
Finding a ‘New’ Needle in the Haystack:
Unseen Radio Detection in Large Populations

Using Deep Learning
Andrey Gritsenko*, Zifeng Wang*, Tong Jian, Jennifer Dy, Kaushik Chowdhury, and Stratis Ioannidis

Department of Electrical and Computer Engineering
Northeastern University

Boston, USA
Email: {agritsenko, zifengwang, jian, jdy, krc, ioannidis}@ece.neu.edu

Abstract—Radio frequency fingerprinting enhances security
and privacy of wireless networks and communications by learning
and extracting unique characteristics embedded in transmitted
signals. Deep learning-based approaches learn radio fingerprints
without hand-engineering features. One persisting drawback in
deep learning methods is they identify only devices that are
previously observed in a training set: if a radio signal from a
new, unseen, device is passed through the classifier, the source
device will be classified as one of the known devices. We propose
a novel approach that facilitates new class detection without
retraining a neural network, and perform extensive analysis of
the proposed model both in terms of model parameters and
real-world datasets. We accomplish this by first breaking down
a longer transmission burst into smaller slices, and assessing
classifier confidence on a new transmission based on per slice
statistics: our approach detects a new device with 76% accuracy,
while reducing the classification accuracy of 500 previously seen
devices by no more than 10%.

Index Terms—Radio-Frequency Fingerprinting, Transmitter
Identification, Novel-Class Detection, Convolutional Neural Net-
works, Statistical Inference

I. INTRODUCTION

Radio frequency (RF) fingerprinting enhances security and
privacy of wireless networks and communications by learning
and extracting unique characteristics embedded in transmitted
signals. The key idea is that many non-linear artifacts are intro-
duced in the signal by a transmitter’s processing chain, which
serve as a unique identity for that transmitter [1–5]. Many
existing works aim to detect such fingerprints through com-
plex, custom-designed, and protocol-specific feature-extraction
models [6–8]. However, recent advances in the area of machine
learning provide an alternative way of learning these radio
fingerprints without hand-engineering of the features, i.e.,
through deep neural networks that automatically learn device-
specific features [9–11]. One persisting drawback in all these
learning-based fingerprinting methods is that they identify only
those devices that are previously observed. In other words, if
a radio signal from a new, unseen, device is passed through
the classifier, the source device will be classified as one of
the known devices. Thus, the task of novel device detection is

* A.Gritsenko and Z.Wang contributed equally to the paper.

an essential but as yet overlooked problem in context of RF
fingerprinting.

Novel device detection falls in the domain of novelty
detection [12] or zero-shot learning [13] in general machine
learning literature. Most existing novelty detection methods
can be categorized as either kernel density-based, nearest
neighbour-based, or reconstruction-based. In kernel density-
based methods, the probability density function is estimated
using large numbers of kernels distributed over the data
space [14, 15]. Modeling the probability distribution over the
data has achieved success on small-scale datasets, however,
for high-dimensional and large datasets (like the one we use
in this paper), it is both computationally expensive and prone
to overfitting. Nearest neighbour-based methods rely on the
assumption that normal data points have close neighbours
in the seen classes, while novel points are located far from
those points [16–18]. The definition of distance metric is
critical for these methods but it is not well defined for
radio signals that carry different contents or are of various
lengths. Reconstruction-based methods, which rely heavily on
neural networks, construct an encoding-decoding pipeline and
compute a novelty score through reconstruction error [19].
One drawback of these methods is that they need to train
a separate reconstruction neural network besides the classi-
fication pipeline. Moreover, previous works propose various
methods to address novelty detection with benchmark image
or text datasets only. To the best of our knowledge, we are
the first to tackle this problem (a) on a complicated real-
world radio fingerprinting dataset (b) with minimal additional
computational cost compared to the original classification task.

Our approach in designing the novel device detection
method described in this paper is simple: Given a dataset of
signals transmitted by a group of known, registered, wireless
devices, we design a framework that trains a classifier to
correctly identify a source of transmission, if it occurs from
one of the registered devices; otherwise, the classifier detects
that a novel device is observed. We do this by first breaking
down a longer transmission burst composed of a stream of
in-phase/quadrature (I/Q) samples into smaller slices. Each
slice is classified separately. This allows us to assess classifier

confidence on a new transmission based on per slice statistics:
we use these to determine whether the transmitter for the given
radio signal is one of the known devices, or it has never been
seen before. Crucially, our approach is generic and does not
require retraining the classifier.

Our main contributions are: (1) we propose a novel approach
to train a neural network that facilitates new class detection,
(2) we perform extensive analysis of the proposed model
both in terms of model parameters and real-world datasets.
Our approach detects a new device with 76% accuracy, while
reducing the classification accuracy of 500 previously seen
devices by no more than 10%.

The rest of the paper is organized as follows. In Section II,
we describe three datasets used in this study, including how
we collect, organize and preprocess data. Next, we define
general RF fingerprinting problem with both seen and unseen
devices precisely in Section III, and present architectures of
our classifier as well as the method of classifying known
devices. In Section IV, we introduce and elaborate our original
algorithm for novel radio device detection. Section V covers
in detail the overall experimental setting and the evaluation
metrics we use, followed by the extensive analysis on the
experiment results in Section VI. There, we also carry out
a comprehensive investigation on the influence of different
settings on classifiers’ performance. Finally, we draw the
conclusion of the paper, emphasizing the uniqueness and
effectiveness of our method in Section VII.

II. DATASET

A. Data Collection

We use a database of radio signals recorded in the wild, each
signal represented as a sequence of its I and Q components,
simply referred to as I/Q samples. The database contains
transmissions from two different wireless protocols, specif-
ically, commercial off the shelf (COTS) 802.11b/g/n WiFi
and the Automatic Dependent Surveillance-Broadcast (ADS-
B) protocol used to transmit signals of airplane status updates.
All collected ADS-B signals were transmitted at a center
frequency of 1.09 GHz with a sampling rate of 108 samples
(I/Q pairs) per second. For WiFi data, transmissions with both
2.4 GHz and 5.8 GHz center frequencies were captured at a
sampling rate varying between 20-200 Msps.

B. Dataset Structure

The database used in this study contains three datasets of
different sizes for each transmission protocol (WiFi and ADS-
B). Specifically, we use datasets with |ℵ| = 500, 250 and 50
known devices, where ℵ stands for a collection of in-library
devices. For all six datasets, Kd = 176 transmissions are
captured for every in-library device d ∈ ℵ. Additionally, each
dataset contains radio signals transmitted by a set ℵ′ of new,
out-of-library, devices (|ℵ′| = 542 for WiFi and |ℵ′| = 458
for ADS-B protocols, on average), where ℵ∩ℵ′ = ∅. Exactly
one transmission for each out-of-library device d ∈ ℵ′ was
recorded for both wireless protocols. The average length of
WiFi transmissions is M = 1.4 · 104 I/Q samples across

TABLE I
NOTATION SUMMARY

Variable Description

ℵ Collection of in-library devices
ℵ′ Collection of new, out-of-library, devices
Kd Number of signals transmitted by device d ∈ ℵ ∪ ℵ′

M(k) Length of transmission k ∈ [1,Kd]

L Slice size (number of I/Q samples)
λ Parameter regulating the number of slices extracted

from a given transmission, λ ∈ [1, L]

n(k) Number of slices extracted from transmission k

p
(k)
ij Probability of slice i from transmission k to be captured

from device j, i ∈ [1, n(k)], j ∈ ℵ
y(k) True label of transmission k, y(k) ∈ {1, . . . , |ℵ|, new}
ŷ(k) Predicted label of transmission k

S
(k)
d Set of correctly classified slices, extracted from

training transmission k of device d
N(k) Number of correctly classified slices, extracted

from training transmission k
r(k) Ratio of correctly classified slices, extracted

from training transmission k
|A| Cardinality of a set A

TABLE II
DATASET CHARACTERISTICS

WiFi ADS-B
|ℵ| |ℵ′| M |ℵ′| M

500 549 15979 451 9458
250 542 15539 458 9397
50 536 13071 464 9526

For each dataset, we provide the total number of the known, in-library, devices,
number of new, out-of-library, devices and the average length of transmitted
signals.

all datasets, and the average transmission length for ADS-
B signals is M = 9.5 · 103 I/Q samples. Table II presents
more detailed statistics for all six datasets and both wireless
protocols.

To train and evaluate classifiers, we split each dataset into
training and test subsets. The training set contains 80% of
transmissions captured from in-library devices (Kd,train =
141, d ∈ ℵ), while the test set contains all transmissions from
out-of-library devices (Kd,test = 1, d ∈ ℵ′) in addition to 20%
of transmissions from in-library devices (Kd,test = 35, d ∈ ℵ).

C. Data Preprocessing

We next describe our preprocessing pipeline, consisting of
filtering, equalization, and slicing.
Filtering. WiFi transmissions are recorded in a very complex,
multi-device environment, i.e., multiple devices transmitting
radio signals at the same time at different frequency bands
(WiFi channels). Thus, we first need to extract a single
device transmission in order to properly process it. This is
accomplished through a filtering process that takes a signal at
a given center frequency, for e.g., 2.4 GHz, and moves it to

baseband following which it applies a low pass filter. We refer
to this extracted single device sequence of I/Q samples as a
transmission.
Equalization. Though the resulting filtered WiFi transmission
is free from adjacent channel interference and any out-of-
band noise, it is still exposed to in-band noise. As a result,
instead of learning individual device fingerprints from the
radio signal, a classifier may end up learning the so-called
channel conditions. In order to alleviate the influence of
channel conditions on classification accuracy, we partially
equalize filtered WiFi transmissions. This equalization process
constitutes of three steps:
(a) We use short training sequences for frame synchroniza-

tion and estimation of coarse frequency and sampling
offsets;

(b) We use long training sequences for channel estimation
and estimation of fine frequency and sampling offsets;
and

(c) We equalize the channel and reintroduce the frequency
offsets computed at step (a).

As a result, we obtain a final sequence of partially equalized
I/Q samples. Fig. 1 visually illustrates effects of the equaliza-
tion process on the I/Q samples corresponding to two different
devices.
Slicing. As briefly mentioned in the previous section, the
provided dataset contains radio transmissions with varying
length (number of I/Q samples). Obviously, this type of data
cannot be used by the neural network classifier that takes
as an input data of fixed length. In order to overcome this
issue, we utilize sliding window to disseminate each signal
into a sequence of slices of the same length. Slices are then
forwarded as an input to a neural network, labeled with
the same device ID as the original transmission. The slicing
operation is illustrated on Fig. 2a, and Fig. 2b depicts the final
structure of the dataset used in the experiments after slicing.
Using sliding window with stride equal to 1 and predefined
slice size of L I/Q samples, we generate in total M (k)−L+1
slices for a given transmission k of M (k) length.

Slicing is a necessary step for our framework, and it is
always performed regardless of the type of data we process.
Because filtering is also essential for WiFi data and is im-
plemented for all transmissions of this protocol, we refer to
filtered WiFi transmissions as raw WiFi in the rest of the paper.

III. METHODOLOGY

In this section, we state the general problem of RF finger-
printing in the environment in the presence of new, unseen,
devices. Then, we provide a detailed description of two neural
network models implemented to solve the task, the training
process, and finally the wireless device inference procedure.
Problem Formulation. Given a dataset of radio transmissions,
a collection ℵ of known devices, and a set ℵ′ of unknown
devices, we formulate the following research problem: for each
transmission k we need to predict its label y(k) that specifies
whether a signal is transmitted by one of the known, in-library,

(a) (b)

Fig. 1. Constellation of (a) raw I/Q samples before equalization and (b)
demodulated I/Q samples after equalization without frequency and offset
corrections for two software-defined radio devices transmitting WiFi signal.

(a)

(b)

Fig. 2. Breaking down a stream of I/Q samples into discrete sequences
through slicing. The total number of all possible overlapping slices is equal to
M(k)−L+ 1 on slicing of a single transmission k of length M(k) samples,
with slice size L.

(a) (b)

Fig. 3. Architecture of the ResNet1D (a) and AlexNet1D (b) models.

devices (y(k) ∈ {1, . . . , |ℵ|} ⇐⇒ d ∈ ℵ) or unseen, out-
of-library, device (y(k) = new ⇐⇒ d ∈ ℵ′). In order
to accurately classify the source of a radio transmission, we
use a deep neural network (DNN) with multiple convolutional
layers.
Structure of Deep Neural Networks. In this paper, we
implement and examine the performance of two DNN models.
Before we describe in detail architectures of both networks,
we first introduce their major building blocks: convolutional,
max-pooling and fully-connected, dense, layers. Convolutional
layer, as the name suggests, convolves a number of different

filters through the full depth of the input volume. Filters used
in the same convolutional layer are of the fixed size, and
the output of the layer is a sequence of feature maps with
decreased dimension compared to the original input. Max-
pooling layer is used to further down-sample the input by
dividing it into non-overlapping ‘pools’ and returning only
the maximum value of a pool. Convolutional and max-pooling
layers are usually grouped together to perform initial feature
extraction, followed by fully-connected layers that learn high-
level features and conduct the final prediction. In contrast to
convolutional and max-pooling layers, every neuron in a dense
layer is connected to every neuron in the previous layer.
ResNet1D. Our first model is a modification of the well-
known ResNet-50 architecture [20], i.e., short for Residual
Networks. ResNet achieved great success on various computer
vision tasks and is now the backbone of many deep learning
frameworks. It addresses the so-called vanishing gradient
problem [21], commonly encountered in training of very deep
neural networks, by means of skip connections inside residual
blocks. The skip connections between layers add the outputs
from previous layers to the outputs of stacked layers.

Although ResNet is powerful, it does not allow direct
application in context of wireless IQ symbol which are of
the form of 1D time series, instead of 2D images. In order
to take advantage of the representation ability of ResNet for
in the domain of wireless, we extend ResNet to ResNet1D
by substituting all 2D convolutional layers with their 1D
counterparts. Following the structure of the original ResNet-
50, our ResNet1D uses identity blocks and convolutional
blocks as basic elements. As illustrated on Fig. 3a, identity
block consists of size 1 × 1 1D convolutional layer with
64 filters, size 1 × 3 1D convolutional layer with 64 filters
and size 1 × 1 1D convolutional layer with 256 filters as
the main path and an identity link as the skip connection.
A convolutional block shares almost the same structure as
identity block, except that the skip connection becomes a size
1D convolutional layer with 256 filters. Compensating for its
large number of convolutional layers, ResNet1D features zero
padding for cases when the input sequence becomes too small
to be processed by consecutive layers.
AlexNet1D. The structure of the second model, hereinafter
referred to as AlexNet1D, is inspired by another famous deep
neural network with convolutional layers called AlexNet [22],
and adapted for 1D time series input in the same manner as
ResNet1D described above. This model is much smaller than
ResNet1D and contains a total of 10 1D convolutional layers,
followed by 3 fully-connected, dense, layers. Convolutional
layers are grouped into 5 stacks, each stack containing 2
convolutional layers followed by one max pooling layer. The
first convolutional layer in the stack is of size 1×7, while the
second one has a size of 1 × 5. Both types of convolutional
layers use 128 filters, with the model architecture depicted
in Fig. 3b.
Training. Considering multi-class setting of a given classi-
fication problem, the size of the final, output layer of both
ResNet1D and AlexNet1D is equal to the number of devices

in the training set, i.e. the number of in-library devices,
|ℵ|. We use softmax function as the activation of the output
layer, a conventional approach to predict for multiple classes
simultaneously, so that for each given slice i the model outputs
a vector pi of probabilities. Thus, pij corresponds to the
probability of slice i being transmitted by device j, and∑|ℵ|
j=1 pij = 1.

Random Slicing. Here, we emphasize that not all M (k)−L+1
slices from the k-th transmission have to be used to success-
fully train a classifier. In practice, we would like to uniformly
select only a small fraction of slices at random and use them
as the input for a neural network. In the next paragraph, we
describe the motivation for performing random slicing. The
actual number of slices n(k) used for each transmission k
during training is governed by a hyperparameter λ according
to the following formula

n(k) =
M (k) − L+ 1

L
λ, (1)

where M (k) is the total number of I/Q samples in the k-th
transmission and L is the slice size. The numerator in (1) is
equal to the total number of all possible slices generated with
a sliding window stride equal to 1. Therefore, λ ranging in
the interval of [1, L] can be intuitively seen as the expected
value of how many times each I/Q sample appears during the
training.

There are certain advantages of implementing random slic-
ing. First of all, it inherently guarantees input data to be
of the fixed size that can be processed by DNN models.
Then, it improves robustness and reliability of neural net-
works through learning shift-invariant RF fingerprints for
each device. Moreover, varying parameter λ tends to prevent
model overfitting and reduce computational costs. Finally, we
naturally aggregate predicted labels for multiple slices to infer
device ID of the original radio transmission. This ensemble
strategy generally results in overall accuracy boost. In this
study, we utilize a majority vote rule to predict a label for a
given transmission k:

ŷ(k) = mode
i
{argmax

j
(p

(k)
ij)}, (2)

where p(k)ij is the probability that the i-th slice was extracted
from the k-th transmission of the j-th device.

IV. DETECTING UNSEEN DEVICES

As introduced in the previous section, our framework is able
to classify radio transmissions from a fixed set of known, in-
library, devices. However, in real world applications, we often
encounter transmissions from new, unseen devices (out-of-
library). If we blindly follow the normal classification strategy
by majority vote as stated in (2), a transmission from a new
device will be wrongly classified as transmitted by one of the
old devices, due to the fixed number of output nodes in a neural
network. To address this non-trivial problem, we exploit the
probabilistic nature of neural networks, as well as our use of
slices, to introduce an original novel device detection method.

Fig. 4. Pipeline scheme for computing thresholds θP (d) and θR(d) during
training, and using these thresholds at test time to infer device ID.

For each transmission k in the test set, we first compute
the majority device label ŷ(k) via (2). Subsequently, to assess
to the confidence of this prediction made by our classifier,
we compute two quantities: the transmission prediction prob-
ability p̃(k) and the estimated correct slice ratio r̃(k). To
finally determine whether an transmission is from a novel
device, we compare these two quantities against (device-
specific) thresholds θP (ŷ

(k)) and θR(ŷ
(k)), respectively. If

both computed quantities p̃(k) and r̃(k) are smaller than the
corresponding thresholds θP (ŷ(k)) and θR(ŷ(k)), we assert that
the confidence level of the classifier is low; we thus conclude
that a new radio device is detected. Otherwise, we state that
a signal is transmitted by the ‘best-guess’ device ŷ(k). In
summary, our modified classifier outputs:

ŷ(k)∗ =

new, r̃(k) < θR(ŷ
(k)) ∧ p̃(k) < θP (ŷ

(k)),

mode
i
{argmax

j
(p

(k)
ij)}, otherwise. (3)

We precisely define the quantities p̃(k), r̃(k) and thresholds
θP (ŷ

(k)), θR(ŷ(k)) in the sections below. Our entire inference
pipeline is summarized in Fig. 4.
Transmission Prediction Probability p̃(k). Recall that for
every test transmission k, we generate n(k) slices according
to (1) and classify them using a trained model. Then, we em-
ploy majority vote rule (2) to define the ‘best-guess’ label ŷ(k)

of the transmission. In order to evaluate our confidence in this
prediction, we define the transmission prediction probability
p̃(k) by following these steps:

1) Collect all slices that classified with the ‘best-guess’ label

S̃(k) = {i | argmax
j

(p
(k)
ij) = ŷ(k)}; (4)

2) Record maximum probabilities for slices with the ‘best-
guess’ label

P̃ (k) = {p(k)ij | i ∈ S̃
(k)}; (5)

3) Use statistics , e.g. mean value, of P̃ (k) to calculate the
transmission prediction probability as the confidence level
in the predicted ‘best-guess’ label. Formally:

p̃(k) = χ(P̃ (k)), (6)

where χ is a mapping from arbitrary set A to its cor-
responding statistics (e.g., the mean). We list alternative

definitions of χ in Table III and further discuss these
choices below, in section “Choice of Statistics”.

The intuition behind transmission prediction probability is
that in order to ensure both out-of-library device detection and
in-library device classification, we need to measure the level
of prediction confidence for each transmission. Ideally, for a
given test transmission k from an in-library device, we aim
for ŷ(k)i = y(k) for all slices i, where y(k) is the true label
of transmission k. Moreover, we want the probability for the
correct class to be notably greater than the probabilities for the
other labels, p(k)

iy(k) � p
(k)
ij , as this indicates that a classifier is

confidently making the correct prediction. On the other hand,
p
(k)
iŷi

being close to probabilities for other classes implies a
classifier is making a decision without a clear winner, probably
due to the fact slice i was captured from a new device.
As a transmission consists of multiple slices, we introduce
transmission prediction probability p̃(k) to unify prediction
probabilities from per slice level to per transmission level.
Intuitively, the less p̃(k) is, the less confident our classifier
will be in the prediction result, indicating this transmission is
from an unseen device.
Estimated Correct Slice Ratio r̃(k). In order to complement
the transmission prediction probability and measure the predic-
tion confidence from another perspective, we compute the ratio
of estimated correctly classified slices r̃(k) for transmission k
in the test set as follows:

1) Collect all slices that classified with the ‘best-guess’ label
in set S̃(k) as in (4);

2) Compute the estimated correct slice ratio with the ‘best-
guess’ label to the total number of slices:

r̃(k) =
|S̃(k)|
n(k)

. (7)

Consider that for some transmission k of a known device
d ∈ ℵ in the test set containing n(k) slices, we obtain a
corresponding set s(k)d of slices with the predicted true label. In
theory, we desire to have the vast majority of slices correctly
classified, |s(k)d | � |s

(k)
d
′|, in order to infer correct label for

transmission k (s(k)d
′ is a set of wrongly classified slices).

On the other hand, when we process a signal transmitted by
a new device d ∈ ℵ′, we still get a majority vote winner
from a set of old devices, ŷ(k) ∈ ℵ. However, we expect
the proportion of ‘best-guess’ voters not to be significantly
higher than for any other device. Ideally, we would want votes
to be distributed almost equally among class labels. In this
case, small proportion of ‘best-guess’ votes will be a sign
that we should not be confident in the classifier prediction at
the level of the whole transmission k, though individual slice
predictions might be highly reliable (p(k)ij ≈ 1). Therefore,
estimated correct slice ratio captures the confidence level of
prediction as well.

After calculating p̃(k) and r̃(k), we get two measures
of prediction confidence from different perspectives. Recall
from 3 that we determine that transmission k is from an unseen
device when p̃(k) and r̃(k) are small enough, as determined by

probability threshold θP (ŷ
(k)) and ratio threshold θR(ŷ

(k)).
The latter are (a) device-dependent, i.e., a different threshold
is used for each majority device, and (b) learned: we obtain
them in a data-driven way, by studying device statistics on the
training set. We describe how to do so below.
Probability Threshold θP (d). The core idea is to have a
certain probability threshold calculated from the training set
to distinguish unreliable predictions, thereby detecting a new
device. To get this threshold, we follow these steps:

1) Define all correctly classified slices, generated for trans-
mission k of device d, as a set:

S
(k)
d = {i | argmax

j
(p

(k)
ij) = d}; (8)

2) Take the union of all sets of correctly classified slices
across all transmissions of a given device d ∈ ℵ in a
training set:

Sd =

Kd⋃
k=1

S
(k)
d , (9)

where Kd is the number of transmissions captured from
device d;

3) Collect all the corresponding maximum probabilities in a
set:

Pd = {pid | i ∈ Sd}; (10)

4) Calculate the statistics of Pd as the probability threshold:

θP (d) = χ(Pd), (11)

where, as in (6), χ is a statistic (e.g., the mean), among
the ones described in Table III.

Ratio Threshold θR(d). Similarly, we also construct a thresh-
old for estimated correct slice ratio to compare against in the
following steps:

1) Compute the ratio of correctly classified slices for trans-
mission k from device d in the training set as:

r(k) =
|S(k)
d |
n(k)

, (12)

where S(k)
d is defined in (8);

2) For each device d ∈ ℵ we collect a set Rd of ratios r(k),
computed for each correctly predicted transmission k:

Rd = {r(k) | ŷ(k) = y(k)}; (13)

3) Calculate the statistics of Rd as the ratio threshold:

θR(d) = χ(Rd). (14)

Again, possible definitions of χ can be found in Table III.
Choice of Statistics. As mentioned above, we can compute
thresholds θP (d) and θR(d) during training using the mean
values of sets Pd and Rd, respectively. Similarly, we can
compute p̃(k) as the mean value of P̃ (k) at test time. Beyond
the mean value, we also explore several other statistics χ
in our experiments, including the minimum value and three
lower confidence bounds, as listed in Table III. When applied
to thresholds, each computed quantity in the table implies a

TABLE III
SET STATISTICS USED FOR NEW DEVICE DETECTION

Notation Map A 7→ χ(A)

avg χ(A) = Ā = 1
|A|

∑
a∈A a

min χ(A) = bAc = min(A)

lcb1 χ(A) = Ā− std(A)

lcb2 χ(A) = Ā− 2 · std(A)

lcb3 χ(A) =
Ā−2·std(A)+bAc

2

Statistic functions χ : 2R → R. Here, A ⊂ R represents a finite set and in
practice can be substituted, e.g., by a set Pd of predicted probabilities for all
correctly classified slices for device d ∈ ℵ, a set Rd of ratios of correctly
classified slice across all correctly labeled transmissions for device d ∈ ℵ,
or a set P̃ (k) of predicted probabilities for slices with ‘best-guess’ label for
transmission k in the test set. For a given set A, Ā is the mean value of the
set, min(A) is its minimum value, and std(A) is its standard deviation. lcb
stands for the ‘lower confidence bound’.

certain level of confidence and defines the lower bound for
probability or ratio that have to be predicted with a ‘best-
guess’ label in order to assure that an in-library device is
spotted. While the first four statistics are rather common, the
last one is specially designed to tolerate outliers of heavy-
tailed real-world distributions.

To determine the best choice of statistics χ, applied for p̃(k)

and both thresholds θP (d), θR(d), we test our classifiers on all
possible combinations in Table III. To limit the search space,
first, we use the same function χ for both prediction and ratio
thresholds θP (d) and θR(d). Second, we omit avg statistics
when computing thresholds, as this statistic is too optimistic
and results in thresholds θP (d) and θR(d) being much higher
than corresponding quantities p̃(k) and r̃(k), even when com-
puted for transmissions captured from in-library devices. As
a result, we evaluate our models on a Cartesian product of
four thresholding methods employed during training and five
statistics employed for a set of slice predictions at test time.
Combining Thresholds. In (3), we define two conditions
necessary for new device detection: both r̃(k) and p̃(k) should
be smaller than the corresponding thresholds θR(ŷ

(k)) and
θP (ŷ

(k)). It has to be noted here, that in general it is possible
to detect a new device even when only one condition is
satisfied. Moreover, a different logical relation can be used
to combine two conditions, e.g., OR (∨) instead of AND
(∧). However, preliminary experiments have shown that our
classifiers perform the best when both conditions are combined
via a conjunction, therefore, we use the logical operator AND
in all our experiments.

V. EXPERIMENTAL SETTING

We divide our dataset of wireless transmissions, generated
by |ℵ| known, in-library, devices and |ℵ′| unseen, out-of-
library, devices into training and test subsets, as described
in Section II-B. Then, we slice transmission k into n(k) slices
according to (1), using predefined slice size L and parameter
λ (provided in the next subsection). Slices of transmissions in
the training set are used as an input to train our deep learning
models (AlexNet1D and ResNet1D). We use the resulting

trained model to detect whether a transmission in the test set
is from a new device (out-of-library) or not using 3; in the
latter case, we predict the (in-library) source of transmission
via the majority rule. We expect the model to be capable of
both correctly classifying signals transmitted by old devices,
as well as precisely detecting if a transmission comes from a
new device. To reach this goal, we test several combinations
of statistics χ for each model, and report the one that achieves
superior performance.
Parameters. For all experiments described in this paper, we
set the slice size to L = 512 when processing raw WiFi
transmissions with the ResNet1D model and L = 198 with
the AlexNet1D model. We use L = 198 for equalized WiFi
for both models, and L = 1024 for ADS-B transmissions
in the AlexNet1D model and L = 512 in ResNet1D. We
also set λ = 10, which means that each I/Q sample in the
training subset has been seen 10 times, on average, given the
randomness of the process. Models for each dataset are trained
till convergence, i.e. until validation accuracy stagnates for 3
consecutive epochs. Finally, we use a batch size of 256 for all
experiments.
Performance Evaluation. Given a current setting of old and
new devices in the test set, we use five different metrics to
reflect the ability of our trained models to correctly classify
existing devices and detect new ones.

The first three metrics are designed to evaluate classifier’s
performance with respect to test transmissions by old, in-
library devices. The first is the Old device transmission
Correctly Classified (OCC) ratio:

OCC =
|{k | ŷ(k) = y(k), ŷ(k), y(k) ∈ ℵ}|

Kℵ
, (15)

capturing the accuracy of classification. The Old device trans-
mission Wrongly classified as In-library (OWI) ratio:

OWI =
|{k | ŷ(k) 6= y(k), ŷ(k), y(k) ∈ ℵ}|

Kℵ
, (16)

captures signals that were correctly detected as old, but are
attributed to the wrong source. The Old device transmission
Wrongly classified as Out-of-library (OWO) ratio:

OWO =
|{k | ŷ(k) 6= y(k), ŷ(k) ∈ ℵ′, y(k) ∈ ℵ}|

Kℵ
, (17)

captures transmissions that are in fact due to old devices, but
are wrongly detected as new. For OCC, OWI, and OWO, k ∈
[1,Kℵ], and Kℵ =

∑
d∈ℵKd.

In addition, we compute two metrics for transmissions
captured from new, out-of-library, devices: the New device
transmission Correctly Detected as transmitted by an unseen
device (NCD) ratio:

NCD =
|{k | ŷ(k) = y(k), ŷ(k), y(k) ∈ ℵ′}|

Kℵ′
, (18)

and the New device transmission Wrongly Detected as trans-
mitted by a known device (NWD), i.e.,

NWD =
|{k | ŷ(k) 6= y(k), ŷ(k) ∈ ℵ, y(k) ∈ ℵ′}|

Kℵ′
, (19)

TABLE IV
DEVICE CLASSIFICATION ACCURACY WITHOUT NEW DEVICE DETECTION

AlexNet1D ResNet1D
Dev. WiFi (raw) WiFi (eq) ADS-B WiFi (raw) WiFi (eq) ADS-B

500 0.46 0.43 0.83 0.61 0.56 0.90
250 0.40 0.48 0.88 0.63 0.55 0.90
50 0.58 0.64 0.92 0.63 0.64 0.86

When new device detection is not used, accuracy coincides with OCC (15).
Best results are highlighted in bold. For WiFi protocol we also compare raw
(filtered) WiFi transmissions with their equalized versions.

where k ∈ [1,Kℵ′], and Kℵ′ =
∑
d∈ℵ′ Kd.

Software. Data preprocessing (equalization) has been per-
formed with GNU Radio Toolkit [23]. Classifiers, training
and prediction are implemented in Python using Keras with
TensorFlow backend and NVIDIA CUDA support.
Hardware. All experiments are carried out on an NVIDIA
DGX-1 workstation with 4 Tesla V100 GPUs with 16 GB
memory each and 512 GB RAM.

VI. RESULTS

In this section, we discuss results obtained for our two deep
neural network models, ResNet1D and AlexNet1D, on three
datasets of different size for both WiFi and ADS-B protocols
and different choices of statistics χ for thresholds θR(d) and
θP (d) and transmission prediction probability p̃(k)).
Accuracy without New Device Detection. In order to evaluate
the influence of the out-of-library device detection procedure,
we first present results on the same data featuring only in-
library device classification. Results are summarized in Ta-
ble IV and the best performance for each wireless protocol
is highlighted in bold. As it can be observed, ResNet1D
demonstrates superior performance in the majority of cases.
Performance with New Device Detection. The results from
both AlexNet1D and ResNet1D models on three datasets (raw
WiFi, equalized WiFi, and ADS-B) with |ℵ| = 500 in-library
devices are depicted on Fig. 5. We report 5 different metrics
(OCC, OWI, OWO, NCD, NWD) for each combination of
transmission probability prediction p̃(k) and probability and
ratio thresholds θP (d), θR(d). However, in general, we aim
to primarily maximize the model performance with respect
to the correct new device detection and in-library device
classification. Therefore, we focus on OCC and NCD below.
Optimal Statistics. As it can be noticed from Figure 5, the
best performance with respect to OCC and NCD jointly, for
both AlexNet1D and ResNet1D models, and all three data
types, is achieved when the lcb1 statistic is employed for
threshold computing during training. However, the statistics
used at test time to compute transmission prediction proba-
bility p̃(k) exhibit inconsistent behavior across datasets. This
might be a result of much higher variance of the test data,
probably due to the fact that for each new device only a single
transmission was processed.

To define the best choice of a tuple (θ, p̃(k)), a combi-
nation of two statistics: the former θ is utilized to compute

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5. Performance of AlexNet1D (a,b,c) and ResNet1D (d,e,f) models for different combinations of statistics used for thresholds θP (d), θR(d) and
transmission prediction probability (TPP) p̃(k). Presented results are for datasets with |ℵ| = 500 in-library devices: WiFi dataset (raw transmissions (a,d) and
their equalized versions (b,e)), and ADS-B dataset (c,f). Models are evaluated on five metrics: OCC, OWI, and OWO for old device transmissions, and NCD
and NWD for new device transmissions.

ratio and probability thresholds θP (d), θR(d) during training,
and the latter is used at test time to compute transmission
prediction probability, we compute a Pareto curve (Fig. 6)
showing the ratio of correctly classified transmissions from old
devices (OCC) and the ratio of transmission from new devices
correctly detected as out-of-library (NCD). Again, we choose
OCC and NCD as the metrics that we are most interested to

optimize. Numerically, we represent the optimal tuple (θ, p̃(k))
as a pair that minimizes the distance to the output of the ideal
classifier:

(θ, p̃(k))∗ = argmin
θ,p̃(k)

√√√√(acc−OCC
acc

)2

+ (1−NCD)2,

(20)

(a)

(b)

(c)

Fig. 6. OCC vs. NCD Pareto curves for WiFi (raw (a) and equalized
(b)), and ADS-B (c) datasets with 500 in-library devices. Each point on
the plots represents performance of a corresponding model achieved for a
given combination of a thresholding method used during training to compute
thresholds θP (d), θR(d), and statistics used at test time to compute p̃(k).

where acc is the highest classification accuracy achieved
for a given dataset, wireless protocol and classifier without
implementing new device detection (see Table IV).
Performance Analysis. Table V summarizes performance
of both AlexNet1D and ResNet1D models on all three
datasets and both wireless protocols by reporting the optimal
OCC/NCD pairs. In comparison to Table IV, we observe
that incorporating new device detection results in a 12.5%
decrease, on average, depending on the number of transmis-
sions correctly classified with an old device label, regardless
of the wireless protocol and initial performance. However,
this moderate sacrifice of the in-library device classification
accuracy is compensated with a rather precise new device
detection ability: on average, 67.9% out of 542 unseen WiFi

TABLE V
DEVICE CLASSIFICATION ACCURACY WITH NEW DEVICE DETECTION

AlexNet1D ResNet1D
Dev. WiFi (raw) WiFi (eq) ADS-B WiFi (raw) WiFi (eq) ADS-B

500 0.35/0.68 0.36/0.44 0.73/0.73 0.49/0.80 0.44/0.66 0.80/0.76
250 0.30/0.73 0.40/0.65 0.71/0.81 0.55/0.75 0.45/0.61 0.70/0.78
50 0.39/0.77 0.52/0.65 0.83/0.76 0.46/0.73 0.53/0.57 0.77/0.70

For each model, accuracy is represented by two numbers: the first number
being the ratio of transmissions captured from known devices that were
correctly classified (OCC), and the second being the ratio of transmissions
from unseen devices being correctly identified as such (NCD). Equation (20)
is used to define the best results (highlighted in bold).

devices, and 75% out of 458 unseen ADS-B devices are
correctly detected. Only once (AlexNet1D model trained on
partially equalized WiFi dataset with 500 in-library devices)
accuracy of the proposed new device detection method does
not exceed 50% threshold, which is the expected performance
of a random classifier.
Influence of Equalization. Interestingly, we observed a phe-
nomenon while analyzing results of raw WiFi transmissions
and their equalized versions. Specifically, for all combina-
tions of tuples (θ, p̃(k)), both ResNet1D and AlexNet1D
models constantly show much lower novel device detection
accuracy for preprocessed data, comparing to the original
WiFi transmissions: 60% vs. 74%, on average. This can be
clearly observed through the visual comparison of Fig. 6a
and Fig. 6b. Meanwhile, it has to be mentioned, that percent-
age of transmissions from new devices correctly detected as
such for unprocessed WiFi transmissions is on par with ADS-
B transmissions (76%, on average).
Scalability. Additionally, we examine the scalability of the
task, i.e. the influence of the size of the training set on the
performance of the model. Surprisingly, there is no direct
relation between the novel device detection accuracy and the
number of known devices in the training set.

VII. CONCLUSION

In this paper, we propose a framework for a novel class
detection in the domain of radio frequency fingerprinting. The
core of the proposed method is to slice radio transmissions
into smaller parts, compute prediction heuristics for slices,
and then use this heuristic to infer class label of the original
transmission. We tested our method on six real-world datasets
of different size and transmission protocols. To the best of
our knowledge, this is the first paper to describe experiments
on novel device detection and achieve high accuracy on such
big datasets (e.g., 500 known + 549 unseen devices for WiFi
protocol).

Based on the analysis of the results, we conclude that the
performance of the framework for new device detection (NCD)
does not depend significantly on the number of in-library
devices in the training set, achieving 74.3% accuracy for raw
WiFi, and 75.8% for ADS-B, on average. Rather, it depends on
the prediction ability of the original classifier. Though partial
equalization of WiFi transmissions might improve device

prediction (OCC) in some cases, it always has negative impact
on the novel device detection, attaining 59.9%, on average.

Results presented in this paper is the first attempt to address
novel class detection in the domain of radio frequency trans-
missions, to the best of our knowledge. Statistical methods
used to compute transmission prediction probability p̃(k), as
well as probability and ratio thresholds θP (d) and θR(d), can
be further refined to capture class boundaries in highly non-
linear label space. Already, in this paper we show that simple
statistical approaches are capable of attaining up to 75% in the
‘new device correctly detected’ metric (NCD) while giving
only 8% drop in the ‘old device correctly classified’ metric
(OCC), even without model retraining.

ACKNOWLEDGMENT

This work is supported by the Defense Advanced Research
Projects Agency (DARPA) under the Radio-Frequency Ma-
chine Learning Systems (RFMLS) program contract N00164-
18-R-WQ80 and partially supported by National Institutes
of Health (NIH) grant NIH/NHLBI U01HL089856. We are
grateful to Paul Tilghman, Esko Jaska, and Kunal Sankhe for
their insightful comments and suggestions.

REFERENCES

[1] O. Ureten and N. Serinken, “Wireless security through RF fingerprint-
ing,” Canadian Journal of Electrical and Computer Engineering, vol. 32,
no. 1, pp. 27–33, 2007.

[2] W. C. Suski II, M. A. Temple, M. J. Mendenhall, and R. F. Mills,
“Radio frequency fingerprinting commercial communication devices to
enhance electronic security,” International Journal of Electronic Security
and Digital Forensics, vol. 1, no. 3, pp. 301–322, 2008.

[3] V. Lakafosis, A. Traille, H. Lee, E. Gebara, and M. M. Tentzeris, “RF
fingerprinting physical objects for anticounterfeiting applications,” IEEE
Transactions on Microwave Theory and Techniques, vol. 59, no. 2, pp.
504–514, 2011.

[4] Y. Shi and M. A. Jensen, “Improved radiometric identification of
wireless devices using mimo transmission,” IEEE Transactions on
Information Forensics and Security, vol. 6, no. 4, pp. 1346–1354, Dec
2011.

[5] S. U. Rehman, K. W. Sowerby, and C. Coghill, “Analysis of imperson-
ation attacks on systems using rf fingerprinting and low-end receivers,”
Journal of Computer and System Sciences, vol. 80, no. 3, pp. 591 – 601,
2014.

[6] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device identi-
fication with radiometric signatures,” in Proceedings of the 14th ACM
International Conference on Mobile Computing and Networking, 2008,
pp. 116–127.

[7] S. U. Rehman, K. W. Sowerby, S. Alam, I. T. Ardekani, and D. Ko-
mosny, “Effect of channel impairments on radiometric fingerprinting,”
in 2015 IEEE International Symposium on Signal Processing and
Information Technology (ISSPIT), Dec 2015, pp. 415–420.

[8] T. D. Vo-Huu, T. D. Vo-Huu, and G. Noubir, “Fingerprinting Wi-Fi
devices using software defined radios,” in Proceedings of the 9th ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
2016, pp. 3–14.

[9] K. Merchant, S. Revay, G. Stantchev, and B. Nousain, “Deep learning for
RF device fingerprinting in cognitive communication networks,” IEEE
Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 160–
167, 2018.

[10] S. Riyaz, K. Sankhe, S. Ioannidis, and K. Chowdhury, “Deep learning
convolutional neural networks for radio identification,” IEEE Consumer
Electronics Magazine, vol. 56, no. 9, pp. 146–152, 2018.

[11] K. Sankhe, M. Belgiovine, F. Zhou, S. Riyaz, S. Ioannidis, and
K. Chowdhury, “ORACLE: Optimized Radio clAssification through
Convolutional neuraL nEtworks,” in IEEE International Conference on
Computer Communications, 2019.

[12] M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A review
of novelty detection,” Signal Processing, vol. 99, pp. 215–249, 2014.

[13] Y. Xian, B. Schiele, and Z. Akata, “Zero-shot learning-the good, the
bad and the ugly,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 4582–4591.

[14] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and
D. Gunopulos, “Online outlier detection in sensor data using non-
parametric models,” in Proceedings of the 32nd international conference
on Very large data bases. VLDB Endowment, 2006, pp. 187–198.

[15] Y. Bengio, H. Larochelle, and P. Vincent, “Non-local manifold parzen
windows,” in Advances in neural information processing systems, 2006,
pp. 115–122.

[16] F. Angiulli and C. Pizzuti, “Fast outlier detection in high dimensional
spaces,” in European Conference on Principles of Data Mining and
Knowledge Discovery. Springer, 2002, pp. 15–27.

[17] V. Hautamaki, I. Karkkainen, and P. Franti, “Outlier detection using
k-nearest neighbour graph,” in Proceedings of the 17th International
Conference on Pattern Recognition, 2004. ICPR 2004., vol. 3. IEEE,
2004, pp. 430–433.

[18] J. Zhang and H. Wang, “Detecting outlying subspaces for high-
dimensional data: the new task, algorithms, and performance,” Knowl-
edge and information systems, vol. 10, no. 3, pp. 333–355, 2006.

[19] M. Markou and S. Singh, “Novelty detection: a reviewpart 2:: neural
network based approaches,” Signal processing, vol. 83, no. 12, pp. 2499–
2521, 2003.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[21] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, vol. 9,
2010, pp. 249–256.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, 2012, pp. 1097–1105.

[23] M. Müller. (2018, Aug.) Gnu radio v3.7.13.4 (press release). [Online].
Available: https://www.gnuradio.org/news/2018-07-15-gnu-radio-v3-7-
13-4-release/

