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Abstract—We propose AirBeam, the first complete algorithmic
framework and systems implementation of distributed air-to-
ground beamforming on a fleet of UAVs. AirBeam synchronizes
software defined radios (SDRs) mounted on each UAV and assigns
beamforming weights to ensure high levels of directivity. We
show through an exhaustive set of the experimental studies on
UAVs why this problem is difficult given the continuous hovering-
related fluctuations, the need to ensure timely feedback from the
ground receiver due to the channel coherence time, and the size,
weight, power and cost (SWaP-C) constraints for UAVs. AirBeam
addresses these challenges through: (i) a channel state estimation
method using Gold sequences that is used for setting the suitable
beamforming weights, (ii) adaptively starting transmission to
synchronize the action of the distributed radios, (iii) a channel
state feedback process that exploits statistical knowledge of
hovering characteristics. Finally, AirBeam provides insights from
a systems integration viewpoint, with reconfigurable B210 SDRs
mounted on a fleet of DJI M100 UAVs, using GnuRadio running
on an embedded computing host.

I. INTRODUCTION

The growing popularity of Unmanned Aerial Vehicles

(UAV) can potentially revolutionize the end-to-end connectiv-

ity paradigm for IoT, by acting as infrastructure-less mobile

base stations and aerial relays [1]. Indeed, ongoing regulatory

changes have allowed various cellular service providers [2],

base station hardware companies such as Nokia [3], [4] and

Ericsson [5], and chip manufacturers such as Qualcomm [6]

to actively explore this space.

UAV flight zones are heavily regulated by Part 107 of FAA

regulations, which require line-of-sight (LoS), a height cap

of 400m and underlying spaces that do not have any non-

participating personnel [7]. Inaccessible airspace, defined as

no-fly zones, impose additional restrictions due to proximity

to airports and governmental buildings, private properties, bird

sanctuaries, military installations, among others. Thus, there

is need to enable communication links that span considerable

distances to overcome these spatial challenges, beyond what

is permissible by a single transmitter.

• AirBeam overview: As shown in Fig. 1, AirBeam arranges

UAVs as a virtual antenna array to form long range links where

single-hop connections are unfeasible. In such situations, the

ground sensor first transmits the desired information to the

UAVs. Following this step, AirBeam solves a number of

challenges to ensure the independent action of multiple UAVs

result in accurate beamforming: Firstly, it allows the receiver

to determine which specific UAVs are not aligned with respect

to the others regarding the exact starting moment of their

Fig. 1: System architecture for AirBeam

individual transmissions, and returns channel state information

(CSI) feedback that allows this fine-tuned adjustment. The

real-time channel estimation at the receiver for each transmitter

is done through the use of Gold sequence-preambles and

GnuRadio implementation. The UAVs use the consolidated

feedback from the receiver to set the beamforming weights

(along with the start-time determination). The cooperative

beamforming algorithm that runs in a distributed manner

within each UAV factors in the statistical knowledge of the

hovering motion, and the positional change from the moment

the preambles were transmitted.

• Systems challenges: AirBeam solves many systems-related

challenges to realize functioning aerial beamforming towards

meeting low size, weight, power and cost (SWaP-C) con-

straints in UAVs (see Fig. 1). This results in careful design

choices on (i) selecting lightweight but capable software

defined radios (SDRs) and embedded computing hosts that

can be mounted on DJI M100 drones, (ii) solving time syn-

chronization issues, (iii) identifying CSI estimation preamble

lengths that allow for accurate enough channel estimation

in demanding situations, while ensuring that they can be

implemented easily within the chosen hosts, (iv) and real time

processing tradeoffs to ensure timely CSI feedback, among

others. We motivate the need for aerial beamforming through

experiments on multihop relaying of data over UAVs. We also

show how distributed beamforming solutions that work well
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Fig. 2: BER at receiver with UAV static and hovering condi-

tions.

in terrestrial conditions cannot be directly ported for UAVs.

• Motivation for beamforming: Prior experimental deploy-

ments indicate link failures are highly likely in UAVs [8],

[9], and these failures often manifest in multiple links at a

time. In such cases, path recovery becomes difficult. These

experimental studies assume that UAVs can be deployed in

form of an aerial muilti-hop network, and there are always

active links between a given UAV pair. However, [10], [11],

[12] point out that large tracts of densely populated areas

are designated as no-fly zones. Thus, extending the reach

of an information relaying aerial network through classical

mesh design may not always be feasible. The existence of no-

fly-zones and our own link layer measurements motivate the

design of AirBeam, in which we use distributed beamforming

to increase directivity and signal power, with the goal of

achieving the same outcomes as a multi-hop relay.

Preliminary experiments conducted by transmitting static

payload with Intel Aero Ready-to-Fly UAV and Intel Dual

Band Wireless-AC 8260 WiFi chipset shows significant vari-

ations in the bit error rate (BER) in Fig. 2, when the UAV

hovers at a height of 25m above the ground receiver (from

time 40s onwards).

A. Paper Contributions

The main contributions of AirBeam are as follows:

• We devise the core distributed beamforming approach of

AirBeam, which meets QoS requirements at the ground

receiver, while ensuring highly directional transmissions.

AirBeam functions with intermittent feedback from the

receiver, and no communication is needed among the

participating UAVs.

• We design a closed loop feedback system using host-

based processing to ensure the CSI reaches the UAV

transmitters timely, resulting in transmit waveforms align-

ing at the receiver.

• We implement the complete AirBeam architecture involv-

ing significant software and hardware engineering effort,

and document the lessons learnt for other researchers.

We show how SWaP-C constraints are met by a combi-

nation of Gnuradio blocks running on Ettus B210 SDRs

interfaced with ARMv8 64-bit NVIDIA TX2 hosts, the

weight/speed-up tradeoffs in using FGPA for accelerating

CSI computation, and show experimental results on DJI

Matrice M100 drones.

We explain the beamforming approach and timing synchro-

nization issues in Sec. II and provide a thorough analysis of

factors driving the implementation in Section III. We discuss

the CSI computation speed achived through an FPGA imple-

mentation in Sec. IV. Experimental results and discussions are

reported in Section V. Finally, we conclude in Section VI.

II. BEAMFORMING IN AIRBEAM

UAVs can replicate and broadcast the same messages, which

are combined at the packet level at a target receiver [13]. In

AirBeam, instead, we use a PHY-layer technique that creates

a constructively combines signals at the receiver by equalizing

the phases of the channel perceived by each transmitter. While

this increases the received power in the form N2, where N
is the number of available transmit antennas, it poses some

challenges [14]: First, the transmitters should be accurately

synchronized in frequency and time. Second, the beamforming

weights at the transmitter should be rapidly updated to counter

the effects of the wireless channel.

A. Beamforming theory

Consider a MISO system composed of N UAVs, each

of which is equipped with L antennas. The relationship

between the received signal y and transmitted signal x is:

y[m] = h∗x[m] + n[m], where h = [h1, ..., hNL] are the

fixed channel gains from the transmit antenna hl to the receive

antenna, and n[m] represents the additive white Gaussian

noise (AWGN) at the receiver with a Normal distribution

N(0, σn). The receiver estimates the channel continuously

and updates the transmitters with the beamforming weight

vector w. This allows the transmitted symbols s[m] to be

multiplied by the beamforming weights to construct the new

signal x[m] =
√
EswHs[m], where Es is the average energy

of the transmitted signal x[m] with normalized constellation

symbols at any instant m (E(|s[m]|2) = 1), with E being

the mean function. In this closed loop system, the weights

are selected as to maximize the average mutual information

function described in (1), offering a total capacity in bits/Hz/s

given in (2), where P is the power component.

IBF (w, P ) = E[ln(1 + P |hHw|2)] (1)

CBF (w, P ) = E[log(1 + P
|hHw|2
σn

)] (2)

AirBeam is designed for the ISM band with narrowband

channels, tailored for IoT applications. Under these conditions,

the signal is expected to suffer flat-fading, i.e. W <<< Wc,

where these terms imply the communication and coherence

bandwidth, respectively. This lets us model the multipath effect

on every symbol by a single complex number h[m] as shown

in (1) and (2). In addition, the channel estimation may contain

errors due to shadowing caused by buildings, resulting in slight

errors ĥ[m] = h[m−D] + ∆h[m].

B. Validation of beamforming operation

To test the beamforming operation at 900MHz ISM band,

we deploy the UAVs in a temporary setup as shown in Fig. 3

(note SWaP-C constraints and need for on-board computing

will result in a design evolution, described in Sec. III). Four



Fig. 3: Architecture of static on-ground test-bed setup evalu-

ating multi-user transmit beamforming.

Ettus X310 SDRs (as the transmitter array) and a B210

SDR (receiver) separated by 2m are connected to a common

host computer. The transmit gain is kept low to emulate

longer range between the transmitters and receiver. An Ettus

Octoclock is used as the external 10MHz and PPS reference

for all the transmit and receive radios. We create separate

MATLAB sessions running the beamforming algorithm in the

host PC, with the CSI estimated by the receiver being easily

accessible to the transmitter side. Each transmitter generates a

frame with pre-defined Gold sequence for synchronization and

channel estimation, followed by OFDM blocks encapsulating

64-QAM modulated symbols, with proper zero-padding and

cyclic prefix insertion to deal with inter symbol interference

(ISI). Upon frame synchronization at the receiver, we compute

the BER of the payload to measure the performance of the link.

The receiver employs a simple least squares (LS) fit to estimate

channel response, i.e. ĥ = Ĝ/G, where ĥ is the estimated

response and Ĝ is the presumed received Gold sequence.

w[m] =

(

ĥ[k −D]

||ĥ[k −D]||

)

−1

(3)

MATLAB results in a non-negligible time lapse of D
samples between channel estimation and beamforming trans-

mission. Thus, the channel perceived by the beamformer is

modeled as h[m−D]. with (3) giving the beamforming step

at the transmitter.

Fig. 4 shows how BER reduces dramatically by using 4

antennas, with each antenna installed on a different hovering

UAV and connected via long cables to the ground based

centralized MATLAB host PC, shown in the snapshot 5,

as opposed to single antenna communication for different

modulation schemes.

From Fig. 6, we see the drastic decrease in the achievable

capacity (normalized) per antenna due to hovering, when using

the most updated CSI. Analytically, this can be explained as

the impact on the achievable capacity obtained using C(m) =
log2(1+(P |w(m−D)hH(m)|2/σ2)), where the beamforming

weights are computed from (3).
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(flying, right) UAV deployment. Note the x-axis.

Several factors may cause mis-alignment during beamform-

ing, which not only lowers capacity but also has SWaP-C

design impacts : (i) Variation of the channel over time: We

realize that MATLAB processing delays are unacceptable, thus

motivating the use of GnuRadio. (ii) Embedded processing:

A single host computer is infeasible for multiple SDRs on

geographically separated UAVs. Thus, we need a local host

light enought to be carried on the UAVs, while also ensuring

speedy execution of the GnuRadio code. (iii) Incorrect start

time: Each SDR must begin its operation at exactly the same

time (even if perfectly time synchronized, this is not assured).

We show next how we address these issues to ensure

practical implementation in an aerial scenario.



Fig. 7: GnuRadio based Aerial Transmit Beamforming Algo-

rithm.

III. SWAP-C DESIGN OPTIMIZATIONS

The overall design decisions that address the shortcomings

in the previous section are captured in Fig. 8, We will refer

to this in the subsequent text.

A. Variation of channel over time

Our revised approach required translating the entire pro-

cessing chain into GnuRadio for real-time operation. For CSI

estimation, the computation is divided into two stages:

Stage 1: Correlation of incoming samples against the stored

Gold sequences to detect which specific sequence is received.

This operation consists of 2N multiplications and 2N addi-

tions per transmitter for each incoming sample, where N is

the length of the Gold sequences. Let the computation time of

this operation be tcorr.

Stage 2: Least-squares estimation of the received Gold

sequence to the associated stored sequence, which requires

6N+2 multiplications and 6N+2 additions for each incoming

packet. Let the computation time of this operation be tLS .

With baseband sampling period, ts = 2.5µs and time

between received packets, tP = 84ms, then, for real-time

operation, we must maintain tcorr < ts and tLS < tP .

However, since ts << tP and the algorithmic complexity

of both correlation (Stage 1) and LS estimation (Stage 2)

are O(N), the limiting factor on real-time operation is the

correlation, for which tcorr < ts must hold.

For GnuRadio implementation of our beamforming receiver,

we target a USRP Ettus B210 radio connected to a host

PC having 16GB RAM, Intel Core i7-7700HQ processor and

512GB SSD hard drive. Although our preliminary MATLAB-

based beamforming allow packet reception every 84ms, the

CSI estimates are updated every 700ms due to computational

limitations. In GnuRadio, we accomplish this in 50ms time.

Any faster updates result in buffer overflow. We experimen-

Fig. 8: UAS solution stack consisting both hardware and

software components.

tally show that this 50ms delay is tolerable when used in

conjunction with the faster GnuRadio receiver. Additional

motivations in moving beamforming to GnuRadio concern

the capability to create/manipulate payloads in real time by

directly using USRP Hardware Driver (UHD) primitives and

ease of installation in embedded computing platforms for

UAVs.

As shown in Fig. 7, the GnuRadio based transmit beam-

forming algorithm pauses for 50ms between each iteration, to

avoid overflowing the buffer memory on transmitter SDR. It

then proceeds with the creation of payload bits, which are then

transformed into symbols of different modulation schemes. In

our case, we choose BPSK, QPSK, 8-QAM, 16-QAM, 32-

QAM and 64-QAM. The symbols are multiplied with the

beamweights, to generate the payload. The beamweights are

calculated in the CSI feedback adapter block, using receiver

generated packets that are transmitted using an out-of-channel

link (receivers are base stations, with higher transmit powers).

The beamformed payload is then transferred to the radio

transmit chain, ready to be transmitted over the air.

B. Embedded processing

This issue hinders precise time synchronization between

distributed devices, as seen in Fig. 9a. The payload weight

restrictions on the UAVs (3.6kg max take off weight for the

DJI M100), require exploration of small form factor radios and

computing platforms. For this reason, we select the Ettus B210

SDRs along with the NVIDIA Jetson TX2 host computers,

to be mounted on the UAVs. The Jetson TX2 boards add

85gms with 4core 64-bit and 2 Denver A57 CPUs, capable

of executing GnuRadio and UHD applications without buffer

overflow. Moreover it is able to interact with the UAV’s

DJI Software Development Kit (SDK) and Robot Operating

System (ROS) middleware. A B210 SDR has many similar

performance indices compared to the larger X310, and adds

350gms of weight. Fig. 8 shows the connection between Jetson

TX2 and GnuRadio module, with detailed interactions between

different functional blocks for a DJI M100 UAV platform.



C. Timing and synchronization

The main drawback with software-based time synchroniza-

tion is the operating systems (OS) lacking real-time operation

capabilities, where users or applications do not have exact

control on when threads or processes are going to be run.

This figure showcases an observed scenario for software-based
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Fig. 9: Timing synchronization issues before (a) and after (b)

moving to our proposed hardware based approach.

synchronization, where the alignment of the training signals

from the two transmitters are off by 2000µs. Our approach

to overcome this problem is to push the time synchronization

processes close to the radio hardware, with minimum involve-

ment of the OS.

In our setup, the time synchronization starts when the UAVs

reach the intended GPS based waypoint. The algorithm then

gives highest priority to the time sync thread by locking

the other concurrent software threads from causing context-

switches, so it will mitigate undesired but highly likely soft-

ware lags or thread delays while setting the time value on local

USRP. Once the lock is achieved, the algorithm proceeds with

receiving and parsing Network Time Protocol (NTP) message

collected from the local NTP server (which in our case is the

receiver base station). This NTP data provides the reference

time for setting the system clock for the Jetson TX2 host on

the UAV. Taking the seconds value of the system time, and the

PPS input from the Octoclock, the USRP time is set as the next

second value, on the next PPS instant. This ensures that all

of the distributed transmitter and receiver radios collectively

lock their hardware time to the same value.

After setting up the time on each USRP, each GnuRadio

process decides how many seconds it should wait before

starting the transmission and sets the through UHD API. This

guarantees the GnuRadio processes start transmitting simulta-

neously, even if the processes themselves are not initialized

at the same time. In between the successful setting of the

radio hardware time and the actual transmission start time,

the host process on OS is put to sleep, in order to prevent

buffer overflows at the radio UHD driver software. Although
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Fig. 10: Accurate cross-correlation within 1µs accuracy with

time sync and delay mechanism enabled.

this approach reduces the correlation inaccuracy to 20µs from

the previous 2000µs (see Fig. 9b) on B210 radios1, it still

fails to satisfy the precision required for data beamforming,

where the correlation accuracy needs to be within 1µs between

all the transmitted signals. To achieve the desired precision,

the receiver calculates the delay between the transmit streams

and piggybacks this information along with the CSI feedback,

back to the individual transmitters. The transmitters delay their

signals accordingly with additional zero-padding (similar to

the Time Advance procedure to synchronize nodes in 3GPP

LTE standard) to sync with the transmitter radio peer having

the latest transmission start time. Thus, we satisfy the target

of correlation accuracy of within 1µs, as shown in Fig. 10.

IV. FPGA-BASED RECEIVER PROCESSING

Beamforming in mobile scenario depends on accurate and

fast CSI estimation. We recall our GnuRadio implementation

estimates the CSI and generates feedback in 50ms. Our

experimental results reveal that in the presence of classical

GPS, the lateral displacement of the UAV is typically +/- 0.5m,

as shown in the histogram in Fig. 11, even when the UAV is

assigned to a fixed location in space. Thus, the CSI needs

to be continuously computed and communicated back to the

transmitters. To ensure that the received feedback is timely,

there are two approaches: (i) we use real-time kinematic GPS

that continuously corrects GPS errors (resulting in +/- 10cm

as shown in Fig. 11) through a combined ground base station

and a UAV-mounted device, or (ii) we use alternate methods to

further speed up the CSI computation. For the latter approach,

we describe the speed-up possible by undertaking some of the

computation within an FPGA.

A. FPGA algorithm design

Our target hardware for an FPGA-based implementation of

the beamforming receiver is the Xilinx ZC706 development

kit for the Zynq-7045 system-on-chip (SoC) FPGA, with an

Analog Devices FMCOMMS3 daughterboard containing an

AD9361 RF transceiver. This FPGA contains 350,000 logic

cells, 19.1 Mb of RAM, and 900 DSP slices, which are the

major resources that are utilized in the receiver design. The

1We should note that, these steps are sufficient to provide precise synchro-
nization on X310 radios, where B210 radios fail to achieve same precision
on real-time operations.
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first step of re-designing the receiver algorithm for FPGA

implementation is to split the algorithm into functional pieces

with different requirements: (1) correlating the incoming data

with the stored training signals and (2) calculating a least-

squares estimate to fit the received training signals with the

stored training signals. In order to maximize the computation

speed increase, the beamforming algorithm is partitioned into

high performance and low performance components. The high-

performance components are those that can be parallelized

in the FPGA fabric to reduce the computation time, and

include such functions as the buffering of incoming samples,

correlation of samples with the stored training signals, and

estimation of CSI. Low-performance functions are those that

will not drastically speed up computation time if placed in

the FPGA, which include transferring the CSI data to a host

computer via a UDP interface. This low-performance task will

be performed by software in the SoC processing system (PS).

A high-level block diagram of the hardware and software

processing blocks is shown in Figure 15. The incoming I/Q

samples from the AD9361 IP core are split into parallel

streams. One stream is routed directly to the I, Q, and Valid

output stream, in order to allow the samples to be output

immediately. The second stream pushes the I/Q samples into

the CSI estimation chain. This allows received samples to be

processed in the CSI estimation chain while simultaneously

being sent to the host for demodulation of the signal. Thus,

the two paths do not interfere with one another.

1) Correlator design: The next block on the CSI estimation

chain is the correlator block. The number of parallel DSPs (and

thus, the number of allowable parallel multiplications) was

chosen to be 96 per channel (32 for I data, 32 for Q data, and

32 for magnitude data). To support, say 5 transmitters/UAVs,

this means a total of 480 of the 900 available DSP slices will

be used for the correlators. In addition, the block RAMs used

for received I and Q sample storage must be 16 bits * 32 = 512

bits wide. The local training signals are stored in similar 512-

bit wide RAM blocks which are only 128 words long (512

x 128), for storing the Gold sequences which are originally

16 x 4096. Each correlation sample is calculated using the

Fig. 12: A high level block diagram of the hardware and

software processing blocks for the beamforming receiver

following formula:

X[n] = |
4095
∑

k=0

(r[n+ k] ∗ g∗[k]) | (4)

where X[n] is the n-th correlation sample, r[n + k] is the

[n+k]-th received sample and g∗[k] is the complex conjugate

of the k-th Gold sequence sample. Let the components in

Equation 4 be represented in I/Q format as r[k] = ri[k]+jrq[k]
and g∗[k] = gi[k] − jgq[k]. Then the equation, letting m =
[n+ k], can be re-written as

X[n] = |
4095
∑

k=0

ri[m] gi[k] + jrq[m] gi[k]

−jri[m] gq[k]− j2rq[m] gq[k] |

where we use the fact that {gi[k] = gq[k], ∀ k} to get

X[n] = |
4095
∑

k=0

(ri[m] gi[k] + rq[m] gi[k])

+j(rq[m] gi[k]− ri[m] gi[k]) |

To save on computation complexity and reduce hardware

resources, we approximate |A + jB| ≈ |A| + |B|, since we

are simply identifying the index of the peak correlation value

and disregard the actual value of the peak. Thus, the final

correlator calculation becomes

X[n] = |
4095
∑

k=0

ri[m] gi[k] +

4095
∑

k=0

rq[m] gi[k]

+

4095
∑

k=0

rq[m] gi[k]−
4095
∑

k=0

ri[m] gi[k] |
(5)

To compute each correlation sample, 64 parallel MAC

operations occur over 128 clock cycles. The MAC operations

compute the sums from (5). 32 parallel MACs are used to

compute Xi[n] =
∑4095

k=0
ri[m] gi[k] and 32 parallel MACs

are used to compute Xq[n] =
∑4095

k=0
rq[m] gi[k]. The MAC

equation is x = a ∗ b + c, and in the correlator calculations,

each MAC output is expressed as

xi,p[k] = ri,p[k] ∗ gi,p[k] + xi,p[k − 1]

xq,p[k] = rq,p[k] ∗ gi,p[k] + xq,p[k − 1]



Fig. 13: A block diagram showing the correlation computation

for a single sample Xi[n] or Xq[n].

where xi,p[k] and xq,p[k] are the p-th I-sample and Q-sample

MAC outputs, respectively, at the k-th clock cycle, ri,p[k] and

rq,p[k] are the p-th outputs of the received (RX) I-sample and

Q-sample RAMs at the k-th clock cycle, respectively, and gi,p
is the p-th Gold sequence (GS) RAM output at clock cycle k.

The MACs accumulate over 128 clock cycles, after which the

32 I-sample MAC outputs and 32 Q-sample MAC outputs are

then summed together to compute Xi[n] =
∑31

p=0
xi,p[127]

and Xq[n] =
∑31

p=0
xq,p[127].

A block diagram of the correlation computation for Xi[n] is

shown in Figure 13. The same structure is used to simultane-

ously calculate Xq[n], and the two results are used to compute

the final correlation value X[n] as

X[n] = | Xi[n] +Xq[n] |+ | Xq[n]−Xi[n] | (6)

2) Peak Detector & CSI Estimator Design: The correlations

are performed so that correlation peaks can be detected in

order to identify the starting index of received training signals.

Correlation peaks are detected by comparing the correlator

outputs to a hard-coded threshold value. Once this threshold

has been crossed, the peak detection enters a peak tracking

state where the maximum correlator value is tracked and

the corresponding sample index is stored. The peak tracking

is performed for the 16 samples immediately following the

sample at which the correlator threshold is crossed. After this,

the peak detector stores the index of the maximum correlator

value and the channel estimation can be performed. Since

slight timing offsets between transmitters can occur even with

good timing synchronization, the indices of the correlator

peaks may be off by a sample or two. This is accounted for

in the algorithm design, since each channel performs the peak

tracking separately.

Consider a transmitted signal g that is observed at a receiver

as r, after passing through the wireless channel characterized

by h, where all parameters are complex-valued. The transmit-

ted signal over time is represented by a vector of samples

g = [g1, g2, ..., gn]
T for which there is a corresponding

vector of observations r = [r1, r2, ..., rn]
T . Assuming h is

fixed for all samples in an observation window, the resulting

relationship between the transmitted signal, received signal,

and channel characterization is r = h ∗ g. This is an example

of an over-determined linear system, where there are more

equations than unknown parameters. To estimate the true value

of h, a least-squares fit can be performed to determine the

value of h that minimizes the sum of the squares of the

residuals, defined as

ĥLS = argminh[

n
∑

k=1

(rk − hgk)
2 ]

For this complex-valued system, the least-squares solution [15]

is given by

ĥLS = (g∗g)−1g∗r (7)

where g∗ is the conjugate transpose of g. We can express this

relationship as a sum of multiplications on a per-sample basis,

which is more suited for FPGA implementation, as

ĥLS = (

n
∑

k=1

g∗kgk )−1(

n
∑

k=1

g∗krk )

Separating the true signal and observations into I and Q

components, the calculation becomes

ĥLS = (

n
∑

k=1

g2i,k + g2q,k )−1

(

n
∑

k=1

gi,kri,k + gq,krq,k + j[gi,krq,k − gr,kri,k] )

However, since g is the fixed-valued transmitted training

signal, a copy of which is stored locally, the term
∑n

k=1
(g2i,k+

g2q,k) is a constant. Furthermore, this value is the same for all

of the generated Gold sequences in the design, and can be

ignored in the FPGA computation and grouped with a gain

term in software. Thus, the estimation calculation becomes

ĥLS =

4095
∑

k=0

gi,kri,p+k+gq,krq,p+k+j[gi,krq,p+k−gq,kri,p+k]

where p is the sample index of the correlator peak value. We

once again use the fact that {gi[k] = gq[k], ∀ k} to simplify

this calculation to

ĥLS =

4095
∑

k=0

gi,kri,p+k + gi,krq,p+k + j[gi,krq,p+k − gi,kri,p+k]

which can be reduced to a function of summations of multi-

plications suitable for MAC operations as:

ĥLS = [

4095
∑

k=0

gi,kri,p+k +

4095
∑

k=0

gi,krq,p+k ]

+j[
4095
∑

k=0

gi,krq,p+k −
4095
∑

k=0

gi,kri,p+k ]

(8)

The channel estimation step, therefore, requires just two

simultaneous MAC operations that calculate {ĥi =
∑4095

k=0
gi,kri,p+k} and {ĥq =

∑4095

k=0
gi,krq,p+k}. These are

calculated in 4096/100MHz ≈ 41µs for the assumed 100

MHz FPGA clock rate. Since the minimum speed requirement

implies that calculation must be completed between the end



Fig. 14: A block diagram showing the least-squares computa-

tion for CSI estimation.

of a transmitted training signal and the beginning of the

next packet, it is performed using just two DSP blocks for

conservation of resources. The computation occurs over 4096

FPGA clock cycles and once completed, the channel I and

Q estimates are stored in FPGA registers for later access by

the PS software. A block diagram showing the least-squares

channel estimator design is shown in Figure 14.

3) Clock & Timing Considerations: In this design, there

are two main clock domains: the AD9361 ADC clock and the

FPGA master clock. The AD9361 ADC clock is an external

clock generated in the AD9361 transceiver that runs at a fixed

rate equal to the RF sampling rate of 540 kHz, while the FPGA

clock, which is internally generated, can run at a designer-

selected frequency as desired. The major limitation of this

FPGA master clock is the complexity and implementation of

the design, which will limit the maximum speed at which it

will run.

The FPGA design was implemented three times, using

FPGA master clock rates of 50, 100, and 200 MHz. We

observe that the design timing requirements are met for both

50 MHz and 100 MHz, so 100 MHz was chosen as the

actual operating clock rate. Note that there is significant room

for redesigning the algorithm to optimize it for a 200 MHz

clock, which can potentially allow for doubling the number of

transmitters supported.

V. PERFORMANCE EVALUATION

AirBeam is evaluated on an experimental setup of 4 trans-

mitter UAVs, with each UAV consisting of a NVIDIA Jetson

TX2 module, interfaced with a B210 radio and mounted on

a DJI Matrice M100 UAV. The receiver B210 radio was

connected to a ground based static host. The UAVs receive

the GPS co-ordinates for hovering via the DJI SDK system.

Once all the UAVs are at the expected location, the transmitter

SDR hosts synchronize their own clock with the local server,

proceed to fine tune the radio transmissions to within 1µs
delay of each another and start the beamforming transmission.

The receiver, after extracting the payload, multicasts the CSI

feedback to the transmitters along with piggybacking trans-

mission delay information, if required.

A. Use of FPGA and SWAP-C Considerations

An AD9361 reference software design is provided by Ana-

log Devices for use with the Xilinx ZC706. UDP capabilities
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Fig. 15: CSI estimation time in MATLAB, GnuRadio and

FPGA

are included with the lightweight internet protocol (lwIP) stack

which is usable by this application.

Empirical measurements of computation time shown in Fig. 15

for the correlation and CSI components indicate that these

functions have a minimum computation time of 122ms in

MATLAB and 13ms in GnuRadio. The FPGA implementation,

on the other hand, will compute correlation and CSI estimation

is 41µs. Thus, the FPGA design has a speedup of over

3000x compared with the MATLAB design and over 300x

improvement compared with GnuRadio. This computation

speed does not include the transfer of calculated CSI data

from the FPGA to the host processor that would be necessary

in a system implementation. However, this data transfer could

be achieved in <1 ms over a simple 115kHz baud rate

UART interface for a system of 5 transmitters/UAVs. Since the

FPGA implementation uses the Xilinx Zynq-7000 SoC ZC706

developmental board, it adds an extra 396 grams of weight to

the UAV. This in turn reduces the flying time by 56.18%. Since

this reduced flight time is not enough to generate sufficient

data for a fair BER comparison between GnuRadio and FPGA,

we describe experimental results with GnuRadio in this paper,

and leave the FPGA-based processing for future work, where

we will replace the FPGA development board with a smaller

form factor integrated FPGA-host device, port our algorithm

there and install it on the UAV.

B. Beamforming to improve the BER

Using the same experiment settings from Sec. II-B, we grad-

ually increased the number of transmitter UAVs, and measured

both channel gain and BER at the receiver with different

modulation schemes. Fig. 16 showcases the effect of UAV

hovering on channel gain fluctuations, with low fluctuations

observable during moments of high stability of the UAVs.

Channel gain increases significantly as more UAVs participate

in beamforming. This improvement in channel gain, coupled

with fast CSI estimation feedback from the receiver and similar

fast beamformed payload transmission in the forward path,

improves BER at the receiver, as shown in Fig. 17. With one

transmitting antenna, the BER for any choice of modulation

scheme is between 30 - 40% which gets reduced to 0% as

the number of transmitting beamforming UAVs are increased

to 4. Thus, AirBeam improves the link performance by 30 -

40% at the receiver depending on the modulation scheme used.
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1 ground receiver.

Fig. 18 provides the statistical information that guarantees

this observation, i.e., AirBeam enables aerial beamforming

with the probability of BER around 0 is 99-98%, for all the

modulation schemes used.

VI. CONCLUSION

AirBeam achieves aerial beamforming communication un-

der practical SWaP-C constraints. We have demonstrated the

feasibility of a practical system with preliminary experiments

and provided extensive systems level implementation on a real

test bed. Comparing the performance of data communications

with traditional aerial networks, we see that our approach

achieves 30-40% reduction in BER, when the numbers of UAV

transmitters are increased from 1 to 4 and 99% probability of

BER to be near 0 with this approach. Our next steps will focus

on demonstrating enhanced beamforming algorithms that can

operate even with intermittent CSI information resulting from

losses from the receiver-generated feedback packets.
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