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Abstract—Over-the-air analog computation allows offloading
computation to the wireless environment through carefully
constructed transmitted signals. In this paper, we design and
implement the first-of-its-kind convolution that uses over-the-
air computation and demonstrate it for inference tasks in a
convolutional neural network (CNN). We engineer the ambient
wireless propagation environment through reconfigurable intelli-
gent surfaces (RIS) to design such an architecture, which we
call ’AirNN’. AirNN leverages the physics of wave reflection
to represent a digital convolution, an essential part of a CNN
architecture, in the analog domain. In contrast to classical com-
munication, where the receiver must react to the channel-induced
transformation, generally represented as finite impulse response
(FIR) filter, AirNN proactively creates the signal reflections to
emulate specific FIR filters through RIS. AirNN involves two
steps: first, the weights of the neurons in the CNN are drawn from
a finite set of channel impulse responses (CIR) that correspond
to realizable FIR filters. Second, each CIR is engineered through
RIS, and reflected signals combine at the receiver to determine
the output of the convolution. This paper presents a proof-of-
concept of AirNN by experimentally demonstrating convolutions
with over-the-air computation. We then validate the entire
resulting CNN model accuracy via simulations for an example
task of modulation classification.

Index Terms—over-the-air computation, analog convolution,
reconfigurable intelligent surface, convolutional neural network,
programmable wireless environment

I. INTRODUCTION

New and emerging Internet of Things (IoT) applications
require collecting and processing large amounts of data,
generally transmitted over the wireless channel [1]. In this
context, over-the-air analog computation has been proposed
as a alternative to all-digital approaches using acoustic [2],
optical [3] and RF [4] signals. The core idea is to take
advantage of additional degrees of freedom in the environment
to partially offload computation into the wireless domain.
Ideally, communications signals that carry information from
the source are also controlled and modified by the environment
such that the received signal emulates the end result of a
mathematical operation. Recent results, albeit limited to pure
simulation studies, have demonstrated remarkable promise for
operations like data aggregation [5] and processing in recurrent
neural networks [2].
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Fig. 1: (a) Generic CNN architecture, highlighting the convolution
step (shown in red box), with input data in the form of raw IQ
samples and where digital convolution operations in software are
represented as a bank of FIR filters, (b) AirNN architecture shows
the same convolution operation with over-the-air computation, using
a RIS network. Different RIS configurations result in specific channel
transformations, equivalent to the FIR filter responses of the digital
convolution operations shown in (a).

The wireless research community has applied machine
learning (ML) methods to physical layer related problems
of protocol classification [6], adversarial activity detection,
modulation classification [7] and RF fingerprinting [8], among
others. In particular, the ML solutions proposed in these works
are based on a special class of architectures named convolu-
tional neural networks (CNNs). Fig. 1a shows a generic CNN
processing chain, composed of a convolutional layer, followed
by a fully connected (FC) layer that predicts the output and
where raw in-phase/quadrature (IQ) samples are fed to the
neural network as example of an input.

Given the interest in applying CNNs on RF signals and the
promise of analog computation, this paper poses the following
question: what if we were able to realize analog convolu-
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tions using over-the-air computation accurately enough to
substitute their digital equivalents in a CNN? We describe
a methodology to achieve this objective and demonstrate it
experimentally. We then show how this analog convolution
impacts more complex mathematical operations, such as a
CNN (that may have hundreds of such convolution operations).
� Programming the Environment: We propose a radically
different approach by shifting the burden of executing the
convolution operation from dedicated digital devices into the
ambient environment. First, we note that the output of a
convolution operation is a time series of samples. Each sample
is calculated as the addition of the element-wise product
between a finite impulse response (FIR) filter and a subset
of sequential samples of the input data. In this work, we
perform convolutions in the analog domain leveraging wireless
signals and their physical interaction with the propagation
environment. Specifically, we relate the addition operation
to the interference phenomena that occurs when different
multipath components of the transmitted signal are naturally
combined at the receiver location. Moreover, we relate each of
the element-wise products to the interaction between a sample
of the input data (transferred to a wireless signal) with one
of the wireless channel multipath components. Broadly, we
relate the digital FIR filter in a convolution operation with the
channel impulse response (CIR) of the wireless channel (see
Fig.1). Our goal is then to program the CIR to implement
different FIR filters to convolve an input signal with.

We propose to leverage a network of reconfigurable in-
telligent surfaces (RIS) that cover the principal multipath
components in the wireless propagation environment. An RIS
is capable of imparting changes on the phase and amplitude of
the reflected signal [9]. In signal processing, such changes are
characterized as complex-valued weights. Therefore, changing
the configuration of the RIS is equivalent to implementing
a range of complex product operations. Following this ap-
proach, specific samples of the input signal are transmitted
towards individual RIS. As a result, signals interact with a
carefully engineered propagation and reflection environment
and combine at the receiver, emulating the mathematically
equivalent outcome of passing the signal through a digital
convolutional filter present in a CNN. As this step happens
over-the-air, we refer to the resulting architecture as ’AirNN’:
our prototype testbed for over-the-air convolutions. We can
extend this concept from a single convolution computation to
a number of them performed in succession. Fig. 1b shows two
configurations of RIS that give rise to two different desired FIR
filters, which convolve with the transmitted signal.
� Challenges in Designing AirNN: While the domain of ana-
log computation has existed for over a decade [10], combining
wireless signals to emulate a digital convolution operation has
not been attempted before. It is noted that AirNN relies on
representing a convolutional filter of size N in a CNN as an
N-tap FIR filter. This leverages the mathematical equivalence
between the latter and the N tap discrete version of the CIR.
In order to realize this equivalence in practice, we identify
several challenges that need to be addressed.

First, the CIR depends on the transmitted signal and the
multipath components of the environment, which the RIS can

influence to a significant extent, but not perfectly. Moreover,
an RIS can only implement a finite set of complex-valued
weights that is dictated by its hardware constraints. This
motivates the design of an efficient optimization loop: we
must be able to train a CNN with quantized weights, drawn
from a very limited candidate set, that corresponds to the
feasible CIR set that can be attained trough the use of RIS
in practice. This mapping between RIS configuration and CIR
deviates over time as the wireless channel conditions change.
Therefore, we need to engineer repeatable conditions during
testing while accommodating ambient factors that cannot be
controlled. Second, from a systems viewpoint, we need to
create a network of programmable, low-cost RIS that is time-
synchronized and responds to control directives to change each
RIS reflection ability. Finally, we should demonstrate that the
accuracy of a CNN with experimentally computed convolution
in AirNN is comparable to its all-digital CNN running on a
GPU.
� Summary of Contributions in AirNN: Our main contri-
butions are as follows:
(1) We formulate and experimentally demonstrate the theory
that maps digital (processing-based) and analog convolutions
with over-the-air computation using programmable RIS.
(2) We propose a method to train CNNs with a quantized
set of weights drawn from the RIS-engineered candidate set
without appreciable loss of accuracy for a task of modulation
classification, compared to unconstrained training. We include
measures to increase resiliency when the wireless channel
changes over time.
(3) As a systems contribution, we implement a software-
framework to control the RIS network called AirNNOS that
synchronizes and aligns start times of the transmitters and the
receiver, as well as reconfigures the RIS on demand to change
their reflection coefficients.
(4) Given the measured error of the convolution performed in
AirNN, we show through simulations that the experimentally
derived analog convolution is accurate enough to run inference
on trained neural networks, with an average deviation in testing
accuracy of 3.2% for a range of medium-to-high SNR of [6,
30] dB compared to classical, GPU-based inference.

II. RELATED WORK

The area of analog computing is in a nascent stage [11][12].
Within the physics community, the work in [11] surveys the
state-of-the-art metastructures for performing analog compu-
tation. The seminal work in [12] uses a chaotic cavity as
a random medium and a simple phase- binary metasurface
reflecting-array to shape the wave field and perform desired
operations. We note that a variety of approaches spanning
digital, analog, hybrid and FPGA-based solutions have been
studied to accelerate training and inference in NNs [13].
The authors in [14] propose a method to train end-to-end
analog NN using stochastic gradient descent by varying the
conductance of programmable resistive devices and diodes.
In-situ learning for a memristor-based multi-layer perceptron
is demonstrated in [15]. In [16] the authors implement an
optical neural chip to realise complex-valued NN. Despite
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Fig. 2: AirNN system components and transmission sequence:
AirNN uses different directive antennas to forward the signals of
interest to the network of programmable RIS, controlled via the neural
network controller (NNCtrl) module. The RIS reflect the signals
with desired channel transformations that combine at the receiver.

their promising results, all these approaches propose on-chip
implementations, an essential difference from AirNN that
uses the wireless propagation environment as part of the
computation entity. The authors in [2] leverage wave physics
properties to experimentally demonstrate an analog recurrent
NN using acoustic signals. Apart from the difference on the
use of acoustic -instead of RF- signals, their approach lacks
the programmability provided by use of RIS.

Specific to the RF domain, Over-the-Air Computation (Air-
Comp) has been receiving special attention for solving prob-
lems such as data aggregation [22], efficient battery recharging
trough beamforming [23][24] and local model uploading for
federated learning [25] [26]. These works however, target
different applications from what we achieve in AirNN, i.e.,
over-the-air computation for realizing convolutions that are
part of a CNN. Our focus on the convolution operation is mo-
tivated by the remarkable performance that CNNs have shown
within the deep learning community in fields such as computer
vision, signal processing or RF signal classification [30]. This
performance has attracted numerous research efforts towards
realizing convolution implementations, as this processing step
alone consumes over 80% of the total computation during the
forward propagation step [31].

Regarding the use of RIS, multiple works in the RF domain
have included them as part of their solution to perform product
operations. Several works enhance the channel conditions by
compensating for destructive interference [27], boosting the
received power [28] or maximizing the achievable hybrid rate
of all users in a network [29] by configuring a network of
RIS. However, all above works ([22]- [29]) are validated
in simulation, not providing insights on the implementation
feasibility of their approaches. Different from these works that
mostly rely on AirComp to perform data aggregation tasks, this
paper is, to the best of our knowledge, the first experimental
demonstrator of using RF signals and a network of RIS to
perform over-the-air synchronised products and additions on
a prototype testbed, as an alternative to digital convolutions.
It is also the first work that analyses the cumulative effect
of over-the-air computations on more complex processing that
includes multiple convolution operations in a CNN.

III. AIRNN OPERATIONAL OVERVIEW

In AirNN, we perform convolutions making use of a net-
work of programmable RIS, multiple transmitters (Tx) and a
single receiver (Rx), as shown in Fig. 2. The network controller
(NNCtrl) orchestrates all processes between transmitters,
receiver and RIS in a centralized manner. First, it creates
several copies of the input signal and introduces one sample
delays among different copies through padding (see Fig. 2).
Each of these copies are then fed to different transmitters.
Following this step, each transmitter forwards its version of
the input signal using a directional antenna (shown by link
A) towards a specific RIS. The RIS effect on its incident
signal is equivalent to one sample obtained from the element-
wise product operation in the convolution. The network con-
troller (NNCtrl) adjusts the reflection angles of the different
RIS, which modifies the taps of the convolutional filter. The
NNCtrl also adjusts transmission time with sample level
accuracy for all transmitters to ensure that the reflected copies
of the signal (shown by link B) combine in a determinis-
tic manner at the receiving antenna. Once all these copies
combine, the cumulative effect at the receiver resembles the
processing of the same input signal as if it passed through a
convolutional layer used in a CNN.

As discussed in Sec.I, assuming the availability of RIS con-
figurations that perfectly replicate any targeted convolutional
FIR filter is not realistic. Therefore, the NNCtrl is tasked to
train the network with a quantized set of weights, dictated by
the set of reflections that our network of RIS can generate.
During inference, the NNCtrl notifies the RIS network with
the updated realizable RIS configurations that result in the
desired convolution. It uses a dedicated control plane that
interacts with the microcontrollers at the RIS (see Fig.2).

IV. CONVOLUTIONS WITH OVER-THE-AIR COMPUTATION

In this section, we first explain the theory behind AirNN,
namely, how to map the computation of digital convolutions to
over-the-air signal transformations by the wireless channel. We
then describe how RIS help us engineer such transformations
as well as the system challenges we need to address to
experimentally demonstrate such concept in AirNN.

A. Theory for Mapping the Process of Convolution

� Convolution in a Digitally Constructed CNN: In a given
CNN, the convolutional filters are learned during the training
process. These filters activate neurons when a specific feature
of interest is detected during testing. For 1-D inputs to the
CNN, typical for streaming IQ samples from a wireless signal,
each of such filters can be represented as an FIR of length
N i.e. N taps, filter order L = N � 1. This essentially
is a vector of N complex weights, each weight defining a
specific amplitude and phase of that particular filter tap. As
an example, consider the output of a filter of length N in Eq. 1,
where w = fw0; w1; :::; wN�1g 2 C are the complex weights
that are applied to the incoming stream of samples. The filter
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order L also gives the number of input samples needed to
generate a single sample at the output.

y[n] = w0�x[n+
L

2
]+� � �+w L

2
�x[n]+� � �+wL�x[n�L

2
]; (1)

� Convolution in the Wireless Channel: Our goal is simple:
we wish to artificially construct signal transformations in the
physical environment during testing that precisely maps to the
above vector w that we obtained during training time. We
leverage the fact that, when a signal is transmitted over the
air, the reflections from the environment cause copies of the
same signal to arrive at the receiver with different amplitude,
phase, and time delays, collectively referred to as multipath.
This phenomenon is characterized by the CIR, where each
path is defined by the tuple of complex transformations in
amplitude and phase and the instant of arrival at the receiver.
This multipath results in an FIR filter of order N�1, where N
is the total number of paths. Here, the first path is associated
with the Line of Sight (LoS) component, whereas the N � 1
later paths arise from Non-Line of Sight (NLoS).

B. Engineering Convolutions using RIS

In AirNN we use N programmable paths to implement
an N tap FIR filter. Each programmable path is created
by focusing the signal towards an RIS that is configured
to implement a feasible FIR tap. In AirNN, an RIS is a
planar array of passive reflective antennas, where each such
antenna has a selectable range of impedance matching circuits.
These circuits are programmable, and by activating one over
the others, we change the impedance of the corresponding
reflective antenna. This alters the antenna reflection coefficient,
which then changes the phase of the reflected signal. The RIS-
engineered reflections allow flexibility in imparting the desired
complex-valued amplitude and phase changes to the signal
travelling on a given multipath component. Thus, the signal
reflection upon the RIS implements the product operation
in the convolution. However, the set of candidate options
is limited, i.e., the feasible code-book is constrained by the
number of available RIS, the selectable circuit combinations
within each RIS reflective antenna array, and the geometry of
the propagation environment.

C. Systems Challenges in AirNN

While the concept of AirNN is intuitive, there are several
systems challenges for practical realization, as we briefly
covered in the introduction and further describe below.
(Ch1) Complex-Valued Convolutions: Complex numbers are
used jointly to represent amplitude and phase information in
the RF domain. Thus, mapping real-valued convolutional layer
filters to the complex-valued CIR is not feasible. We can
only use complex-valued neural networks, as we describe in
Sec. V-A.
(Ch2) RIS Based Weight Constraints: The number of possi-
ble FIRs that we can engineer via RIS is limited. In the digital
domain, this constrains the set of feasible FIR filters that can
be used during the CNN training stage. Thus, AirNN must
quantize the CNN weights that correspond to only realizable
(i.e., RIS-engineered) FIR filters, as given in Sec. V-B.

(Ch3) Receiver Noise: Even if the channel remains time-
invariant and the RIS configuration are static, there exists
thermal noise. We need to account for this stochastic noise,
especially as the reflected signals are low in amplitude and
barely above noise floor. We explain how we achieve this
for additive white Gaussian noise via a correction factor in
Sec. V-C.
(Ch4) RIS-Path Separation: The FIR filter taps that we
obtain through AirNN must be equally spaced in time, as is
also assumed in the digital version. In the wireless domain,
this is challenging as the arrival time of the signal depends on
separation distances and the sampling rate. AirNN addresses
this via a multi-transmitter (see Fig. 2), that ensures sufficient
path separation. We explain this in Sec. VI-A.
(Ch5) Meaningful CIR Variations: The LoS path dominates
over the NLoS paths resulting from RIS reflections in terms
of received signal strength. To ensure that the artificially
constructed NLoS paths shape the CIR precisely (despite the
overbearing LoS path), we use directional antennas at the
transmitters as explained in Sec. VI-B.
(Ch6) Channel Variations: When the wireless channel
changes, prior configured RIS may generate older and out-
dated CIR values. To prevent re-training the neural network
or repeating the mapping between RIS configurations and
generated CIR, AirNN compensates for channel variations
from a pre-determined baseline, as we show in Sec. VI-C.
(Ch7) Precise Synchronization: Long symbol times can
disrupt the system as the CIR may change beyond the esti-
mated value. Given the concise time window to perform a
convolution, all transmitters must adjust their start time to
achieve �s-level synchronization, for Mbps-level data rate.
AirNN solves this problem by padding the sequence at each
transmitter with zeroes, precisely achieving one sample delay
between any two successive signals, as detailed in Sec. VII-C.

V. AIRNN NEURAL NETWORK DESIGN

In this section, we explain how we design AirNN by
addressing the challenges Ch1, Ch2 and Ch3. We then address
the remaining challenges in Sec. VI.

A. Design Complex-Valued CNN (Ch1)
To facilitate the mapping between the neural network

weights and the RIS-engineered CIR, we design a neural
network model based on complex-valued data and weights
[32]. Given that the convolution operator (�) is distributive,
we express the output of a complex convolutional layer � as:

y = �wR
(xR)� �wI

(xI) + j(�wI
(xR) + �wR

(xI)) (2)

where y is the output of the complex convolution, x and w
represent the input and weights of the convolutional layer
and xR=I , wR=I are the real/imaginary parts of x and w,
respectively. The distributive property also applies to the
product-sum operation of fully connected (FC) layers. Thus,
we design complex-valued layers (�w) using two real-valued
layers, where each one of them independently represents the
real (�wR

) and imaginary parts (�wI
). The seminal work

in [32] provides a detailed explanation of complex neural
network theory and implementation.
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B. Constrained Weight Quantization (Ch2)

We use a quantization-enabled approach to train the neural
network with the set of feasible weights provided by the
RIS-engineered environment. Let the weights of a complex
convolution layer be:

W = f w1; :::; wf ; :::; wF g; wf 2 CN

wf =[ w1
f ; :::; wn

f ; :::; wN
f ]; wn

f 2 C;
(3)

with wf 2 CN , CN being a complex-valuedN dimensional
space,wn

f 2 C and whereW is the set ofF FIR �lters (wf )
with length N that represent the layer weights. As we de-
scribed in Sec. IV-A, there is limited freedom in implementing
an FIR �lter using RIS. Therefore, we constrain the weights
wn

f for each �lter tap with indexn to a candidate setSn of
implementable values, de�ned as:

Sn = f cn
1 ; :::; cn

s ; :::; cn
jSn j g; cn

s 2 C; 1 < n < N: (4)

Here jSn j is the size of the constrained set andcn
s represents

each of its complex-valued elements. During training, we
compute the Euclidean distance (D) from every individual
weight wn

f 2 W to all weight candidatescn
s 2 Sn . Then,

we de�ne the nearest neighbor ofwn
f as:

wn
f

0 = arg min
c2 Sn

D(c; wn
f ): (5)

While training the model, the weight valueswn
f are rounded to

their nearest neighborswn
f

0 to perform forward propagation,
following Eq. 5. However, the derivative of the rounding
function is zero throughout and cannot be trained via classic
backpropagation. We solve this by employing the Straight
Through Estimator (STE) approach [33], [34], which assumes
the derivative of the discrete rounding function to be1.
While other approaches based on ADMM [35] have also
been proposed, we select STE due to its faster training and
convergence. Then, the forward and backward propagation
steps can be expressed as:

Forward: L = � w 0(input ); Backward:
@L
@w

=
@L
@w0

;
(6)

whereL can be any form of loss function. Here, the gradient
of w is approximated to the gradient ofw0, which is the
fundamental working principle of STE.

C. Handling Errors in Weights (Ch3)

As we mentioned in Sec. IV-C, the receiver introduces ther-
mal noise that causes random variations, denoted henceforth
as � 2 C, into the RIS-engineered CIR. Such CIR variations
follow a Gaussian distribution with standard deviation� , i.e.,
� � CN (0; � 2) [36].

Due to noise and changing wireless environment, the current
CIR may have a mismatch with the �lters identi�ed by the RIS,
and yet we desire the CNN to be robust without appreciable
fall in accuracy. In order to solve this problem, we modify
Eq. 5 by adding the term� , as given below:

wn
f

0 = arg min
c2 Sn

D(c; wn
f ) + �: (7)

As opposed to previous data augmentation approaches, the
variable� is applied during training directly to the weights to

increase the robustness of the model as well as during testing.
In each forward propagation step, weights are �rst quantized
to the target constraint and noise is added. After the forward
loss has been computed, we use backpropagation and obtain
gradients forw0. As previously mentioned, STE is employed
to approximate gradients forw, such thatw is updated via
Stochastic Gradient Descent (SGD).

VI. A IRNN TRANSMITTER DESIGN

In this section, we address the design challenges Ch4, Ch5
and Ch6 introduced in Sec. IV-C.

A. Multi-Transmitter (Ch4)

The straightforward implementation of FIR �lter taps in the
CNN requires (i) constant inter-path time arrivals from consec-
utive RIS paths, i.e.,tRIS i +1 � tRIS i = � t ; 8i 2 f 0; :::N � 1g,
and (ii) exact match between these inter-path time arrivals and
the communication symbol time, i.e.,� t = Ts. Here, the �rst
condition imposes a hard constraint on the physical deploy-
ment of RIS in the environment, forcing all RIS paths lengths
to be exact multiples of one another. To achieve this high
(sample-level) precision, AirNN accommodates a software-
based temporal adjustment over the transmitted frames, as we
discuss in Sec.VII-C. The second condition requires sampling
rates (Fs = 1=Ts) that may not be compliant with the
expected rate at the receiver. For example, for a total separation
of 2m between two signal paths, the arrival time difference
is 66.7 ns, which needs a sampling rate of up to 150 MS/s.
AirNN solves this via a multi-transmitter system, where each
transmitter sends the signal with a time delay of precisely one
sample with respect to the next, maintaining equal spacing
between arriving signals. For instance, withFs = 1 MS/s,
we create a convolution output sample per microsecond if all
signal paths are equal in traversed distance.

B. Directional Antennas (Ch5)

While a multi-transmitter system ensures �ne-grained tem-
poral separation of the signal paths, the use of omnidirectional
antennas at the transmitters brings additional challenges to
implement the desired FIR �lter taps using RIS. Speci�cally,
for omnidirectional transmissions, the received signal from
a RIS roughly drops at least 10 dB. Moreover, in such
transmissions there may exist a strong LoS component as
well as re�ections from multipleuncontrolledscatterers (other
than our RIS), present in the environment. The combination
of these two factors drastically limit the power contribution of
the signal re�ected from the RIS at the receiver, which in turn
reduce the amplitudes of the FIR �lter taps.

In order to study this problem, we formally express the delay
pro�le in a setup with a single transmitter, single receiving
antenna andN RIS as:

S(t) = ( Pt � L LoS )� (tLoS ) +
NX

i =1

(Pt � L RIS i )� (tRIS i ); (8)

with Pt (dBm) the transmitted power. The termsL LoS and
L RIS i (dB) represent the losses for the LoS path and the
i th RIS path, i = f 1; 2; :::; N g, respectively. Following the
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(a) Directivities (b) CIR range

Fig. 3: (a) Higher antenna directivities tend to lead to higher RIS-to-
LoS power ratios (difference between black and red arrows), which
translates into (b) higher achievable CIR magnitude range, as the LoS
component does not neglect the RIS contribution.

interpretation of a given RIS as an array of diffuse re�ective
antennas [37], and considering that each RIS is formed byM
such antennas, we estimateL RIS i from:

L RIS i = 10log j
MX

m =1

lRIS m
i

ej� m
i j; (9)

wherelRIS m
i

represents the path loss associated with a particu-
lar re�ective antennam. This loss value depends on the carrier
frequency, the distance between transmitter to RIS and RIS
to receiver, RIS dimensions, transmitter and receiver antenna
gains in the direction of each re�ective antenna and the angle
of incidence of the signal wavefront to the RIS plane. The term
ej� m

i in Eq.9 represents the phase of the incoming signal from
elementm of the RIS to the receiver, and thus, the received
power is determined by the interference of the incoming signal
from all m = f 1; 2; :::; M g re�ective antennas of the RIS. The
phase� m

i is given by� m
i = k(d(T x; m

i ) + d(m
i ;Rx ) )+ � Sm

i
with

k = 2�
� as the wave number and� as the wavelength. Lastly,

d(T x; m
i ) , d(m

i ;Rx ) represent the distances from transmitter to
re�ective antennam and from that same antenna to receiver,
respectively. The term� Sm

i
gives the con�gurable phase shift

introduced by re�ective antennam. Importantly, the estimation
of lRIS m

i
follows a product-distancepath loss model [37],

where the power decays with the squared product between
d(T x; m

i ) and d(m
i ;Rx ) , a much sharper decay compared to the

squared ofd(T x;Rx ) of the LoS component. We estimate the
termL LoS in Eq.8 from the Friis equation and the delay terms
� (tLoS ) and � (tRIS i ) by dividing the known distances with
c, the speed of light in vacuum. Thus, we estimate the CIR
component associated to the RISi path as:

hi =
p

lRIS i

MX

m =1

ej� m
i : (10)

In Fig. 3b, we show the simulated maximum range for the
magnitude of the received signal given in Eq.10 as a function
of the RIS-to-LoS power ratio, for different transmitter antenna
radiation patterns (Fig. 3a), as de�ned by their respective 3-dB
beamwidthBW3dB = f 360� ; 120� ; 50� ; 25� ; 12� g and differ-
ent number of antenna elements withM = f 49; 36; 25; 9; 4g.
In Fig. 3a, the black arrow points to the RIS, while the red
arrow points directly to the receiver, located at45� from the
RIS direction. We observe that for low antenna directivity,

(a) (b)

Fig. 4: (a) Measured CIR for three RIS con�gurations (C0, C1, and
C2) under varying scattering pro�les. We observe a similar relative
distance of the CIR magnitude and phase between different RIS
con�gurations as the scattering pro�le changes. (b) AirNN adapts
to varying scattering conditions using LS equalization with respect
to a prori chosen baseline C0.

the high power of the LoS component compared to that of
the signal re�ected from the RIS renders any manipulation of
the RIS ineffective. Hence, AirNN uses directional antenna
elements at the transmitter that (i) boost the power of the
re�ected signals from the RIS paths and (ii) mitigate the
degrading impact of the LoS signal along with the effect of
additional ambient scatterers not controlled within AirNN.

C. Compensating for Channel (Ch6)

Due to the non-stationarity of wireless channels, the CIR
engineered by certain RIS con�gurations may change over
time, not resulting in the exact weights corresponding to the
digital convolution, unless the CNN architecture is re-trained
for every new scattering pro�le. Instead, AirNN uses a channel
tracking and correction C0 to ensure that the weights of
the CNN, as decided by the RIS con�guration, remain valid
even under new channel conditions caused by slow fading.
This ensures that the received signal at the receiver always
experiences a �xed and constant phase of zero degrees and
unit magnitude when using the baseline con�guration at every
RIS.

We explain this process in Fig. 4, where we consider three
different RIS con�gurations for illustration purpose, denoted
by C0, C1, and C2. The process is as follows: using the
AirNN setup, we send a known preamble sequence from a
transmitter pointing to an RIS and collect samples of the
received signal on two different days and scattering pro�les.
These pro�les include cases of low impact (few meters away)
and high impact (few cm away) scatterers, respectively. We
then extract the preamble sequence at the receiver by cross-
correlating the received samples with the preamble that is
known at the receiver. From the received and known pream-
bles, we estimate the channel for each RIS con�guration,
day and scattering pro�le using Least Squares (LS) channel
estimation. Although we use a single RIS in Fig. 4, the same
channel estimation approach is applicable to multiple trans-
mitters pointing to different RIS by using unique preamble
sequences at each transmitter. Since directional transmissions
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