ imbalance,
we use the Ettus provided UHD calibration utility
uhd_cal_tx_iqg balance. It performs a calibration
sweep over a range of frequencies checking the transmission
path signal leakage into the receive path.

At runtime, the UHD software automatically applies the
correction, typically a single complex factor, to the transmit
chain of the RF daughterboard. For a given value of correction
factor, a single frequency tone is transmitted, and the power of
the desired tone and the image tone are measured to compute
IMRR. We modified this utility to record the correction factors
and the corresponding IMRR. Table I shows a snapshot of
the recorded IMRR levels for USRP X310 radio at a center
frequency of 2.45 GHz.

o DC offset compensation: DC offset results in a large
spike in the center of the spectrum. By measuring the
power of the main tone at the DC frequency, we can mea-
sure the amount of DC offset. A UHD calibration utility
uhd_cal_tx_dc_offset uses a single complex factor to
correct DC offset level. It finds the best correction factor that
minimizes the power of the DC tone. Again, by modifying
the utility, we record the levels of DC offset level for the
correction factor.

We use the open-source GNU Radio companion (GRC)
to transmit standard-compliant IEEE 802.11a WiFi pack-
ets through the SDR. Using set_ig balance and
set_dc_offset functions in GRC, these two separate
complex correction factors can be set to intentionally introduce
required level of impairments in the radio.

4

C. Trace Data collection

We use two different data sets for our study.

1) External data set: We use an external dataset (about
4TB) consisting of about 103 million signals collected
from over 50 thousands various kinds of WiFi devices
(phones/laptops/tablets/drone) made available by the US De-
fence Advanced Research Projects Agency (DARPA). Unfor-
tunately, this dataset is not openly available and is currently
protected by a non-disclosure agreement (NDA). Here we use
signal to refer a sequence of consecutive I/Q samples. Most
of the WiFi signals are recorded in the wild with a Tektronix
RSA at 200 million samples per second (MSPs). Furthermore,
to test the generality of the classifier, the external dataset
includes a small subsets recorded with USRP under multiple
antenna polarizations, indoor/outdoor channels and various
signal densities. In the dataset, about 20 thousands devices
have more than 100 signals and over 1 thousand devices has
more than 10 thousands signals. In this paper, we mainly
show the results of ORACLE with four subsets with different
number of devices (50, 100, 250, 500) that randomly sampled
from the external dataset. In all of the datsets we used, every
device has 141 training signals and 35 testing signals, and each
signal consists an average of about 15 thousands I/Q samples
unless otherwise specified.

2) Laboratory-generated data: For a more controlled study
of our architecture, we also collect IQ samples from an
experimental setup of USRP SDRs with a fixed USRP B210 as
the receiver. All transmitters are bit-similar USRP X310 radios
that emit IEEE 802.11a standards compliant frames generated
via a MATLAB WLAN System toolbox. The data frames
generated contain random payload but have the same address
fields, and are then streamed to the selected SDR for over-
the-air wireless transmission. The receiver SDR samples the
incoming signals at 5 MS/s sampling rate at center frequency
of 2.45 GHz for WiFi. The collected complex 1Q samples
are partitioned into subsequences. For our experimental study,
we set a fixed subsequence length of 128, i.e., the length of
contiguous samples that will be used at a time for training and
classification. Overall, we collect over 20 million samples for
each radio, subsequently divided into training, validation and
test set. The authors commit to release this dataset immediately
after acceptance of the paper.

IV. ORACLE CNN ARCHITECTURE
A. CNN model

Our proposed architecture, as shown in Fig. 3, consists of
a deep Convolutional Neural Network (CNN). Our approach
is partly inspired from AlexNet [28], which is a deep CNN
architecture specifically designed to classify 1.2 million high-
resolution images available in the ImageNet dataset into 1000
different classes. Unlike AlexNet, which is made up of 8 layers
(5 convolution and 3 fully connected), our architecture extends
to 15 layers. We use one-dimensional (1D) convolutions to
capture the local temporal relations within I/Q symbols, which
carry subtle identifying information of transmitting radios.
Since we rely on only those hardware impairments that do
not vary over time, their effect on the transmitted signal can
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Figure 3: Our proposed CNN architecture with 8 convolution 1D and 2 fully connected layers.
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be identified in different local portions of the entire received
waveforms. 1D CNNs are particularly effective at these kind of
tasks, i.e., identifying features from fixed-length segments of
the complete dataset when the location of such features within
the segment are not highly correlated. ORACLE operates 1D
convolutions along the time axis and uses I and Q data as two
distinct channels of the 1D sequence.

A main building block of the proposed CNN model consists
of two 1D-convolution layers, each has 128 filters of size
7 for the first layer and 5 for the second one. These two
convolutional layers are followed by a Max Pooling layer, used
to provide (a) shift invariance and (b) reduce the dimensional-
ity of the output feature maps of the preceding convolution
layer, while retaining the most important information. We
then stack 4 of such building blocks, followed by a set of
2 Fully Connected (FC) layers, composed of 256 and 128
neurons respectively, and a Softmax classifier layer. In order
to overcome overfitting, we set the dropout rate to 50% at the
FC layers. We train the neural network using Adam optimizer
with a learning rate [r = 0.0001. The number of epochs is
determined by early stopping criterion (training is stopped
if validation accuracy didn’t increase in last 10 epochs) and
batchsize is 1024. We choose a sliding window approach to
partition the training signals into overlapping sequence of
samples, referred as slices, to enhance the shift invariance
of the features learned by the CNN. Since ORACLE’s CNN
model is trained with complex IQ symbols, it is suitable for
any radio fingerprinting applications and is independent of
underlying PHY layer protocols and modulation schemes.

B. Feature engineering: undercomplete demodulation

We propose an undercomplete demodulation that aims to
remove only an effect of the channel from raw IQ samples,
without compensating the device’s imperfections. In particular,
we improve the classifier’s accuracy by compensating the
effect of the channel by channel estimation and equalization,
however, leaving the frequency and sampling offsets in the 1/Q
samples. Thus, we (i) first estimate and compensate the carrier
and sampling frequency offsets (ii) estimate the channel using

pilot training sequence (iii) reapply the offsets computed in
step (i) to obtain our final sequence of demodulated symbols
that is fed to the CNN.

Fig. 4 shows IEEE 802.11a OFDM frame structure. It
consists of two training sequences, namely Short Training
Sequence (STS) and Long Training Sequence (LTS), each
with duration of 8 pusec. The STS is primarily used for
frame synchronization, Automatic Gain Control (AGC), and
coarse frequency offset estimation. The LTS is mainly used
for channel estimation, fine frequency and symbol timing
offset estimation. Using algorithms proposed in [29], we first
use both STS and LTS to estimate coarse and fine carrier
and sampling frequency offsets. Subsequently, we use LTS to
find channel estimates using least-square (LS) method. After
equalization using estimated channel, we reintroduce those
offsets to obtain undercomplete demodulated symbols. The
outcome here is that we are now able to retrieve IQ samples
that are not impacted by the wireless channel but still capture
the inherent hardware imperfections of the radio devices.

V. CNN PERFORMANCE AND IMPACT OF THE WIRELESS
CHANNEL

First, we verify the performance of ORACLE’s CNN archi-
tecture on large-scale wireless systems and later on experimen-
tal testbed developed in laboratory. Our goal here is to show
the generality of our CNN architecture, and identify its benefits
and limitations in scenarios where the wireless channel shows
variations.

A. External data set

We consider 500-device dataset of IEEE 802.11a/g (WiFi)
transmissions obtained through the DARPA RFMLS pro-
gram [30]. For data collection, raw IQ samples were collected
“in the wild” (i.e., no controlled environment) with a Tektronix
RSA operating at 200 MSPS.

Fig. 5 shows the performance of the CNN using raw samples
or the featured engineered undercomplete modulated data as
input. It shows that the ORACLE’s performance decreases
significantly when raw IQ samples are fed to the CNN. This
is primarily due to the following: (i) WiFi signals collected in
the wild may suffer from adjacent channel interference, packet
collisions, and even other interference from other devices
operating in the same channel. Thus, the signals are not
obtained in pristine environments - in fact other devices from
the same pool of radios may be operating at concurrent times;
(i1) The wireless channel changes over the duration of a day,
and the obvious impact of scaling up the number of devices
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Figure 5: Classification accuracy comparison for WiFi devices using
raw samples and undercomplete demodulation. All signals were
collected in the same day.

is also visible in the plot. The learning enabled through the
CNN, regrettably, is not fully divorced from the channel effects
which dominate classification accuracy, impacting highly those
radios that have signals with low SNR. The undercomplete
demodulation partially addresses this problem giving about
85% accuracy for 50 devices. Again this method too does
not scale well with increasing number of devices.

The impact of the channel becomes even more acute when
the training and testing occur on different days. On a dataset
of IQ samples collected in separate days for training and
testing the model, the classification accuracy for 50 COTS
WiFi devices drops to 46%.

B. Testbed Results

Our preliminary evaluation aims to demonstrate the accu-
racy of ORACLE’s CNN architecture under different condi-
tions by using several signal datasets coming from different
radio sources, in order to show the generality of this approach
and identifying its benefits and limitations in such scenarios.

1) Accuracy in quasi-static channel conditions: First, we
show the performance of the CNN using only raw samples
as input. This approach is particularly appealing because it
doesn’t require any previous knowledge of the modulation
scheme and protocol used, making it possible to also remove
specific pre-processing steps necessary to demodulate the
wireless transmissions. Using 16, high-end X310 USRP SDRs,
with the same B210 radio as a receiver, we performed data
collection for one radio at a time, placed in the same position
of a wide empty room, in line-of-sight with the receiver. We
refer to this setup as a controlled environment, given the
ideal conditions of trace collection. Our training set for this
experiment consists, per radio, of 200K windowed training
examples and 10K examples for validation. We use another
50K examples for each device to test the performance of our
trained model. It takes ~ 30msin with our current setup to
train the model for 16 radios. For this setup, we obtained
98.6% accuracy on the test set, shown in Fig. 6a. It is
important to note that in such controlled environment the
channel conditions can be considered quasi-static, meaning
that we didn’t observe drastic changes in subcarriers’ gain for
the training and test samples.

2) Limitations of raw 1Q samples in dynamic channels:
Multipath reflection and fading have considerable impact on
received IQ samples, at times distorting the samples wherein
the classifier no longer correctly identifies the radios. Typi-
cally, the effect of the channel is compensated by channel es-
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Figure 6: Confusion matrix relative to two experiments with same
devices and different locations: (a) overall accuracy is 98.60%; (b)
overall accuracy is 87.13%. (c) Estimated channel gain f{i(k) for k"
subcarrier for each radio r; € R (d) Magnitude of estimated channel
||H;||52 for all radios r; € R (ordered from lower to higher).
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(d

timation and equalization techniques to correctly retrieve over-
the-air transmitted data. Thus, as we show next, classification
performance degrades severely when either (i) classifiers are
trained on raw IQ samples under a given channel and then
tested on IQ samples obtained under different channels, or (ii)
transmitters experience very similar channel conditions.

As mentioned before, Fig. 6a shows the classification accu-
racy with our testbed composed of 16x X310 radios, with near-
perfect results for all the devices using raw samples. However,
Fig. 6b shows the same setup in a different location where
several outliers exist, as the confusion matrix shows, e.g., see
radio pairs (5,15), (10, 14). The reason is that the similarity in
the wireless channel experienced by certain transmitter pairs
dominates subtle hardware variations. Given a set of R radios,
ﬁl(k) represents the average channel gain in k" subcarrier
of each radio r; € R, estimated over WiFi packets belonging
to the training dataset.

Fig. 6¢ and 6d reveal how received samples from transmit-
ters with smaller differences in channel estimation are more
likely to be misclassified by ORACLE during testing. This
shows that wireless channel state affects the distribution of
complex symbols captured by the receiver in a non-negligible
manner, and therefore becomes a discriminating factor when
the classifier is trained with raw 1Q samples. If we try to use
a pre-trained model and use it to classify samples collected
from same devices but at different times or locations, the
classification result is unpredictable. See Fig. 7a, 7b and 7c
for the classification results showing the time and location
dependence of the trained classifier.
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Figure 7: (a) Classification accuracy for 4 devices tested at time ¢
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VI. ORACLE WITH FEEDBACK FOR DYNAMIC CHANNELS

This section describes the enhancements in ORACLE that
allow it to robustly classify transmitters in unseen environ-
ments. The two main assumptions here are: (i) instead of
raw IQ samples, ORACLE works with demodulated symbols
without feature engineering proposed in Sec. IV-B, and (ii)
in a pre-deployment phase, the receiver provides feedback to
the transmitter to incorporate controlled impairments. We first
present a method of introducing controlled impairments using
GNU Radio UHD API at the receiver. We then discuss the role
of impairments in generating unique pattern in demodulated
data, and show that the impairments (i) are independent of the
environment, and (ii) do not apply only in context of a specific
transmitter-receiver pair (as opposed to, say, relative phase
offset). Finally, we introduce the ORACLE training process
after allocating the unique patterns to bit-similar radios.

A. Impact of impairments on undercomplete demodulation

ORACLE modifies the transmitter chain of the SDRs such
that their respective demodulated symbols acquire unique
characteristics that make the CNN robust to channel changes,
i.e., it makes the transmitter hardware dominate channel in-
duced variations. We first validate the hypothesis that a given
combination of impairments results in repeatability in the
outcome of the classification. To demonstrate this, consider
demodulated symbols received from two X310 radios, over
cable and air channels, as shown in Fig. 8, for three different
levels of IQ imbalance. The first row shows slight differences
in the demodulated samples when the channel is completely
changed (i.e., air to cable) for the same transmitter. In the
second row, when the same channel is maintained, but the
transmitters themselves are different, adding the same level of
IQ imbalance results in virtually the same pattern in each case,
ensuring repeatability and robustness.

We also quantitatively analyze the property of the channel-
and device- invariance of the patterns with Earth Mover’s
Distance (EMD), a widely used metric to measure similarities
between two multi-dimensional distributions. More precisely,
suppose we have two sets of points in R?. Let A C R? and
B C R? be two subsets of equal size, ie., |A| = |B|. Let F'
be the set of all possible bijections (1 — 1 and onto mappings)
from A to B. The EMD between A and B is given by:

EMD (A, B) =min ||z — f(x)| 3)

fer €A
where f(z) € B. In other words, EMD is given by the smallest
possible sum of Euclidean distances between points in A and
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device- invariance of the patterns respectively.
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Figure 9: The EMD matrix of patterns generated (a) under different
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B, over all possible valid bijections f : A — B. Smaller
EMD indicates more similarities between two patterns and
vice versa. Fig. 9 (a) and (b) show the EMD matrix of patterns
generated on different channel conditions and devices respec-
tively with the same set of impairments in Fig. 8. We see that
computed EMD on the matrix diagonal, which represents the
patterns generated by the same impairments, are much lower
than the EMD of patterns generated by different impairments.
We further evaluate the EMD for the demodulated signal
collected under 3 different channel conditions, 4 devices across
32 different levels of impairments. We see that the average
EMD remains around 0.1 and 0.2 for patterns generated by the
same and different level of impairments, respectively, despite
of the variations caused by channel conditions. This result
matches closely with Fig. 9 and verifies our intuition.

B. Identifying feasible impairments

The naive approach of introducing random combinations of
impairments before training the CNN has three problems:

1) Scalability: If a new transmitter is introduced in the
network, then we have to re-train the entire CNN, which
is a time- and computation-heavy process.

2) Accuracy: It is possible that demodulated samples origi-
nating from two different transmitters (previously, easily
differentiable) now appear clustered together owing to
the modification in their placement on the IQ plane. This
may reduce the performance of the classifier.
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Figure 10: (a) BER vs. IMRR value of IQ imbalance; (b) BER vs.
DC offset level for different SNRs.

3) Communication impact: Adding impairments naturally
increases the BER. Hence judicious and controlled ad-
dition is needed to limit any adverse impact on BER.

To solve these issues, ORACLE automatically selects fea-
sible impairments that produce IQ sample constellation points
that are significantly different from each other, while min-
imizing the influence on the BER for the transmitter. This
step allows ORACLE to pre-train on virtual radios transmit-
ter chains (constructed in GNU Radio) as the impairments
dominate other variations introduced by its own hardware and
the wireless channel. Thus, ORACLE learns the impairment
patterns, which we have shown in Fig. 8 to be both device
and channel agnostic, i.e., two different radios will result in a
similar demodulated IQ pattern at the receiver under the same
impairment. This approach greatly increases the flexibility of
ORACLE: if a new transmitter is added, we simply assign it
one of the feasible and uncommitted impairments, without any
need to re-train the CNN.

We use a generic X310 USRP radio that operates in a loop
while automatically adding IQ imbalance and DC offset to
its hardware through utilities uhd_cal_tx_iqg balance
and uhd_cal_tx_dc_offset respectively. Then the trans-
mitter sends a stream of known data over cable to the B210
USRP receiver that checks the BER. For our experiment, we
consider 80 different levels of 1Q imbalance with IMRR value
ranging from —9 dB to —44 dB and 120 levels of DC offset
ranging from —82 dB to —140 dB. The BER plots are shown
in Fig. 10a and Fig. 10b for different SNR levels, which we
concisely refer to as an impairment map M, and use it later
in Sec. VII. The bounds on the impairments depend on the
SNR that the radios operate in. For e.g., our lab has a noise
floor of —70 dBm, for which we assume an average 30 dB
SNR level with the constraint on BER of 10~%. Accordingly,
we choose upper bound —13 dB on IMRR for IQ imbalance
and —94 dB for DC offset level.

Next we explain how to identify the feasible set S of
impairment combinations that satisfy the BER constraint, as
shown in Algorithm 1. Cyq is the set of different levels of 1Q
imbalance ¢y, ¢, - - - , ¢;, ordered by their corresponding BER,
ie, BER, < BER.,,,. Therefore, c; is the maximum IQ
imbalance we can add without exceeding the BER constraint.
Note that the BER constraint of 10~ is evaluated under ideal
SNR level (40 dB). Starting from c;, we progressively add
subsequent impairments to .S if the difference in EMD between

Result: S set of feasible impairments
S=0;
Cig ={c1,¢2, ..., 1
ODC = {dl, dg, ...7dj};
Add c; to S;
r=2y=1
while |S| < N and not(x > i and y > j) do
if x < i and For every s, € S, it is True that
EMD(P(c,), P(s;)) > T then

Add ¢, to S;

r=x+1;

end
if x > iand y < j and For every s, € S, it is
True that EM D(P(d,), P(s;)) > T then
Add d, to S
y=y+1

end
end

Algorithm 1: Greedly identify the feasible set of impair-
ments S. N is the number of radios and P(z) represents
the function that generates the pattern of I/Q samples with
the specified z impairment, used to compute the EMD dis-
tance. Crg and Cpc are sets of impairment configurations
for IQ imbalance and DC offset, respectively. 7" = 0.15 is
the EMD distance threshold.

(a) (b) (©)

Figure 11: Pattern generated with (a) original (demodulated) data; (b)
data after adding -17 dB noise, EMD with (a): 0.07; (c) data after
adding -9 dB noise , EMD with (a): 0.18.

the pattern generated by ¢; and that of any existing ci in .S
is larger than a threshold 7. As we have seen in Sec. VI-A,
T = 0.15 allows for an acceptable buffer in evaluating how
close a given IQ pattern is to another. After we have reached
¢;, we configure the radio with a different type of impairment
(i.e. DC offset) until ||S|| > N, where N is the number of
bit-similar radios to be identified.

C. CNN classifier using transmitter-side impairments

In this section, we discuss to train the classifier for the
patterns (see Sec. VI-B). We reuse the same CNN architecture
and the input data format as described in Sec. IV. Note all
IQ samples for training are collected over the cable, i.e, we
remove the influence of wireless channel so that CNN can
capture the pattern generated solely by hardware impairments.

ORACLE deliberately introduces random noise by modify-
ing the original data to increase the number and variability
of the initial dataset before input to the classifier, a tech-
nique commonly used in deep learning. Since low SNR of
the received samples results in scattering around the ideal
constellation point location within the IQ plane, the noise is
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modeled as a Gaussian variable. We note that noise may result
in an altered demodulated IQ sample pattern that is different
from the original one, as shown in Fig. 11. To finely control
the possible variations, we maintain the EMD under 0.1 after
adding noise, since two sample patterns up to this level are
still similar to each other (see Sec. VI-A). Thus, adding noise
power less than 02 = —13 dB ensures that the EMD between
original and altered patterns is below this threshold.

VII. ORACLE FOR SCALABLE AND SECURE RADIO
IDENTIFICATION

In this section, we discuss how ORACLE identifies radios
using judicious allocation of the impairments. A radio iden-
tification using greedy heuristic algorithm proposed in [27]
assigns an unique impairment to each transmitter radio with
an objective to minimize the sum total BER experienced by
all the radios in the network. However, this approach has two
limitations:

1) Scalability: If we allocate the unique impairment to each
transmitter radio, the number of radios to be identified is
limited by the number of feasible impairments derived
in Sec VI-B. However, the number of impairments does
not scale up due to BER constraint of the radios and
thus it prevents the application of ORACLE for a large
number of radios.

2) Security: An adversary radio can learn the unique
impairment used by a legitimate radio either through
eavesdropping or brute-forcing technique. By simply
introducing the learned impairment during its own trans-
mission, it can easily imitate the legitimate radio. Thus,
this approach is susceptible for spoofing attack.

To solve these issues, we propose ‘Impairment HOPping
spread spectrum’ (IHOP), a scalable and secure radio identifi-
cation technique. IHOP is partially motivated from frequency
hopping spread spectrum (FHSS) with several distinctions. In
FHSS, the transmitter switches its carrier frequency among
available frequencies using pseudo random binary hopping
sequence known to both transmitter and receiver. For K
number of available frequencies, the transmitter uses a hopping
sequence of length log,(K) to switch its carrier frequency.
Similar to FHSS, simply hopping across different impairments
has several disadvantages. First, a limited number of feasi-
ble impairments results in a shorter length of the hopping
sequence. There is a possibility that multiple radios may
introduce the same impairment at the same time if the pool of
radios is large. This in turn will result in an increasing number
of mis-classifications. Moreover, radios in a live deployment
may not have high enough SNR to use any given impairment
level, thus limiting the application of this approach.

Our approach is based on a novel design that overcomes
the above limitations: ORACLE does not bind a given radio
to a unique impairment. Rather, it identifies a radio through
a random pseudo-noise (PN) binary sequence, henceforth
referred to as ’identification key’. The transmitter conveys
this key switching between pairwise impairments (instead
of many impairments as in FHSS). The identification key
and the pairwise impairments change after every successful

identification, thus making it difficult for an adversary from
learning the pattern of sequence and thwarts its ability to
perform a spoofing attack.

Fig. 12 provides a walk-through of the main operations

involved in the process of IHOP based radio identification.
Phase 1: Identification through a random PN binary
sequence. The transmitter and receiver both share exactly
identical PN binary sequence generator that is implemented
using a linear-feedback shift register (LFSR) to produce a
sequence of pseudorandom binary numbers. Over a secure
feedback channel, the receiver shares coefficients of LFSR
through a generator polynomial with each transmitter radio.
Assume the transmitter and receiver generate the sequence:
0010101, a random, yet exactly identical binary sequence.
The receiver uses this sequence as an ’identification key’ to
uniquely identify the transmitter radio.
Phase 2: Selection of I;; and I; Using the steps followed
in Sec. VI-B, the receiver identifies a feasible set of impair-
ments given its perceived SNR during operation, generates the
pairwise impairments table and returns this to the transmitter
over a secure channel. Towards this aim, the receiver first
determines the upper bound on the impairment level, say Ig
for each transmitter radio using its estimated SNR while just
satisfying the BER constraint as shown in Sec. VI-B and
Fig. 10. After determining Ig, the receiver first randomizes
the ordered set of allowed impairments, [I;, I, ..., Ig], where
BER;, < BER;, < < BERj,. It then finds dif-
ferent pairwise permutations of impairments from this set.
For e.g., assume that the transmitter supports a maximum
impairment level up to I, as shown in Fig. 12. The receiver
first randomizes the ordered set [I1, I, I3, I;] and finds the
2V = 8 permutation pairs listed in Table A of Fig. 12, where
V = |logy(*P2)| = 3. Out of total permutations of “P;, the
receiver selects first 2V permutations, where V = |log, (°P2) |
to generate a table. Each row in the table is a pair of
impairments {Ij, I;} to be used to represent a binary 0 and 1
respectively, and this selection is constant for that entire binary
sequence of the ‘identification key’.

Note that each transmitter can have a different table due to
different upper bound on impairment level /s and due to ran-
domized permutations giving the pairwise impairments. This
further enhances the security of our identification approach,
while guaranteeing the BER constraint for each radio.

For each binary value 0 or 1 in the identification key, the
transmitter maps the impairments as: {0 — I,1 — I;} for
a fixed number of baseband symbols. For synchronization,
the transmitter radio conveys a fixed length of binary pream-
ble sequence before identification key with a pair of fixed
impairments {Iy, 5}, where BER; , BER;, < BER;, for
7 > 2. We use GNU Radio functions set_ig_imbalance
and set_dc_offset to introduce specific levels of IQ
imbalance and DC offset respectively.

After successful identification, the transmitter selects first
V' bits of the binary sequence output of the PN generator to
select the next pair of impairments. As shown in Fig. 12, the
transmitter selects {I4, I} as next pair of impairments based
on the first V' = 3 bits of the binary sequence output. The
receiver also chooses the same pair of impairments for the
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Figure 12: Illustration of radio identification using impairment hopping spread spectrum. PN generator at both transmitter and receiver
produce exactly identical binary sequence '0010101°, which we use as “identification key”. After referring the table A, the transmitter maps

the impairments {0 — I4,1 — I3} to convey identification key.

identification.
Phase 3: Transmitter identification at the receiver The
receiver uses ORACLE’s trained CNN classifier described in
Sec. VI-C to determine the sequence of impairments used by
the transmitter radio. A CNN classifier uses an input slice
of demodulated symbols to get the prediction probabilities
over all feasible impairments. Since the receiver knows the
pair of impairments used by each transmitter radio, it uses
prediction probabilities of those specific impairments {Ij, I; }
to determine the binary output as i = argmax{pg,p;}. The
receiver first synchronizes using the known preamble sequence
and using fixed impairment pair {1, I} and later uses {I, I, }
to determine identification key. The receiver performs this
operation for each transmitter radio separately. This binary
sequence is then matched with the binary sequence output
from its own PN generator specific to a particular transmitter
radio to determine its identify. After successful identification
(or later in time, through the mechanism of a link layer ACK),
the receiver notifies the transmitter to generate a new binary
sequence output for a different identification key, which also
changes the pair of impairments as described in Phase 2.
The radio identification through PN sequence allows THOP
to scale to thousands of radios requiring a minimum of just two
impairments whereas frequent hopping of the identification
key and the pair of impairments make it hard for the adversary
to find the pattern to perform spoofing attack. Thus, IHOP
based radio identification is scalable as well as secure.

VIII. PERFORMANCE EVALUATION

In this section, we present the performance of ORACLE
showing: (1) it increases the classification accuracy for bit-
similar radios, and that accuracy is not influenced by variation
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Figure 13: Two different experimental environments: (a) closed lab
area (location 1); (b) open recreation area with much less reflections
(location 2).

in wireless channel conditions (Sec. VIII-A); (2) it achieves a
near perfect identification accuracy without compromising on
the security and BER performance of each radio. (Sec. VII).
Experiment setup: We first identify a set S of 16 impairments
which generates unique patterns as discussed in Sec. VI-B.
Next, we collect demodulated data from WiFi packets that are
transmitted over a cable from a single radio, after introducing
these impairments through GNU Radio API. We replicate
and augment demodulated data by adding a random Gaussian
noise. We limit the power of noise to be under -13 dB to ensure
that EMD lies below the threshold of 0.1 between patterns
generated from original and altered data. Finally, we train the
classifier with the augmented dataset using the same CNN
architecture as described in Sec. IV.

A. Classification accuracy with different channel conditions

We test the performance of the trained CNN classifier with
16 X310 radios. To do so, we first collect samples from
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Figure 14: Classification accuracy (a) via cable; (b) over air in
location 1 (Fig.13a); (c) over air in location 2 (Fig.13b). (d) shows
the accuracy without ORACLE (data collected in location 2).

these radios through cable. All radios are uniquely configured
with one of 16 impairments selected from set S. As shown
in Fig. 14a, ORACLE easily distinguishes bit-similar radios
that are intentionally introduced with unique impairments by
achieving a classification accuracy of 99.76%. This indicates
that our pre-trained classifier is able to identify bit-similar
radios accurately when mapped to one of the hardware im-
pairments.

Next, we evaluate the performance of ORACLE with data
collected over the wireless channel. To show robustness to
variation in channel conditions, we conduct the experiments in
two different locations: (1) our lab, which represents a typical
in-indoor environment (Fig. 13a) and (2) a more open recre-
ation area which has fewer reflections (Fig. 13b). The con-
fusion matrix of classification accuracy is shown in Fig. 14b
and Fig. 14c respectively. In general, in both environments
ORACLE can achieve higher than 99.5% accuracy, which
proves that the unique patterns created by the impairments
can still be detected, even with random noise.

In comparison, training the same classifier with these 16
X310 devices without any kind of artificially introduced hard-
ware impairments results in a poor classification performance.
As shown in Fig. 14d, the classification accuracy is only
35.96% for these bit-similar radios, which shows the benefits
of the careful impairment allocation process.

B. Radio identification using IHOP

We evaluate the performance of our proposed IHOP based
radio identification technique using the data collected over the
air for 16 X310 radios in location 1. For each radio, we collect
raw IQ samples for all 16 impairments. In our experimental
evaluation, each radio supports all 16 impairments satisfying
the BER constraint of 10~%. For each transmitter radio, a

11

receiver first randomize these 16 impairments and then find
different permutations of a pair of impairments to get a
total permutations P, = 240. It selects first 2 = 128
permutations where V = | (log,(1%P) | = 7 to generate a table
where each entry is a pair of impairments to be used to convey
binary O or 1. We assume the receiver shares this table along
with a unique generator polynomial, initial seed and a initial
impairment pair to be used over a secure feedback channel.

Table II: A list of generator polynomial selected for a specific PN
sequence length.

PN sequence length [p, | Generator Polynomial
7 [7 6 0]

13 [13 12 10 9 O]
19 [19 18 17 14 0]
25 [25 22 0]

31 [31 280]

We perform 10000 trials to evaluate the performance of our
proposed identification technique. In each trial, we randomly
select a transmitter out of 16 X310 radios that uses a shared
generator polynomial (as shown in Table II) and random
initial seed to produce a PN binary sequence (‘identification
key’) of length [,,, that is exactly identical to a sequence
generated by the receiver. The transmitter refers its own
pairwise impairment table to map each binary value 0 or 1 in
the identification key to the impairment as: {0 — I, 1 — I;}
for a ngy;ce number of baseband symbols. We generate a new
pairwise impairments table in each trial. We choose the value
of ngce same as the input slice length used by ORACLE’
CNN classifier. For synchronization, the transmitter uses a
fixed length preamble sequence *10101011°, that is conveyed
before ’identification key’ using {I1,I>}. The receiver uses
ORACLE's trained classifier described in Sec. VI-C to obtain
the sequence of impairments, which are then demapped to
a binary sequence. This sequence is then matched with the
output of its own PN generator to determine the success or
failure in identifying the transmitter. In each trial, we repeat
the identification process for the same transmitter 10 times by
generating new identification key each time.

Fig. 15a shows the accuracy of our proposed IHOP based
radio identification as a function PN sequence length for a slice
size ngiice = 128. As the length of PN sequence increases, the
identification accuracy reduces. It is because even a single
inaccurate identification of the impairment I or I; causes
radio identification to fail which requires matching of the
entire sequence. To improve the identification accuracy, we
propose a simple repetition technique, in which the transmitter
introduces the same impairment for 7., X ngj.c number
of baseband symbols, instead of mg;.. and where n,., is
the number of repetitions. As shown in figure, repetition of
Nrep = 3 significantly improves the identification accuracy.

Fig. 15¢ shows ORACLE’s classification accuracy for dif-
ferent length of input slice size. This is to show that input
of a smaller slice size can also identify radios if we intro-
duce artificial impairments. Fig. 15b shows the identification
accuracy for PN sequence length [,, = 31 as a function
of slice size ngpice. It is evident that IHOP supports radio
identification even with shorter WiFi packets. This also allows
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Figure 15: (a)Radio identification accuracy as a function of length

of PN sequence [p, for slice length of ng;.. = 128 b) Radio
identification accuracy as a function of slice length ng;;.. for a fixed
PN sequence length of [, = 31 ¢c) ORACLE’s CNN classification
accuracy as a function of slice length

to further improve the security by using a higher PN sequence
length [,,,, for the same size of the WiFi packet. For example,
“identification key’ of [,, = 31 conveyed by using ngice = 8
with repetition n,., = 3 achieves similar accuracy compared
to that conveyed using ngc. = 128 with no repetition, but
requires 5x times less number of symbols to represent.

IX. CONCLUSIONS

We presented ORACLE, a fingerprinting technique for
identification of specific radios based on the hardware-centric
features within the transmitter chain. We showed that our
CNN classifier achieves an accuracy of 80 — 95% using raw
and feature engineering on IQ samples for > 100+ COTS
WiFi devices and 16 X310 USRP radios in static environment.
To further improve the classification accuracy in dynamic
environment, we showed how feedback-driven transmitter-
side modifications can increase differentiability for bit-similar
devices. Furthermore, we demonstrated a scalable and secure
method to uniquely identify radios through a random binary
sequence key, conveyed by hopping impairments that easily
thwarts spoofing attack from an adversary. The key innovation
lies in its ‘train once and deploy anywhere’ feature. We
demonstrate experimental > 99% accuracy with bit-similar
X310 radios, regardless of different channel conditions and
wireless transmission environments.
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