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ABSTRACT
The use of alternate modalities, like images, for fast beamforming
in the millimeter wave (mmWave)-band is being proposed to ensure
high bandwidth connectivity in vehicular scenarios typically seen in
the context of autonomous cars. Considering the dynamic deploy-
ment conditions, a car may encounter new environments which were
not explicitly included in an apriori training dataset. In this paper, we
propose to use the Model-Agnostic Meta-Learning (MAML) frame-
work on the image data of the mmWave vehicle-to-infrastructure
beam selection FLASH dataset, to overcome the generalization is-
sues of a pre-trained model in unseen non-line-of-sight (NLOS) con-
nectivity environments. MAML has additional advantages over tra-
ditional deep-learning techniques: (i) it uses a fraction of the data
which, in turn, simplifies data collection and storage, and (ii) it re-
sults in equal or higher accuracy in optimal beam selection compared
to the case when the new environment dataset is fully available dur-
ing initial training. We show that our MAML implementation im-
proves test accuracy of beam selection by up to 86% with fine-tuning
when encountering an unseen NLOS environment compared to con-
ventional supervised learning.

Index Terms— Meta-learning, Non-RF Data, mmWave, Beam
Selection

1. INTRODUCTION
Autonomous vehicles are poised to revolutionize transportation in
the future. One direction towards realizing this vision involves re-
laying massive volumes of locally collected sensor data from the
vehicle to a central cloud for optimizing routes and obstacle avoid-
ance, in the order of 10 Gbps. Transmission in the millimeter-wave
(mmWave) band makes such high data rates possible [1], though
beamforming is required to overcome the high path loss in this band
by channeling the radio frequency (RF) energy in narrow spatial
lobes. We have previously used machine learning (ML) over con-
textual information from the environment, captured via images from
a vehicle-mounted camera to enable beamforming faster than the
standards-defined brute force approach. In this paper, we tackle the
key problem of enabling our image-guided beamforming approach
to work in environments not seen during training, while minimizing
the costly overhead of new data collection.
• Challenge 1: Overhead of Experimental Data Collection: Our
baseline approach for image-guided beam selection in [2] required
extensive experiments for data collection using an autonomous car,
mounted with a Talon AD7200 802.11ad mmWave router and Go-
Pro HERO4 camera with a field-of-view of 130 degrees operating at
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Fig. 1: State-of-the-art (top) versus proposed ML-based solution
(bottom). In the former, the model is tuned to give best performance
on specific scenario during training; thus, it fails while predicting
for unseen scenarios which it has not been trained on. In latter, the
MAML-based training generates a generalized model to perform op-
timally in any unseen scenarios.

a sampling rate of 30 frames per second. To collect this dataset, we
drove the vehicle in an alley that is flanked on both sides by buildings
to emulate typical urban driving conditions, collecting received sig-
nal strength indicator measurements (RSSI) captured by the router
and multimodal data from the non-RF sensors in 1-30 Hz intervals.
The resulting 20 GB dataset [3] is collected with time-synchronized
sensor samples and RSSI measurements per mmWave beam. We
demonstrate high accuracy in prediction of the best beam (defined as
having the highest RSSI measurement) when we train and test over
all proposed line of sight (LOS) and non-LOS (NLOS) conditions.
• Challenge 2: Overhead and Accuracy of Learning: Even if
experimental data can be collected in the field, the training process
may be lengthy due to digital processing constraints on millions of
parameters. Additionally, the time needed to relay the data to the
computational cloud and complete the training is proportional to the
data volume. Furthermore, as shown by recent investigations, simply
using more data is not guaranteed to result in a better performance
of the model due to the possibility of over-fitting [4, 5]. Specifically
for the aforementioned beam selection scenario in new NLOS condi-
tions, we desire to be parsimonious with the data used for additional
training in the new environment.
• Solution and Approach: We propose a novel meta-learning-based
solution to address Challenges 1 and 2 on a non-RF image dataset.
As shown in Fig. 1, we adapt the Model-Agnostic Meta-Learning
(MAML) [6] framework for beam selection. Our approach uses
available training data on a number of seen scenarios to find an adap-
tive model that performs well after fine-tuning on new or unseen sce-
narios with only a small amount of data at test time, given that the



scenarios fall under a common distribution of tasks.

2. RELATED WORKS
It is well known that the standardized exhaustive search process for
beam selection at mmWave frequencies is slow and inefficient [7].
In recent years, applications of ML have gained popularity over con-
ventional techniques for beam selection, reducing the range of pos-
sible optimal beam sectors and leveraging environmental informa-
tion to speed up the selection process. Examples that have drasti-
cally reduced beam selection time within the mmWave domain in-
clude [8, 9, 10, 11, 12]. However, models learned by these tech-
niques fail to generalize well when they are trained in environments
with very few training samples. In that regard, meta-learning-based
approaches have the potential to allow ML models to quickly adapt
to new scenarios and minimize the impact of generalization errors.
Meta-learning, or “learning to learn” [13], aims to extract informa-
tion from a set of observed tasks that enables fast adaptation to new
tasks, with only a small amount of samples and computation avail-
able for adaptation. Meta-learning approaches include learning an
initialization for gradient-based learning algorithms [6, 14, 15, 16,
17, 18], finding a low-dimensional subspace in which to fine-tune
model parameters [19, 18], and learning a metric space containing
class-specific prototypical representations [20]. To our knowledge,
this paper takes the first step in applying meta-learning to a mmWave
beam selection scheme using a real dataset in which non-RF camera
images are used to guide inferences, and new samples may be col-
lected and processed for inference in real-time.

3. BEAM SELECTION IN UNSEEN SCENARIOS AND
PROPOSED FRAMEWORK

3.1. The Problem: Beam Selection in Changing Scenarios
Our setting involves a receiver (Rx) on a vehicle, which is selecting
a beam pair with a base-station (BS) transmitter (Tx) in order to
establish a link with high signal strength.
Traditional Beam Selection: Traditional beam selection lever-
ages phased antenna arrays at the Tx of the BS and Rx at the
vehicle. Each array has a pre-defined codebook given by CTx =
{t1, . . . , tPi}, CRx = {r1, . . . , rQi} consisting of Pi and Qi ele-
ments for ith scenario, respectively, where each scenario corresponds
to the vehicle travelling at a different speed and/or with a different
obstacle between it and the base station. These Pi + Qi probe
frames are transmitted for beam initialization, and the beam with
the maximum signal strength across sectors is chosen as optimal. In
particular, the optimal beam at Tx is:

t∗i = argmax
1≤pi≤Pi

ytpi , (1)

where ytpi is the strength of the received signal when the trans-
mitter uses beam tpi for the ith scenario. While this method is
effective at finding the optimal beam, exhaustively transmitting a
linearly-scaling Pi+Qi probe frames is slow and impractical within
a vehicle-to-everything (V2X) network, particularly when consider-
ing a large number of possible beams and transmission time [21].
By the time the optimal beam is found, the vehicle may have moved
into a new environment where either a different number of beams
are available or the optimal beam is no longer available, requiring
the selection process to be reinitialized.
ML-based Beam Selection: To avoid costly exhaustive searching in
traditional beam selection, we follow state-of-the-art techniques [2,
22] that employ ML models to predict the best beam based on non-
RF data. In this work, we focus on using image data to predict the
best beam, motivated by the fact that each vehicle is equipped with

an active camera and large quantities of image data are available.
Our aim is to use a large set of collected image data to train a model
in an offline manner that predicts the optimal beam from an image
taken by the vehicle’s camera, but our framework can be easily ex-
tended to other non-RF modalities as well.

More formally, prior to model deployment, we access a training
set of labeled images from η different scenarios. Training data cor-
responding to the ith scenario is given by Si := {(Xi,j , yi,j)}j∈ni ,
where each Xi,j ∈ Rd is an image and Yi,j ∈ {0, 1}Pi is its
corresponding label, and ni is the number of samples from the ith

scenario. The learning model is a function fθ : Rd 7→ RPi , pa-
rameterized by θ ∈ RD , e.g., fθ may be a neural network with
weights θ. The empirical loss of the model parameters θ on a dataset
Si is defined as L(θ;Si) := 1

ni

∑ni
j=1[ℓ(fθ(Xi,j), yi,j)], where

ℓ : RPi × {0, 1}Pi → R+ is a cross-entropy loss function mea-
suring the discrepancy between predicted and true labels that will be
used in all experiments.

The standard ML training approach is to find a model that min-
imizes the average loss across all of the training samples, namely,
empirical risk minimization (ERM). Specifically, ERM solves
minθ∈RD L(θ) := 1

N

∑η
i=1 niL(θ,Si), where N =

∑η
i=1 ni.

One can run a variety of easy-to-implement gradient-based al-
gorithms to optimize the above objective–for instance, stochastic
gradient descent (SGD). While this approach is natural for finding
high-performing models on training scenarios, it is not well-suited
to find models that can adapt to new scenarios encountered when
deployed, as we show in Section 4.

Beam Selection in Unseen Scenarios: We are interested in find-
ing models θ̂ which, after they are deployed, can quickly adapt to
scenarios Sη+1, . . . ,Sη+υ not seen during training. In practical ap-
plications such as V2X networks, the model does not have enough
data or computational budget to perform full supervised learning in
the new scenario; rather, it is only provided with a few labeled sam-
ples and must yield an adapted model within a matter of seconds or
less, as a vehicle may only be within communication range of a BS
for a few seconds.

We consider each of these adaptation opportunities as a “task”.
That is, a task consists of a small number of support samples that
can be used for adapting the model, along with target samples for
evaluating the adapted model. Each task has data that is a subset of
the dataset for a particular scenario. Specifically, the kth task from
scenario i is defined by the pair of datasets (T sup

i,k , T tar
i,k ), where

T sup
i,k contains the support samples, T tar

i,k contains the target sam-
ples, T sup

i,k ∪T tar
i,k ⊆ Si and T sup

i,k ∩T tar
i,k = ∅. We let m1 := |T sup

i,k |
and m2 := |T tar

i,k |, for all tasks i, k, and let Mi denote the number
of tasks for scenario i.

We suppose that the task-specific adaptation procedure is τ
steps of gradient descent (GD) with step size α using the sup-
port samples in the task’s support set, where τ is small. Let
θ̂i,k := GD(θ̂, T sup

i,k , α, τ) denote the result of this adaptation
procedure starting from θ̂. Ultimately, we aim to find a θ̂ such
that the loss of θ̂i,k is small on average across tasks from un-
seen scenarios, i.e., our performance metric is: Ltest

adapt(θ̂) :=
1
υ

∑η+υ
i=η+1

∑Mi
k=1 L(θ̂i,k; T

tar
i,k ). As mentioned previously, models

found by the standard ERM are not well-suited to perform well
on the adaptive metric Ltest

adapt(·) due to overfitting during training.
Unlike ERM, we leverage the seen scenarios to train for adaptivity,
described next.



Fig. 2: Proposed MAML-based framework for adapting to unseen
scenarios for beam selection. θ̂ is the model after meta-training, and
θ̂η+1,k is generated after fine-tuning during meta-testing.

3.2. Proposed Solution: MAML for Beam Selection in Unseen
Scenarios

In order to find models that perform well after adaptation, i.e.,
achieve a small Ladapt(·), we adopt the MAML [6] approach.
MAML aims to find an adaptable initialization for task-specific
SGD in multi-task settings. To do so, MAML executes an episodic
training procedure, referred to as meta-training, in which each
episode consists of first adapting the current initialization to the
corresponding task, then improving the initialization based on the
performance of the adapted model on the same task. In particular,
MAML aims to solve the following objective in our setting:

min
θ∈RD

Ltrain
adapt :=

1

η

η∑
i=1

Mi∑
k=1

L(θi,k; T tar
i ) (2)

where θi,k := GD(θ, T sup
i,k , α, τ). In words, we aim to find an ini-

tial model θ̂ that performs well after τ GD steps using the samples
T sup
i , on average across all scenarios indexed by i. To solve (2),

we execute the MAML algorithm, which is equivalent to perform-
ing SGD on (2). This framework is displayed in Fig. 2. Note that
the MAML training objective Ltrain

adapt is the analogue of Ltest
adapt on the

training data. Indeed, our evaluation procedure on tasks from un-
seen scenarios exactly corresponds to what MAML refers to as the
meta-testing phase.

4. EXPERIMENTS
4.1. Dataset
We validate our proposed framework on the publicly available
FLASH dataset for multimodal beamforming [3]. The FLASH
dataset studies a vehicle-to-infrastructure scenario at the 60 GHz
mmWave band and includes synchronized sensor data from on-
board GPS, a GoPro Hero4 camera, and two Velodyne VLP-16
LiDARs, along with the received signal strength indicator for all
beams recorded by the Talon AD7200 mmWave radio [7]. The
latitude and longitude of the vehicle and side view of the vehicle
are recorded by the on-board GPS and RGB camera with shape (90,
160, 3), respectively, as the vehicle passes by a static BS. For this
paper, we use the ∼32000 camera images from FLASH dataset for
guided beam selection.

A variety of images, or samples, are collected in LOS and NLOS
conditions with various obstacles intended to comprehensively rep-
resent many V2X environments. These samples are subsequently
used to train a model that selects the best mmWave beam sector.
Specifically, these samples, collected in trials or episodes, are orga-
nized by broad categories with specific scenarios per category. Since
the FLASH dataset consists of synchronized sensor and RF ground

Cat. Seen/
Unseen Featuring Scenario

Seen LOS 10 mph, same lane
Seen LOS 15 mph, same lane

1 Seen LOS 20 mph, same lane
Seen LOS 10 mph, opp. lane
Seen LOS 15 mph, opp. lane
Seen LOS 20 mph, opp. lane

Seen Pedestrian 15 mph, standing
Seen Pedestrian 15 mph, walking L → R

2 Seen Pedestrian 15 mph, walking R → L
Seen Pedestrian 15 mph, walking F → B
Seen Pedestrian 15 mph, walking B → F

Seen Static Car 15 mph, on R
Seen Static Car 20 mph, on R

3 Seen Static Car 15 mph, in F
Seen Static Car 20 mph, in F
Seen Static Car 15 mph, on L
Seen Static Car 20 mph, on L

Unseen Moving Car 10/15 mph, same direction
4 Unseen Moving Car 15/20 mph, same direction

Unseen Moving Car 15/15 mph, opp. direction
Unseen Moving Car 20/20 mph, opp. direction

Table 1: Summary of different used scenarios. L, R, F, and B stand
for left, right, front, and back, respectively. Samples for Cat. 2-4 are
taken with the Rx vehicle in the lane opposite to the BS, while any
obstacles occupy the same lane as the BS. For Cat. 4, the speed of
the Rx vehicle is given first in each scenario, while the speed of any
moving car obstacle, when present, is given second.

truth data, each collected sample is labeled with the optimal beam
sector at the time of recording.

4.2. Seen and Unseen Scenarios
In our experiments, scenarios are either seen or unseen, and the seen
scenarios are used for training, while the unseen scenarios are used
for testing. In particular, scenarios from Cat. 1-3 are seen and sam-
ples from Cat. 4 are unseen. Then, we configure the scenarios based
on the speed of the vehicle and the available scenarios within each
category with the sectors 1-31 and 61-63 [21] as the classes. Since
there are 34 possible sectors, each task is a 34-way classification, and
task data is drawn uniformly from the datasets for each scenario. The
scenarios are shown in Tab. 1, with corresponding categories, obsta-
cles, and descriptions based on vehicle speeds and scenarios; details
about these scenarios are given in [2].

4.3. Experiment Setup
We conduct experiments to explore the advantages of meta-learning
based training. For all experiments, we set the batch size to 5 tasks
sampled per epoch for 100 epochs and use the Adam optimizer [23]
with a learning rates of 0.001 for ERM and MAML, and adapta-
tion learning rate α = 0.01. The learning model is VGGNet [24]–a
convolutional neural network that is widely used for image classifi-
cation. Note that in the FLASH dataset, each class may contain up
to ∼1500 samples, depending on the optimal beam per scenario in
each category.

4.3.1. ERM
As discussed in Section 3.1, a natural ML-based approach to beam
selection is ERM, which tries to find a model that minimizes the av-
erage loss on the seen scenarios. For a fair comparison with MAML,
we sample data in the form of tasks. However, we use all of the task
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Fig. 3: Training accuracies per epoch for different experiment setups
with 1 FT step. Additional FT steps do not impact training. The
number of task-specific adaptation steps τ that MAML uses during
training is given in parentheses.

data for a single gradient step, rather than splitting task samples into
support and target sets. We use 120 samples per class per task for a
total of m := m1 + m2 = 4080 samples per task, as there are 34
classes per task.

4.3.2. MAML
To implement MAML, we use 20 support samples and 100 target
samples from each class per task. Since each task has 34 classes,
this means that m1 = 680 and m2 = 3400 for all tasks. Note that
ERM and MAML use the same number of samples per task for fair
comparison. We experiment with two versions of MAML; (i) MAML
(1), which makes τ = 1 gradient step for model adaptation in the
meta-training phase, and (ii) MAML (5), which makes τ = 5 steps.
For run-time efficiency, we take the common approach of dropping
second-order derivatives in the MAML update, meaning the version
of MAML we run is First-Order MAML [6].

4.3.3. Evaluation

For evaluation, the trained models are fine-tuned on new tasks from
the ‘unseen’ scenarios using either τ = 1 or τ = 5 fine-tuning (FT)
steps with 20 samples per class per task, for a total of 680 samples
per task. Then, the accuracy of the fine-tuned models is computed
using 100 new samples per class from the same task. The average
and standard deviation of the test accuracies across test tasks is re-
ported in the following section.

5. EXPERIMENTAL RESULTS
We perform all experiments on a NVIDIA Tesla A100 GPU ma-
chine. We implement MAML and ERM in Pytorch by adapting the
codebase in [25]. For all experiments, average accuracies on train-
ing tasks per epoch are shown in Fig. 3 while average accuracies and
standard deviations on testing tasks are shown in Fig. 4.
Comparison between ERM and MAML: Fig. 3 shows that ERM
quickly learns the mapping from inputs images to the optimal beam
sector among images from the training scenarios, achieving nearly
100% training accuracy. However, its solution does not generalize
to tasks from unseen scenarios, as it obtains only 11.76% average
accuracy on tasks from unseen scenarios for both 1 and 5 FT steps
due to overfitting, as shown in Fig. 4. In comparison, MAML (1) and
MAML (5) obtain smaller training accuracies yet generalize much
better during testing, collectively achieving an average test accuracy
of 66.70% and 97.83% across all test cases and FT steps.

Fig. 4: Comparison of testing accuracies and standard deviations be-
tween different settings of ERM and MAML with different number
of FT steps.

Observation 1. We observe that MAML training significantly boosts
the testing accuracy while encountering the unseen scenarios versus
the standard ERM training method.
Impact of the Number of Adaptation Steps During Training: We
also explore the effects of increasing the number of task-specific
adaptation steps between MAML (1) and MAML (5). As shown
in Fig. 3 and Fig. 4, MAML (5) achieves a larger test accuracy of
97.33% after 1 step of FT than MAML (1) (66.58%), as well as a
smaller standard deviation in test accuracy across test tasks. The
results are similar for 5 steps of FT.
Observation 2. We observe that more task-specific adaptation steps
during training yields higher efficacy, drastically increasing testing
accuracies while lowering testing standard deviation across tasks.
Impact of Number of Fine-Tuning Steps: Finally, we explore
the effects of additional FT on each setup. For ERM, as seen in
Fig. 4, FT does not change test accuracy or standard deviation. In
MAML (1) with five FT steps (w/ 5 FT), testing accuracy increases
by 0.24%, while standard deviation decreases by 0.08% when com-
pared to MAML (1) w/ 1 FT. In MAML (5), 5 steps of FT boosts
testing accuracy by 1.00% and decreases the standard deviation by
3.29% relative to 1 step of FT.
Observation 3. Five FT steps generally increase testing accuracies
and decreases standard deviation by a small margin compared to
one FT step.

6. CONCLUSION

In this paper, we demonstrate how a ML algorithm can adapt to new,
unseen scenarios by implementing meta-learning on images from
the FLASH dataset for mmWave beam selection in V2X networks.
In our experiments, we show how using the MAML meta-training
framework results in a model that can generalize to new tasks with
only 20 FT samples per class, unlike models learned using the stan-
dard ML training procedure, ERM. Depending on the number of
task-specific adaptation steps being used during meta-training and
the amount of FT during the testing phase, final testing accuracy in-
creases by up to 86% compared to the standard ERM. Our future
work involves extending the MAML framework to include an addi-
tional sensor modality during training and test, e.g., the LiDAR data
in FLASH in combination with the camera images used in this pa-
per, as well as implementing a task-robust version of MAML [26] to
reduce the standard deviation in performance across test tasks.
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