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Abstract— Unmanned aerial systems (UASs) allow easy
deployment, three-dimensional maneuverability and high recon-
figurability, as they sustain communication network in the
absence of pre-installed infrastructure. The proposed FOg Com-
puting in UAS Software-defined mesh network (FOCUS) par-
adigm aims to realize an implementable network design that
considers practical issues of aerial connectivity and computation.
It allocates UASs to the tasks of data forwarding and in-network
fog computing while maximizing number of ground-users in
UAS coverage. FOCUS improves efficient utilization of network
resources by introducing on-board computation and innovates
on top of software-defined networking stack by integrating the
capabilities of network and ground controllers to enable simul-
taneous orchestration of both UASs and communication flows.
There are three main contributions of the paper: First, a SDN-
based architecture is designed enabling autonomous configura-
tion of computation and communication as well as managing
multi-hop aerial links. Second, a global optimization problem
to achieve optimal forwarding and computational allocation is
formulated using Open Jackson Network model and solved via a
heuristic approach with well defined complexity. Third, FOCUS
framework is implemented on a small-scale testbed of Intel®

Aero UASs performing image analysis with a full software
stack. Experiments reveal at least 32% latency improvement
in computation service time compared to traditional centralized
computation at the end-server or greedy task allocation schemes
within the network.

Index Terms— Unmanned aerial vehicles, mobile ad hoc
networks, edge computing, software defined networking, heuristic
algorithms.

I. INTRODUCTION

UNMANNED aerial system (UAS) applications have
grown exponentially over the last five years, presently

driving business close to 1 billion USD already within the
USA, with an upwards growth targeted to reach 46 billion
USD by 2025 [1]. Thus, it is foreseen that they will be one
of the key enablers toward smart cities with their applications
range from construction to communication and to surveillance.
However, most of the existing deployments consider UAS as
a mobile wireless sensor, with data processing offloaded to a
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Fig. 1. Network architecture of a UAN connected to computational cloud
and ground units.

computational cloud. At the same time, the enhancements in
UAS control and communication hardware and mass produc-
tion at economical price-points are paving the way towards
Unmanned Aerial Networks (UANs), composed of swarms of
UASs connected to the Internet, capable of limited on-board
computation, but also being integrated with the cloud [1].

Different from traditional ad hoc and mobile networks,
the design of a UAN poses unique challenges, such as highly
dynamic topology, 3D mobility and high energy consumption
per unit time [2]. Piloting commercial off the shelf (COTS)
UASs requires manual skills, but UAN applications that have
rigid objectives and performance constraints amplify the above
challenges when they operate in groups. In this paper, we envi-
sion the UAN as a mixed sensing, information relaying and
computing platform, taking advantage of the entirety of its
on-board capabilities. Towards this goal, we wish to adopt
the flexibility and structured approach of classical software
defined networking (SDN), building on the OpenDayLight [3]
architecture that has proven to be successful in the wired
networking domain. Thus, each UAS within the larger UAN
becomes a network switch that directs data traffic towards the
remote cloud as well as towards peer-nodes for in-network
processing. To our best knowledge, while many works have
pointed towards the trend in COTS UAN to gain increasingly
greater computational power and ability to support popular
operating systems and processing packages [4], a transforma-
tive design that allows the UAN to become a fully capable,
aerial SDN has not been implemented in actual systems.

A. Problem and Solution Overview

We consider a scenario where ground sources may generate
rich sensing data (e.g. videos, terrain maps, RF spectrum
surveys) that needs to be transmitted to the cloud for purposes
such as storage, aggregation and analytics as seen in Fig. 1.
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This generic environment covers several real-world use-cases
related to post-disaster recovery, rural broadband access and
military operations. In many of these cases, the cloud is not
reachable via a direct link, and hence, instead of a single UAS,
we envision that a UAN is deployed for data forwarding to the
cloud server. We note that several distributed mobility-aware
routing and communication-aware mobility control schemes
for UASs have been proposed in the literature that address
only a subset of factors affecting the UAN deployment
[2], [5]. In this paper, we focus on an architecture that
leverages SDN, given that it effectively decouples control and
user data plane, and has shown great potential in management
of wired/wireless networks.

A conceptual view of SDN controllers to compute the UAN
topology and routing based on actual link load estimations
have been proposed in [6], [7]. In addition, given the highly
dynamic network topologies in such networks, there is like-
lihood of a temporal drift between the actual network state
and the virtual state information available at the controller.
In such situations, shifting the entire burden of the scenario
analysis to the cloud becomes risky; few incorrect or outdated
decisions taken by the controller can result in major end-to-
end latencies in the mission [8]. Our approach addresses these
challenges by considering, in a single theoretical formulation,
the optimized assignment of the individual UASs to function
as forwarding nodes that relay data towards the sink or to alter-
nate intermediate-UASs that may perform computational tasks
closer to the source. This results in significantly lowering the
volume of data to be transmitted through the UAN. We look
at the problem not only from a theoretical viewpoint but
also from that of practical implementation, by (i) implement-
ing a robust mesh network formation and routing protocol,
(ii) defining and architecting the SDN control interfaces, and
(iii) showing the benefits of intelligently assigning computa-
tion tasks to selected UASs in the network.

B. Main Contributions

We make three main contributions in this paper:
• We present the architecture and design of FOCUS,

a framework for the deployment of a practical UAN.
It autonomously sets up the UAN configuration in terms
of network topology (i.e. routing table), and computation
(i.e. task allocation over cloud or intra-UAN nodes, also
called as fog nodes), based on QoS requirements. This is
performed via an SDN architecture that handles both compu-
tation and communication in multi-hop aerial environments.

• We formulate the problem of joint routing and computa-
tion assignment over UAN via an analytical model. Being
NP-hard, we decompose it into two sequential tasks, with
heuristic solutions for each. We also provide rigorous
bounds on the computational complexity.

• We implement the system on a limited testbed of Intel Aero
UASs performing data processing of image-data. We also
validate FOCUS experimentally and through simulation,
starting from the data generation on the ground to the final
logging of processed results in a database.

The rest of the paper is structured as follows. In Section II,
we review the existing literature on the application of SDN

and cloud computing on UAN. Preliminary results supporting
the motivation of our work are provided in III. The joint
routing-computation problem and algorithms are formally
described in IV. FOCUS architecture and implementation
details are explained in V. Experimental and simulation results
are reported in Section VI. Finally, we conclude in Section VII.

II. RELATED WORK

Recent works have attempted to address UAS requirements
of dynamic topology and variable network load [2]. Moving
some of these important problems from the physical device
plane to the controller of an SDN has gained traction [9],
where link status and flight statistics are collected from each
UAS and used to compute the routing tables. The core
functionality of packet routing is enhanced in [10] by incor-
porating a centralized energy- and load-aware routing scheme.
Reference [6] maps these approaches in context of video-
surveillance, while [7] exploits the closely related Network
Function Virtualization (NFV) functionalities for telemetry
monitoring and anomaly detection. Reference [8] uses SDN
controller for motion and location prediction, by utilizing
knowledge of the current physical position and trajectory of
each UAS to envision how the network may evolve ahead.

Different from these works, FOCUS SDN-enabled archi-
tecture jointly performs network routing to both the end
cloud as well as in-network computational resources while
taking the network topology and the network load requests
into consideration. The latter concept, commonly known as
fog computing is still in a nascent stage. Several papers
have investigated the dual problem, i.e., how to offload the
computation from the UASs to an edge-server or to a remote
server in the cloud [11]. References [12] and [13] describe
video-surveillance applications, where data are gathered by
UASs, and processed on edge nodes through computational
expensive vision algorithms. Instead, in FOCUS, we envision
UAS themselves as computationally capable devices. The Intel
Aero drones we use have Intel Atom® x7-Z8750 processor,
4 GB LPDDR3-1600 RAM, Intel® Dual Band Wireless-AC
8260, 32 GB eMMC, Altera® Max® 10 FPGA and Ubuntu
16.04 LTS.

Similar to the notion of delegating computational workload
to UASs, following studies proposed to utilize vehicles as
computational nodes or relays in vehicular ad-hoc networks
to improve overall performance of cloud systems [14]–[16].
Reference [14] proposed semi-markov decision process based
resource allocation scheme for vehicular clouds, where vehi-
cles in the network increases cloud resource pool via sharing
their own computational resources. In [15], the authors devel-
oped content dissemination framework by integrating edge
computing with vehicular networks where vehicles act as
relays to deliver contents efficiently. In addition, an approxi-
mation scheme for job completion time in vehicular cloud is
proposed in [16]. However, these studies neither considered
UAS-specific challenges such as limited on-board resources,
3D mobility and unreliable ad-hoc links while devising their
frameworks, nor provided any real-world implementation.

We describe next the works that come closest towards joint
consideration of UAS capabilities, including computation.
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TABLE I

COMPARISON WITH THE LITERATURE

Reference [19] estimates the execution time of different tasks
when executed locally on ground robot units and remotely
in the fog/cloud servers, and defines offloading strategies to
optimize the service time. Reference [20] approaches the
same problem through game theory. General architectures
employing UASs as fog nodes are proposed in [18] and [17].
In the former case, the UASs serve as mobile base stations
providing connectivity to the ground units. In the second
case, the UASs offer computation offloading opportunities
to mobile ground units. However, the goal of this work is
on enhancing the uplink/downlink communications and the
path planning of the UASs. Table I showcases the differences
of FOCUS with the existing studies in the literature where
these studies are grouped under three sub-categories based
on their scope and are investigated by four different aspects
such as network, computation, target domain and test-bed
implementation. Moreover, the work that we present in this
paper does not explore the limited energy problem of the UASs
that is indeed quite important when analysing aerial vehicles.
However, several work can be found in literature that proposed
solutions for this problem [21], [22] that can be used to obtain
continuous operability. FOCUS pushes the envelope further
by a joint analytical and systems approach, while opening up
for the community the software tools and code to build and
deploy aerial SDNs.

III. PRELIMINARY STUDY ON COMPUTATION ON UASS

We conduct two different sets of experiments motivating the
use of a UAN as an aerial computing platform: the first one
stressing the communication/computing tradeoff on a simple
linear topology, the second one showcasing the impact of

processing on the UAS battery/flight time. To better understand
the advantages of data processing on fog nodes within an
UAN as opposed to centralized cloud, we set up a mesh UAN
in a linear topology consisting of 3 Intel Aero Ready-To-Fly
UASs, as seen in Fig. 2a. Two ground laptops are placed at the
two ends of the mesh, one acting as a ground control station
(GCS) and application server, and the other as the source.
The GCS containing 16GB DDR3 RAM, 7th generation Intel
processor and NVIDIA® GTX 1060 graphic card doubles as
the centralized cloud entity along with being the controller.
The source generates network data as UDP packets and static
images for processing. The target location for the processing
may vary over time via computational requests. Since, we use
same workload generation and image processing algorithms
during evaluation, further details are explained in Section VI.

Consider four scenarios where: computational requests are
handled by UAS in inter-mediate hops, i.e., UAS1, UAS2,
UAS3 and when the images reach the GCS/application server.
The network load is gradually increased from 0 to 1Mbps and
finally to the upper limit of 2Mbps. Under non-loaded network
conditions, understandably, it is beneficial to execute the data
processing at the remote GCS, as seen in Fig. 2c. However,
when the network load begins to increase, the amount of time
spent on forwarding information in the network indicates the
benefit of processing the image on a fog entity, i.e., the UAS
as opposed to the GCS, despite having weaker computational
power. As seen for the cases of 1 and 2 Mbps network traffic,
processing images on the UAS improves the response time.

As algorithms may vary in processing requirements (for e.g.,
genetic algorithms and particle swarm optimization run mul-
tiple iterations), we define an iteration variable that increases
the effort involved in completing the image processing task.
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Fig. 2. (a) Linear UAN topology; computation response time w.r.t. (b) algorithm iteration number, (c) network load and; (d) UAS flight time w.r.t. processing
complexity.

Each iteration re-analyzes the image, with the goal being to
identify the break-even points for switching the processing
from fog nodes to the GCS. As seen in Fig. 2b for a constant
network load of 1Mbps, algorithms with fewer iterations to
completion are more suited for the fog nodes, though every
additional forwarding hop impacts the difference from the
ground server to a greater extent. These studies indicate
practical handover points that we use in our optimization
approach.

Computation and data relaying both incur energy costs.
To study their inter-dependence, we flew a UAS equipped
with the standard 4S, 4500mAh battery, under different CPU
utilization scenarios, as shown in Fig. 2d, recording the flight
time for each setting. These scenarios are defined by the
number of CPU cores fully utilized during the entire flight
starting with 0 and continue with 1, 2 and 4 cores. During the
flights, we use a simple workload generator [23] to fully utilize
individual CPU cores on UASs. Increasing CPU utilization
drains negligible battery power when compared to the power
drawn by the UAS propeller motors. This further motivates
us to fully leverage fog nodes for processing within the
network. Fig. 2d shows high variations in the upper and lower
bounds in the flight time due to uncontrollable flight dynamics
(altitude deviation, pitch, yaw, roll) caused by wind, which
again impacts the UAS battery consumption rate more than
internal data processing. We run the experiment ten times for
each scenario with a fully charged battery, and record the flight
time until its remaining battery capacity hits a critical level
(which is 15%).

IV. PROBLEM FORMULATION AND

OPTIMIZATION FRAMEWORK

In the following, we formulate the problem of joint assign-
ment of network flows and computational tasks by modeling
UAN as a network of queues. Then we describe two-phase
solution to this problem, where network flow and computa-
tional flow optimizations are solved consecutively. Table II
defines the variables and symbols used in the process.

A. System Model

We assume a scenario with N flying UASs, M ground
units and one ground control server (GCS). The ground units

TABLE II

LIST OF IMPORTANT NOTATIONS

produce two classes of network traffic: (i) generic network
traffic (denoted by the n apex), i.e. sensor data that must be
delivered to the GCS, and (ii) computational traffic (denoted
by the c apex), i.e. data that must be processed on the
cloud or on fog nodes. We introduce the following variables:
• U = {u1, u2, . . . , uN } is the set of available UASs;
• G = {g1, g2, . . . , gM } is the set of the ground units;
• ϒ(c) = {μ(c)

1 , μ
(c)
2 , . . . , μ

(c)
N , μ

(c)
N+1} is the computational

capacity (in Kbps) for each UAS ui ∈U and for the GCS
(defined by μ

(c)
N+1);

• � = γ1, γ2, . . . , γM is the set of bandwidth requests
(in Kbps) for each ground unit g j ∈ G, where γi =
γ

(n)
i + γ

(c)
i , i.e. it includes both generic and computational

data;
• EN×(N+1) is UAN adjacency matrix, where ei, j → {0, 1}

indicates whether there is an active link between the
UASs ui , u j ∈ U , where also index N + 1 represents
the GCS;

• AN×M is Air-to-Ground (A2G) connection matrix, where
ai,k → {0, 1} indicates whether there is an active connection
between UAS ui ∈U and ground unit gk ∈G.
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Fig. 3. Two-layer Open Jackson Network.

EN×(N+1) and AN×M matrices are assumed to be pre-
computed based on the position of the ground units. The UAN
is modeled as an Open Jackson Network [24], and each UAS
node is represented with two consecutive M/M/1 queues as
shown in Fig. 3. On the left, we depict the network queues
used for both traffic types (n and c). On the right, we depict the
process queue corresponding to the computational traffic (c),
for both the UASs and the GCS. The output of the queues are
determined by the routing policies. These latter are formally

modeled via the matrices R(n)
N×(N+2) and R(c)

N×(N+2) , respectively

for the n, c traffic classes; r (t)
i, j indicates the ratio of traffic of

ui routed to u j for traffic type t ∈ {n, c}. In addition, r (n)
i,0

and r (c)
i,0 denotes ratio of the packets left the network and,

ratio of packets processed locally at ui . Similarly, let r (c)
i,(N+1)

be the ratio of the computational packets that ui forwards to
GCS, to be processed on the cloud. The overall packet arrival
rate (λi ) to ui is defined as λi = λ

(n)
i + λ

(c)
i . Assuming that,

the ground units generate requests with the average 1/γ time
difference, we use Markovian queues to obtain closed-form
equations for the upper-bounds of the response times in the
model.

For each traffic type (∀t ∈ {c, n}), the λ
(t)
i term can be

modeled as λ
(t)
i = �

(t)
i +

∑N
j=1 r (t)

j,i · λ(t)
j , where �

(t)
i =∑M

k=1 ai,k · γ (t)
k and the variable γ

(t)
k is the arrival rate of the

c and n traffic from the kth ground unit and �
(t)
i is the sum

of the arrival rates over all ground units assigned to UAS i .
By Little’s Law, the average response time for packets

belonging to traffic type c (W(c)) is defined as follows:

W(c) =
∑N

i=1 L(n)
i +

∑N+1
i=1 L(c)

i∑M
k=1 γ

(c)
k

(1)

where L(n)
i and L(c)

i indicate the expected number of compu-
tational packets in the network queue and in the computational
queue of UAS i respectively. Let ϒ(n) = {μ(n)

1 , μ
(n)
2 , . . . , μ

(n)
N }

be the average service rate for each UAS ui ∈ U , with

μ
(n)
i expressed again in K b/s. Hence, the average num-

ber of computational (c-type) packets at the first queue is
L(n)

i = λ
(c)
i /

(
μ

(n)
i − λi

)
. On the other hand, the number

of the packets in the second queue is defined as follows
L(c)

i = λ
(c)
i r (c)

i,0 /
(
μ

(c)
i − λ

(c)
i r (c)

i,0

)
. We can hence rewrite W(c)

as follows:

W(c) =
∑N

i=1
λ

(c)
i

μ
(n)
i −λi

+∑N+1
i=1

λ
(c)
i ·r(c)

i,0

μ
(c)
i −λ

(c)
i ·r(c)

i,0∑M
k=1 γ

(c)
k

(2)

Similarly, we compute the average response time for the
generic network traffic as follows:

W(n) =
∑N

i=1
λ

(n)
i

μ
(n)
i −λi∑M

k=1 γ
(n)
k

(3)

The proposed system assumes to have the knowledge of the
all data load requests � and the network links quality ϒ(n).
Consequently, also the AN×M and the EN×(N+1) matrices are
assumed to be known. These indexes represent the ground user
bandwidth requests and the network links quality, respectively.
These two indexes can be known in advances for static
scenarios and with full knowledge, but this case is very rare.
On the other side, for evolving and/or unknown scenarios,
these indexes can be dynamically estimated by the system
using link quality estimation within the SDN networks [25] in
order to estimate ϒ(n) and EN×(N+1) and continuous monitor-
ing of the ground user requests to estimate � and EN×(N+1) .
The effects of the convergence of the index estimations and
their change over time will be analysed in future works.

B. Problem Formulation

Based on this system model, we formally define the
joint routing and computation assignment (RC) problem as
follows:

min
R(t)

W(c) (4)

subject to:
∑

ui∈U

ai, j = 1 ∀g j ∈ G (5)

dim kernel(Laplacian(E)) = 1 (6)

λi < μ
(n)
i ∀ui ∈ U (7)

λ
(c)
i · r (c)

i,0 < μ
(c)
i ∀ui ∈ U (8)

N+1∑
j=0

r (t)
i, j = 1 ∀ui ∈ U, t ∈ {n, c} (9)

r (t)
i,0 +

N+1∑
j=1

(r (t)
i, j · ei, j ) = 1 ∀ui ∈ U, t ∈ {n, c}

(10)

W(n) ≤ ρ(n) (11)

r (t)
i, j , λ

(t)
i , μ

(t)
i , γ

(t)
i ≥ 0

∀ui ∈ U, t ∈ {n, c},
j ∈ [0, N+ 1]

(12)
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Fig. 4. FOCUS optimization framework.

The goal of the optimization problem, defined by (4), is to
minimize the average response time of computational traffic,
by determining the optimal routing matrices R(t), meeting
the following constraints: (5) states that each ground unit
must be connected to a single UAS; (6) ensures the aerial
mesh is connected by analysing dimension of the kernel of
the adjacency matrix’s Laplacian; (7) and (8) guarantee the
validity of Open Jackson Network model; (9) and (10) state
that all the packets leaving a network queue will flow to
another network queue or to a computation queue, but only
using active links; finally, (11) ensures the service time for
type n traffic does not exceed a user-defined threshold ρ(n).

RC multi-objective optimization problem is NP-hard since
it is a generalization of the well-known splittable flow prob-
lem [26]. Therefore, we divide the original problem into
two phases: first, we compute the routes for traffic type n
toward the GCS. Then, based on such allocation, and the
estimated network traffic congestion, we compute the routes
for the computational data flows (type c). Fig. 4 shows the
modules implementing each phase. The first module, namely
Network Flow Optimization (NFO), generates the entries of
the R(n) matrix as output. These values are taken as input by
Computation Flow Optimization (CFO) module producing as
output the final R(c) matrix.

C. Network Flow Optimization (NFO)

NFO algorithm determines the proper values of r (n)
i, j , with

i, j≤N , i.e. the routing entries for the class n traffic directed
to the GCS. Given the complexity of the original problem,
we relax the constraint of (11), i.e. we determine the routing
entries minimizing the average response time W(n). Formally:

Definition 1: Given the set of available UASs (U ), the con-
nection matrix (EN×N ), the air-to-ground active links matrix
(AN×M ) and the network requests set (�), the goal is to
compute the network routing matrix R(n)

N×(N+2) such that the
average response time for class n traffic W(n) is minimized.

We address the problem by using a modified version of the
Dijkstra algorithm for the Shortest Path Problem (SPP) over
acyclic weighted graphs. To this purpose, we define the cost
function for node ui (ξ(n)(ui )) as a proxy of the average delay
toward the GCS, computed as follows:

ξ(n)(ui ) = 1

μ
(n)
i − λ

(n)
i

+
∑

1≤ j≤(N+2)

fi, j · r (n)
i, j (13)

Here, the first fraction represents the average queuing delay
at node ui , while the second one is the average delay of the

Algorithm 1 NFO algorithm
1: NFO (U, EN×N , AN×M , �,ϒ)
2: init FN+1×N+2 with fi, j =−1 { fi, j ≥0 is the cost}

of j being father of i
3: init CN+1×N+2 with ci, j = 0 {ci, j = 1 if j is a}

child for i
4: init vi = f alse, λ

(n)
i = �

(n)
i , r (n)

i, j = 0, 1 ≤ i, j ≤ N
5: set fN+1,N+2 = 0 {N+1 is the GCS and N+2 is a

dummy node}
6: while ∃uk s.t. (vk= f alse)∧(∃ j s.t.

fk, j ≥ 0)∧(arg mink ξ(n)(uk)) do
7: vk = true
8: call updateLambdas(uN+1)
9: call updateFathersCost(N+2, uN+1, 0)

10: call updateChildren(uk)
11: return R(n)

12: function updateLambdas (uk)
13: λk ← �k

14: for all ui s.t. ck,i = 1 do
15: if vi = true then
16: λk ← λk + (r (n)

i,k · updateLambdas(ui) )
17: return λk

18: function updateFathersCost ( j, uk, f ullcost)
19: fk, j ← f ullcost
20: for all ui s.t. ck,i = 1 do
21: updateFathersCost(k, ui, ξ

(n)(uk))
22: function updateChildren (uk)
23: for all ui such that ek,i = 1 with ek,i ∈ E do
24: if vi = f alse then
25: ck,i = 1
26: for all ui s.t. ck,i = 1 do
27: fk,i ← ξ(n)(uk)

28: r (n)
i, j ←

∏
(m: fi,m≥0,m 
= j )ξ

(n)(um)∑
(m: fi,m≥0)

∏
(w: fi,w≥0,w 
=m) ξ (n)(uw)

, ∀ j :

fi, j ≥ 0

path toward the GCS. We recall that the Dijkstra algorithm
computes the shortest path between a source (or multiple
sources) to a single destination. Unfortunately, the original
algorithm does not fit our problem because: (i) the weight of
the nodes/arcs is not static, since it may change over time as a
specific node is included in the routing path of a flow toward
the GCS; (ii) each node can have multiple paths towards
the GCS, and exploit all of them concurrently. The proposed
solution is described by Alg.1. As in Dijkstra’s algorithm,
we start building the shortest paths from the destination
(the GCS in our case). In addition, we keep two auxiliary
matrices as:

1) F matrix keeps track of the network flows costs. It includes
the forward pointers from one node to its fathers, i.e.
fi, j ∈ F is greater then zero if u j is a father for ui towards
the GCS and defines the path cost from u j ;

2) C matrix keeps track of the incoming network flows.
It includes the reverse pointers from one node to its subtree,
i.e. ci, j = 1 if node u j is a child of node ui , 0 otherwise.
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Fig. 5. A schematic view for a single step execution of Alg. 1 (lines 8 - 10).
Here N = 5 and active node in the step is u2.

These two matrices are initialized at the beginning of Alg. 1:
line 3 for the C matrix and line 2 for the F matrix; here,
as starting point we defined a father connection from the GCS
to a dummy node (having index N + 2) whose cost is set
to zero (line 5). At each iteration, the algorithm performs a
greedy selection over the nodes, by adding the one having the
minimum cost towards the GCS to the solution set (line 6).
Then, it updates the λ

(n)
i and the matrices F (lines 8 and 9)

and C (lines 26-28). Finally, the algorithm updates R(n) by
balancing the outgoing traffic towards all the paths to minimize
the total cost (line 28) equalizing (r (n)

i, j ·ξ(n)(u j )) values, ∀ j :

fi, j ≥ 0. For space reason, here we omit the check if r (n)
i, j >1

in cases, which cost cannot be balanced over all the fathers.
In Fig. 5, we depicted one step execution of Alg. 1.

We visualize the three main functions updateLambdas,
updateFathersCost and updateChildren in a case
where the active node is u2 and u1 is not yet visited. During
updateLambdas method, the flows goes from the leaves to
the root (GCS) and all the λi are updated accordingly with
the tree connections. Then, updateFathersCost function
updates the links’ cost of each connection starting from
Dummy-GCS connection (having fN+1,N+2 = 0) and going
down towards the leaves. Finally, the updateChildren
function updates the routing values r (n) for all the children
belonging to node u2. Since each node can have multiple paths
towards the destination, the output of the proposed algorithm
is a destination oriented directed acyclic graph rooted at the
GCS, formally represented by R(n) matrix.

D. Computation Flow Optimization (CFO)

CFO algorithm allocates tasks to computational resources,
represented by the cloud or by UAS fog nodes. Based on the
model in Section IV-A, this translates into determining the des-
tination and path for class c packets. We model the problem as
a weighted bipartite graph where (i) BR = {bR

1 , bR
2 , . . . } is the

set of computational requests (per unit of time) to be executed,
with |BR| = ∑

γi∈� γ
(c)
i , and (ii) BP = {bP

1 , bP
2 , . . . } is the

set of computational slots (again, per unit of time) available

on the fog either on the cloud (|BP | = ∑
μ

(c)
i ∈ϒ(c) μ

(c)
i ). Let

ζ :BR×BP→R be the weight function, representing the benefit
of assigning a request in BR to a computational slot in BP .
We consider an asymmetric assignment problem where the
computational resources are strictly greater than the requests
(satisfying the requirement of Equation 8), i.e. |BR|< |BP |.
Let req(bR

k ) = ui be the mapping function that returns the
UAS generating the request bR

k ; similarly, let pow(bP
l ) = u j

be the function which returns to UAS providing computational
slot bP

l . The aim of the assignment problem is to determine an

optimal assignment set S = {
〈
bR

i , bP
j

〉
: bR

i ∈ BR, bP
j ∈ BP},

such that the total benefit
∑〈

bR
i ,bP

j

〉
∈S

ζ(bR
i , bP

j ) is maximized,

clearly subject to the constraints that each request must be
assigned to a single slot and each slot can host at most one
computational request.

Algorithm 2 CFO Algorithm

1: CFO U, p, EN×N , AN×M , �,ϒ(n), ϒ(c),BR,BP

2: for all ui ∈ U do
3: if �

(n)
i > 0 then

4: calculate Dijkstra(ui , GC S)
5: update r (n)

j,k , ∀uk ∈ U and ∀u j in the calculated
path

6: update λ
(n)
j , ∀u j in the calculated path

7: P L(bR
i )← {}, ∀bR

i ∈ BR

8: while S doesn’t contains all the assignment for
∀bR

i ∈ BR do
9: calculate Dijkstra(ui , u j ), ∀ui , u j ∈ U

10: update ζ(bR
i , bP

j ),∀bR
i ∈ BR, bP

j ∈ BP based on
Dijkstra(req(bR

i ), pow(bP
j ))

11: execute one forward/reverse step of the auction
algorithm

12: if
〈
bR

i , bP
j

〉
is a new assignment then

13: PL(bR
i )← Dijkstra(req(bR

k ), pow(bP
l ))

14: else if
〈
bR

i , bP
j

〉
is removed as an assignment then

15: P L(bR
i )← {}

16: update all λ
(c)
i and r (c)

i, j based on the path lists
PL(bR

i ), ∀bR
i ∈ BR

The proposed solution (given in Alg. 2) enhances the basic
forward/reverse auction scheme described in [27] for the case
of weights dynamically changing over time. Indeed, each
assignment causes the modification of ζ function due to the
alteration of λ

(c)
i values for UASs residing on the chosen path

(line 10). Hence, the algorithm implements a sequence of
forward/reverse iterations, where at each iteration a request-
slot assignment can be added/removed from the final result.
Let PL(bR

i ) denote the list (line 7, 13, 15) containing the
calculated path for each bR

i , the benefit function ζ(bR
i , bP

j ) of
assigning request bR

i to slot bP
j is modeled as follows:

ζ(bR
i , bP

j ) = 1

1+ cost (bR
i , bP

j )
(14)
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where cost (bR
i , bP

j ) is a proxy for the delay of traffic class
c from UAS req(bR

i ) to pow(bP
j ), and can be calculated

by considering the Dijkstra(req(bR
i ), pow(bP

j )) shortest path
having the edge (ui → u j ) weight defined as: 1

μ
(n)
i −λi

. More

precisely, let P L(bR
i ) = {req(bR

i ), . . . , pow(bP
j )} be the path

used to reach pow(bP
j ), then:

cost (bR
i , bP

j ) =
⎛
⎜⎝ ∑

uk∈PL(bR
i )

1

μ
(n)
k − λk

⎞
⎟⎠

+ 1

μ
(c)
pow(bP

j )
−

(
λ

(c)
pow(bP

j )
· r (c)

pow(bP
j ),0

) (15)

E. Computational Complexity

We now analyze Computational Complexity (CC) of
FOCUS where NFO algorithm is followed by CFO algorithm.

NFO algorithm is based on the Dijkstra algorithm whose
complexity is O(N2) in its basic form. We see this complexity
in the main while loop in line 6 of Algorithm 1 where the
loop is executed N times and the argmin operator is O(N).
Inside the loop, the computation is dominated by the functions
updateLambdas and updateFathersCost that visit the whole
graph to update the lambdas and cost variables. In conclusion,
the CC of the NFO algorithm is O(N3).

CFO algorithm copes with the asymmetric bipartite graph
problem between two asymmetric sets: the computational
requests set having cardinality |BR| and the computational
slots set having cardinality |BP |. The auction algorithm solves
a generic asymmetric bipartite graph problem in O(|BR||BP | ·
log(n)), where n is a parametric value [27]. However, in our
implementation, we add an extra execution time for updating
the cost matrix defined by the function ζ(bR

i , bP
j ) (lines 4 and

5 in Alg. 2). Dijkstra’s algorithm has a complexity of O(N2)
and the matrix update has complexity O(|BR||BP |). This
brings the total CC to O(|BR ||BP| ·log(n) ·(|BR||BP |+N2)).

V. FOCUS SYSTEMS-LEVEL IMPLEMENTATION

One of the main contributions within FOCUS is the devel-
opment of the middleware platform transforming the classical
UAN into a joint sensing, forwarding and fog computing
architecture. This middleware interacts with existing software
blocks, such as those related to coordinating with the ground
controller and SDN controller simultaneously. It receives both
network and UAS information, and implements the necessary
control directives originated from heuristic algorithms that
centrally solve RC problem. As shown in Fig. 6, FOCUS
is built on top of the OpenDayLight (ODL) SDN controller
and DronecodeSDK [28]. The former orchestrates flows in the
UAN being controlled by a REST application programming
interface (API) and the latter aggregates location information
of the UASs and makes this information available to the con-
troller via the telemetry adapter. Through these tightly coupled
APIs, the network information required by the FOCUS is
aggregated and forwarded to the sub-modules (NFO, CFO).

Fig. 6. FOCUS Software Architecture.

These modules, residing in the offsite controller, in turn
calculate the optimal allocation of network and computational
flows in the UAN and define routing matrices (R(n) and R(c)).
They then initiate control feedback flows via HTTP requests
through REST API back to the UAN.

In addition to the control plane design, we also utilize
Docker [29] and OpenVswitch [30] (OVS) on UASs at the
data plane. Docker hosts a container with OpenCV library
to run image processing as computational load (this can
be swapped for other applications), while OVS connects to
ODL as a traditional Openflow switch. SDNs are classically
installed on reliable (often wired) network connections where
the control/data planes are not easily impaired. To bring more
robustness to the UAN, we utilize a distributed 2nd-layer
routing, called ‘Better Approach To Mobile Ad-hoc Network-
ing’ (BATMAN) [31]. It allows control directives and data
to flow over through multiple different pathways to target
UAS, even when direct link to the controller is impaired,
albeit with an increased latency. Furthermore, it statistically
determines the wireless link quality among the nodes and
generates numerical values, which are aggregated at the soft-
ware controller to estimate the throughput capacity on the
links. This information is forwarded to FOCUS Optimization
framework as seen in Fig. 6, for to be used in constructing of
queue-based network model and in solving the optimization
problem.

VI. PERFORMANCE EVALUATION

In this section, we validate the performance of FOCUS
in terms of overall network traffic and computational response
time, in two separate approaches. We conduct our experiments
on a small scale UAN testbed, which consists of 4 UASs.
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Fig. 7. Intel Aero Ready-to-Fly drone as an aerial OF switch.

The key insights from these experiments then are extended
with large-scale simulations consisting of 40 UASs writ-
ten in C.

A. Results on Small-Scale Testbed Implementation

We use two laptops as ground units and a high performance
server as the control station, on where SDN controller (ODL),
docker image with OpenCV libraries and dronecode flight
controller run. 4 Intel Aero UASs create a mesh network with
4 hops between the ground units and the server, as shown
in Fig. 8a. The general hardware specifications are similar
to Section III. During the experiment, UASs are positioned
in hovering motion at 3-meter above the ground separated
by 10-meter distances from each other and from the ground
entities in the outdoor drone testing facility at Northeastern
University. In our testbed, each UAS is equipped with three
wireless interface cards (two RALINK WiFi dongles and one
on-board Intel WiFi interface) as seen in Fig. 7, where each
interface uses a non overlapping WiFi channel for different
tasks. One of them is dedicated to the BATMAN protocol,
another is used to create link between UASs and the last
one is utilized for the link between ground units and UAS,
on channels 1, 6, and 11, respectively. The UASs are posi-
tioned in such a way that Ground Unit 1 can only connect
with UAS 1 and Ground Unit 2 can connect with UAS 2,
creating a separate data path for each ground unit to reach the
server. A 780 × 480 pixels picture of file size 1024 Kilobits
is used as payload for image processing. These payloads are
created and forwarded with 200 msec average inter-generation
time at each ground unit. We used Binary Robust Independent
Elementary Features (BRIEF) [32] algorithm as a feature point
descriptor on these images. The network load is emulated
by creating UDP flows from each ground unit to the server
as shown in Fig. 7. We stress the network by gradually
increasing the UDP data rate on both flows from 0 to 2Mbps.
For comparison, we run other task allocation methods on the
central controller:
• Nearest first, where the computation is allocated to the

nearest neighbor node initially. Based on the load conditions
on the nearest neighbor, the task may be allocated to the
next-nearest neighbor, and so on.

• Local-only, where the computation task is sent only to the
UAS, with which the ground unit has an active link.

• App-Server only, where the all computation tasks should be
done at the server.
From Fig. 8b, we infer that the performance of FOCUS

is better than the others under low to medium network load
conditions, at around 150ms. It slowly begins to approach the
computational response time of Nearest first as the network
load increases to 2Mbps. This happens because with increasing
network load, it becomes more beneficial for FOCUS to
allocate computational tasks on the nodes nearest to the ground
station (UAS 1 and 2) to mitigate the negative effects of
forwarding delay on highly saturated links (e.g., the path
from UAS 3 to 4). The Local-only approach performs worse
because the task allocation is done to only those nodes that
are within 1 hop from the ground station. This approach
is quite immune to the increase in network load. However,
the computation response time is higher than FOCUS because
the task is not allocated to the optimal UAS, based on the
global network knowledge. Doing the computing task on the
server in the App-Server only approach is not scalable, since
the computation response time increases exponentially with
the network load.

The maximum number of computational tasks that are
handled per minute in the network under increasing network
load is shown in Fig. 8c. FOCUS and Nearest first provide
higher capacity running the most number of computations per
minute. Local-only and App-server only approaches result in
much less capacity in terms of computations per minute, since
they are localized to certain specific nodes in the network.

From these experimental results, we see that FOCUS incurs
the minimum computation response time while having the
capability to run the highest number of computations per
minute, when compared to other classical methods.

B. Simulation Results

Next, we evaluate the performance of FOCUS through a
numerical simulation to study large scale scenarios. We con-
sider a grid topology in which the UASs are placed at equal
distances and are connected in a ‘cross formation’, where
each UAS can have at most four neighbors. We then place
the GCS at one corner of the grid using the model described
in Section IV. We define Pc and Pn as the probability that
each UAS will receive �

(c)
i and �

(n)
i from the ground units,

respectively. There are 40 UASs and we fix the value for
the sets ϒ(c) and ϒ(n). Unless specified otherwise, we use
these values for the model parameters: μ

(c)
N+1=100, μ

(c)
i =5,

μ
(n)
i = 125, �

(c)
i = 2, �

(n)
i = 3 (in Mbps) and, Pn = 0.75,

Pc=0.8
Fig. 9a shows W(c) value generally increases with the

only-network traffic. Here, we also show the Distance-based
method that corresponds to a greedy algorithm in which a
node sends its computation requests to the GCS only if its
distance to the latter is less then half of the network graph
diameter. Else, it shares the requests among its neighbors.
The Local-only method is not affected by the network traffic;
the App-Server only method works well with low traffic load
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Fig. 8. (a) Testbed with 4 UASs, (b) Average computation time w.r.t. network load, (c) Max. computation capacity of the network.

Fig. 9. (a) W(c) varying network-only traffic Pn , (b) Percentage of
computation executed w.r.t. the distance from the GCS.

but it is the worst when the traffic load become high. The
Distance-based method combines both cloud computation and
fog computation but as soon as the network become congested
close to the GCS, the performance drops. Finally, FOCUS is
able to cope with different traffic loads, striking a balance
between fog and cloud computation.

In Fig. 9b, we show how FOCUS distributes the computa-
tion requests along the UAN. Here we plot two values for
Pn : 0.25 and 0.75. We see when network traffic is high,
the cloud (point 0 in x-axis) is not preferred. However, with
lower Pn some computation occurs in the cloud. With low
network load, the computation is largely contained in the
middle section of the UAN (as the GCS is at one corner
of the grid). At the same time, we have few UASs that are
part of the only-network path towards the GCS while some
others have their network queue empty. If we increase the
Pn , we see the computation is spread uniformly around the
network. This is because of a more uniform distribution of
the intra-network bound packets. Thus, FOCUS dynamically
distributes fog computation tasks around the network based on
the traffic conditions.

VII. CONCLUSION AND FUTURE WORK

We proposed a fog computing architecture, called FOCUS,
for UAS software-defined mesh networks. in the network

are utilized to create and operate as fog nodes. We first
showed that increasing CPU utilization of UAS has negligible
effect on flight time, and characterized the trade-off between
computation time/location under different network and com-
putation loads. Then, we formulated the joint problem of
network and computation flow optimization, with heuristics
having well defined complexity, along with a systems-level
implementation. Experiments and simulations validated the
approach of allocating computational tasks in a principled
manner, revealing over 32% latency improvement compared to
greedy or end-server only allocation methods. Finally, we are
planing to enhance our framework by including another mod-
ule, which orchestrates the positioning of UASs optimizing
the overall coverage for ground units while sustaining feasible
mesh connectivity. Furthermore, we are also going to evaluate
the performance of existing low-power radio technologies
(such as NB-IoT and LoRa) and analyze the trade-off between
energy consumption and the delay in control traffic traffic.

REFERENCES

[1] P. Cohn, A. Green, M. Langstaff, and M. Roller, “Commercial drones
are here: The future of unmanned aerial systems,” McKinsey Company,
New York, NY, USA, Tech. Rep., 2017.

[2] L. Gupta, R. Jain, and G. Vaszkun, “Survey of important issues in UAV
communication networks,” IEEE Commun. Surveys Tuts., vol. 18, no. 2,
pp. 1123–1152, 2nd Quart., 2016.

[3] OpenDayLight. (Apr. 2018). Software Defined Network and
Network Function Virtualization. [Online]. Available: https://www.
opendaylight.org/

[4] H. Genc, Y. Zu, T. W. Chin, M. Halpern, and V. J. Reddi, “Flying
IoT: Toward low-power vision in the sky,” IEEE Micro, vol. 37, no. 6,
pp. 40–51, Nov. 2017.

[5] I. Bekmezci, O. K. Sahingoz, and Ş. Temel, “Flying ad-hoc net-
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