N)
)
Check for
updates

Building Trust in IQ-Based RF Deep Learning Models for Wireless
Applications

Sage Trudeau
University of Texas at Austin
Austin, TX, USA

Kaushik Chowdhury

University of Texas at Austin
Austin, TX, USA

MIT Lincoln Laboratory kaushik@utexas.edu
Boston, MA, USA
strudeau@utexas.edu
Load Pretrained Model } Test Time Input Slice ’ Model } Visualize Aggregate
and Dataset Augmentation Explainability Test Results

A trained model and dataset is loaded
into the AURA framework.

Test samples are drawn from the test
dataset to undergo inference, and
augmentation.

Conceptual
Input

Inputs Transformed to
Spectrogram Visualization

1 Conceptual CAM
Response

Time

Overlay Aggregated
‘Cam Response
Frequency

We developed an innovative approach
that bridges the gap between the
differing time scales used by humans
and machine learning models when
analyzing timeseries 1Q data.

Class Activation Mapping to
visualize regions which most
influenced model decision

Figure 1: AURA framework helps to unveil what an RF ML model has learned. A model under evaluation is loaded, run through
automated augmented input testing, and then quantified and visualized. This framework helps to determine which aspects of
the wireless channel are accounted for, and which are not by the models learned features.

Abstract

The dynamic nature of wireless environments presents significant
challenges for machine learning (ML) models in real-world radio
frequency applications, where impairments such as noise, fading,
and frequency shifts disrupt performance. To address these chal-
lenges and build trust in ML models, we present Augmented Input
Resilience Analysis (AURA), a test framework designed for IQ-
based RF models to rigorously assess ML model performance by
simulating RF impairments and identifying critical vulnerabilities.
AURA systematically applies test-time augmentations to provide
a detailed examination of model strengths and weaknesses. Key
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contributions include (1) Score-CAM adapted to 1D IQ in time
and a frequency-selective variant to localize spectral features, and
(2) embedding similarity evaluation to quantify distribution shifts
caused by impairments. By integrating these methods, AURA en-
hances interpretability, promoting trust in ML decision-making. We
demonstrate AURA’s utility in exposing critical vulnerabilities in
well-cited models, such as over-reliance on power-based features,
including instances where random noise is misclassified as a legiti-
mate signal with 99.7% accuracy. AURA also evaluates remediation
strategies, such as noise classes, which reduce misclassifications
to less than 1% in the noise augmentation case. This framework
aims to advance the design of trustworthy and resilient Al-driven
systems for future RF ML technologies.
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1 Introduction

Emerging wireless standards such as Wi-Fi 7 and 3GPP Release 18
increasingly consider machine learning (ML) for enhanced inter-
ference handling, spectrum allocation, and security measures in
unlicensed and shared-spectrum scenarios [1, 15]. While these ML-
driven approaches promise major gains for next-generation mobile
and Wi-Fi networks, their real-world impact hinges on effectively
handling the intrinsic variability of radio frequency (RF) environ-
ments. Indeed, channel conditions such as multipath fading, noise,
and interference often cause distribution shifts that break models
trained only under ideal or controlled conditions.

Two practical use cases illustrate these challenges. First, wave-
form classification in dynamic spectrum sharing settings must de-
tect incumbent vs unlicensed despite unseen wireless channel sce-
narios [10]. Second, RF fingerprinting for device authentication
risks overfitting to superficial traits such as device transmit power
that do not generalize to realistic deployments [12]. Both issues are
frequently uncovered after lab-stage trials, signaling the need for a
framework that can systematically stress-test ML models through-
out their development cycle in order to guide more robust designs.

To address this, we introduce Augmented Input Resilience Anal-
ysis (AURA), a comprehensive framework tailored for RF ML exper-
imental studies on mobile and next-generation wireless networks.
AURA provides an automated, open-source test harness that simu-
lates real-world signal impairments via test-time augmentations,
pinpoints model fragilities through embedding-space similarity, and
explains learned signal features via time- and frequency-domain
class activation mapping (CAM). By offering a cohesive suite of
diagnostic methods, AURA not only reveals vulnerabilities like
over-reliance on power-based cues but also proposes concrete re-
mediation strategies to align ML performance with the harsh condi-
tions of operational networks. Through this approach, researchers
can build more reliable, trustworthy RF ML solutions that are ready
for the uncertainties of actual wireless environments.

Our main systems contributions and research use cases en-
abled by AURA are as follows:

e AURA: an open test harness for IQ-based RF models:
([18]) Given a pretrained model and test set, AURA applies
stochastic test-time augmentations that emulate OTA impair-
ments and produces quantitative and visual diagnostics.

e Class Activation Mapping in Time and Frequency Do-
mains: We adapt Score-CAM to (i) time-domain IQ and (ii) a
new frequency-selective variant to localize spectral features
driving decisions with open source code release ([18]).

o Alignment of Model Outputs with Signal-Processing
Intuition: By aggregating sequential samples and aligning
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them directly with standard spectrograms or time-domain
plots, AURA bridges ML inferences with domain expertise,
expediting the debug process and trust-building.

e Analysis of Distribution Shifts via Embedding Similar-
ity: We quantify how channel impairments shift model em-
beddings, isolating both benign shifts from desirable learned
hardware features and harmful ones which cause misclassi-
fications.

All experiments and methods in this paper target IQ-based mod-
els that consume raw 1D time-domain IQ samples. We do not con-
vert inputs to spectrograms or image-like tensors for training, and
our findings therefore pertain to architectures operating directly
on IQ sequences. We do utilize spectrograms as a visualization tool
to assist with signal processing intuition such as in Figure 9. In
all cases, the results are calculated in the time domain and then
transformed to spectrogram representation afterwards to enhance
interpretation. Future efforts aim to include models additionally
trained on hand-crafted features or 2D spectrogram inputs.

2 Related Work
2.1 Robustness, Data Augmentation in RF ML

Modern ML architectures can achieve high accuracy on idealized
datasets but often struggle with real-world RF impairments [8]. To
address distribution shifts caused by noise, fading, or frequency
offsets, researchers have explored various domain adaptation strate-
gies such as aligning learned features across frequency bands and
data augmentation methods that simulate realistic channel condi-
tions [21]. Although these techniques can mitigate overfitting, few
frameworks systematically pinpoint which impairments degrade
model performance the most and how best to remedy them—gaps
that motivate our proposed approach.

2.2 Interpretability for RF Applications

As ML-based systems become integral to wireless communications,
there is growing interest in understanding how and why models
arrive at their decisions. Duggal et al. [3] introduce saliency maps
for modulation classification, revealing time-frequency regions that
strongly influence the network’s output. Other methods, such as
SHAP [9], quantify the contribution of individual input features to
a model’s predictions, whereas Grad-CAM [13] ranks the impor-
tance of spatial regions in 2D input data. While saliency methods
are mature for 2D images, many RF models operate on 1D IQ se-
quences, limiting direct reuse. To bring CAM techniques to IQ-based
RF models, we adapt Score-CAM [20] to 1D inputs, and we intro-
duce a frequency-selective variant. These yield intuitive time- and
frequency-localized visualizations that help RF experts relate model
focus to signal-processing expectations and spot failure conditions.

3 AURA: An Overview

AURA evaluates the ML model’s resilience by subjecting it to a
comprehensive series of augmented input tests, using the original
test dataset, and then visualizing the model’s performance under
this variety of scenarios. In the following subsections, we will detail
the steps to our process flow outlined in Figure 1.
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3.1 Load Pretrained Model and Dataset

Firstly, a trained model is loaded into the AURA framework to
undergo evaluation by including both model parameters along with
its original test dataset. A helper function is provided with examples
in our Github repository to load new models swiftly.
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Figure 2: Augmentations used in AURA: SNR reduction, CFO,
phase, FSPL, IQ imbalance; values shown are illustrative,
configuration ranges can be seen in Section 5.1
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3.2 Test Time Input Slice Augmentation

Secondly, test samples are drawn from the test dataset to undergo
inference and augmentation. The original sample is run to calculate
ground truth, and then N augmented versions of that sample are
compared according to the experiment test plan parameters. These
augmentations encompass a spectrum of real-world RF challenges,
including Additive White Gaussian Noise (AWGN) replacement,
SNR reduction, frequency shifts, phase flips, phase rotations, free
space path loss, and IQ imbalance. A visualization of these augmen-
tations can be seen in Figure 2. The model’s original test dataset
is used with the addition of these augmentations to determine
which aspects of the wireless channel that model under test strug-
gles on. Additionally, AURA incorporates a flexible augmentation
function, allowing for user-defined modifications or extensions
via MATLAB’s signal processing toolkit [17]. The details of the
augmentations can be found in the example walkthrough.

3.3 Model Explainability

The aura framework utilizes two primary methodologies to help
explain the model’s decisions under evaluation, highlighting which
distortions are strengths and weaknesses for that model’s architec-
ture. The first compares broadly the embedding similarity between
the original and augmented test case through qualitative and quan-
titative metrics standard in literature. We compare the feature space
embedding of the original and augmented inputs across multiple
iterations to examine stability in the output label. The intuition here
is whether it remains unchanged, becomes randomly confused, or
systematically shifts to another class in its predictions. The second
explainability method aims to visually highlight for a particular
erratic classification which aspects of the signal caused the model
to misclassify. Here, we adapt a technique from image processing,
known as class activation mapping [22], to the RF domain.

3.3.1 Embedding Similarity. In our evaluation framework, we lever-
age embedding similarity scores to assess the robustness of RF ma-
chine learning models under various augmented input conditions.
By examining the feature space outputs at the layer immediately
before the classification layer, we can gauge the impact of input dis-
tortions on the model’s internal representations. The combined use
of Affinity, Distance Metrics, and t-distributed Stochastic Neighbor
Embedding (tSNE) Visualization [19] offers a broad high-level view
of how data augmentation affects model performance and robust-
ness. As introduced by Gontijo-Lopes et al.[5], Affinity measures
the shift in data distribution relative to the model’s decision bound-
ary, quantifying how an augmentation alters the data perceived by
the model. It is defined as the difference in model accuracy on clean
data versus augmented data, reflecting the model’s sensitivity to
augmentation-induced changes. This metric helps us understand
the degree to which the augmented data remains within the model’s
effective classification boundary.

Analysis of these shifts due to particular augmentations and
their implications can be found in Section 6.2.

3.3.2 Class Activation Mapping. Building on Score-CAM [20], we
adapt class activation mapping to RF models that operate on 1D
raw IQ and introduce a frequency-selective variant. Figure 3 il-
lustrates the concept on images: regions most influential for the
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‘ Class Activation Mapping For Image Processing Models

CAM Response

Figure 3: Class Activation mapping visualizes original input
(left), and overlayed model perspective (right). This tech-
nique highlights which pixels in the input the model most
highly values towards the output of "dog".

predicted class (“dog”) are highlighted; spurious highlights such as
background grass would indicate shortcut features. In AURA, time-
and frequency-domain maps localize the temporal/spectral indices
that drive each decision, revealing how signal distortions affect
model focus. Implementation details and modifications appear in
Section 5.2.

3.4 Interactive GUI for Model Analysis

To visualize the test results of our ML classifier for radio frequency
signals, we developed an innovative approach that bridges the
gap between the differing time scales used by humans and ma-
chine learning models when analyzing time-series IQ data. While
our models operate on tiny slices of perhaps hundreds of sam-
ples—representing mere fractions of a second in the fast-paced RF
domain—humans require more extensive context to interpret sig-
nals effectively. Traditional signal processing visualizations like
spectrograms, time-domain plots, power spectral density (PSD),
and constellation diagrams provide this broader context on a larger
time scale, enabling researchers to orient themselves to the type of
modulation or communication in the signal.

Our tool allows users to view signals through these traditional
means and then zoom into specific sections of interest. This zoomed-
in view remains synchronized to the model response and XAI tech-
niques to reveal how the classifier responds to those segments and
their augmented versions. Researchers can observe which aspects
of the signal the model focuses on in both the time and frequency
domains, gaining insights into the classifier’s opinions, difficulties,
or indifferences regarding particular signal slices.

By providing this contextual layering, our visualization approach
enables researchers to align their signal-processing intuition di-
rectly alongside the model’s decision-making process. This offers a
new perspective for testing hypotheses and enhances explainability,
building trust in our models and fostering a deeper understanding
of their inner workings.

4 End to End Example Walkthrough

To illustrate AURA’s practical application, we provide a detailed
walkthrough using the ORACLE model—a one-dimensional convo-
lutional neural network (1D CNN) designed for RF fingerprinting.
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This example aims to demonstrate each step of our proposed ap-
proach, highlighting how AURA can be employed to evaluate and
interpret a pretrained RF machine learning model. By systemati-
cally applying augmented input tests and explainability techniques
via AURA’s embedding similarity analysis and CAM visualizations,
we uncovered that the ORACLE model appeared to over-rely on
power-related features. This walkthrough shows how identifying
such insights can improve model robustness and guide future de-
velopments in the field. This example is illustrative rather than a
universal benchmark, and it is scoped to IQ-based models under
test-time augmentations without retraining to help researchers
identify what features their models may have learned.

4.1 Example Model Under Evaluation

We evaluate the journal version of ORACLE [12], a 1D CNN for RF
fingerprinting on raw IQ. ORACLE processes I/Q as two channels
with stacked conv blocks and a softmax head; we use the authors’
training setup and focus solely on test-time stress tests without
retraining.

4.2 Augmented Input Testing

During the input slice augmentation phase, we applied a compre-
hensive set of signal distortions to the test dataset to evaluate the
model’s resilience under various real-world RF conditions. All aug-
mentations are applied at test time; the model is not retrained in
these experiments. All augmentation tests were enabled, including:

¢ Additive White Gaussian Noise (AWGN) Replacement:
Noise was added with a relative power of 0dB relative to the
average original signal power, simulating false inputs which
matched the average power of the training data.

e Carrier Frequency Offset (CFO): Random frequency shifts

were introduced, uniformly selected between —500Hz and

500Hz, to mimic small frequency offsets between Tx and Rx.

Signal-to-Noise Ratio (SNR) Reduction: The SNR was

reduced by a range of 10 to 50 dB reduction.

Phase Rotation: Phase angles were uniformly selected from

—180° to 180° to simulate phase shifts caused by channel

effects.

e Free Space Path Loss (FSPL): Attenuation was applied

based on distances randomly selected between 0 m and 10 m,

using a path loss exponent (@) of 2, corresponding to open-air

conditions.

IQ Imbalance: A gain imbalance factor of 1.02 and a phase

imbalance of 3° were introduced to simulate hardware im-

perfections commonly found in SDRs.

The dataset is sourced from bit-similar USRP X310 radios that trans-
mit frames compliant with the IEEE 802.11a standard, which are
generated using the MATLAB WLAN System toolbox and then have
been transmitted and received over the air. These frames have ran-
dom payloads while maintaining consistent address fields. Dataset
details are provided with the model by the original authors [4]. The
test dataset chosen for AURA utilized the first six devices with 1000
instances per class randomly selected from across all distances. Sig-
nal slices of 128-length samples were extracted randomly from the
original test dataset without overlap. These augmentations were
applied to the slices to create augmented test inputs, which were



Building Trust in IQ-Based RF Deep Learning Models for Wireless Applications

then used to evaluate the pretrained model’s performance under
these varied conditions.

ORACLE Test Results for Different Augmentation Levels
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Figure 4: Affinity of ORACLE model under each AURA test
category. The original model accuracy was 99.7%. The model
is especially resilient to frequency offsets, phase rotations,
and IQ Imbalance, while it struggles with AWGN noise re-
placement, severe SNR reduction, and FSPL.

4.3 AURA Test Results

Figure 4 summarizes the ORACLE model’s reactions to different
data augmentations. Overall, the model performs admirably, con-
sidering the variety of distribution shifts caused by each data aug-
mentation. The model is incredibly resilient to frequency offsets,
phase rotations, and IQ Imbalance, while it struggles with AWGN
noise replacement, severe SNR reduction, and FSPL channel distor-
tion. It is significant that the model can handle small and moderate
frequency offsets and is indifferent to any phase rotation, as these
are both common from changes in the relative positions between
the transmitter and receiver. SNR behaves as expected, with model
accuracy decreasing as noise levels increase. Finally, IQ Imbalance
is also seen as an exciting result as it supports the original author’s
hypothesis that IQ imbalance is a feature learned by the model
to distinguish between identical hardware. For slight imbalances,
the model handles with ease, and then once those distortions be-
come severe, the radios lose some of their distinguishing hardware
characteristics, and the model, as expected, begins to struggle.

It is observed that the commonality between the challenging
cases is signal power. The model reacts strongly to augmentations
that distort the signal level of the input slice. To investigate that
further, the next section utilizes the CAM technique to determine
the features the ORACLE model has learned.

4.4 Investigate Learned Model Features

We utilize the CAM technique to investigate this apparent reliance
on power-related features, with a targeted test that matches AWGN
power to a specific class to probe for shortcut learning. Here, we
look at a slice in time that is made up of noise with no transmission,
and then an 802.11a packet begins. We overlay the CAM response
onto the signal input to verify that our results match our intuition
- that in areas of noise, there should be no response, and in areas of
signal, there should be a highlight in the CAM. This can be seen in
Figure 5.
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We begin with the simplest case representing the most common
scenario in the real world where the noise power is substantially
lower than the signal power of the device we wish to use to detect.
We use device three here of our six devices arbitrarily. In this first
scenario, the model is seen to have low accuracy in the region of
AWGN and high accuracy in the region that has not been replaced.
The cam response also matches this outcome in that it shows acti-
vations in the region, which led to a classification of device 3, and
no activation in regions replaced by the low-power AWGN, which
correctly does not detect device 3. With results looking good, we
move on to a more challenging case.

In our augmentation testing, we noticed that the accuracy was
slightly higher in the AWGN moderate case when the power of
the noise matched the power of the signal, so we visualize that
case in Figure 5 (c) and (d) to see what is different in terms of the
activation of feature maps via the CAM. In this case, we see that
the model ultimately still has low accuracy, which is good. Still,
some internal features are activating without ultimately leading
to a classification output. This on its own is not necessarily an
issue as long as the model ultimately does not misclassify, but it
warrants curiosity. From this response, it was hypothesized that
the model had learned features related to the specific power levels
of the signal. To test this, a third scenario was run in which rather
than just matching the average power of the signal for the noise
replacement, we matched the specific power levels of device 0 in an
attempt to fool the classifier. In doing so, we uncovered that when a
signal is replaced with a AWGN slice matching a class power (class
zero in this case), the classifier will misclassify that noise as that
target class. Results can be seen in Figure 5 (e). We further verify
this behavior over 100 different randomly selected test inputs in
which we change the signal power of the original slice to match a
random input of class 0 power. This results in the original class to
be misclassified as class 0. Results can be seen in Figure 6.

This is a concerning condition as we can conclude that by match-
ing the power of a particular device in the training dataset and
creating a random input with that power, we can cause our clas-
sifier to misclassify. The features learned by this model are too
dependent on power and are likely to experience issues in real-
world scenarios when power is subject to easily change due to
distance or other sources of attenuation.

4.5 Mitigating AWGN Misclassification with a

Null Class

To address the misclassification behavior observed in the ORACLE
model under AWGN augmentation, we added a seventh null class
during training. This class, labeled "noise," consists of pure noise
inputs with varying power levels between the signal SNR and a -10
dB reference. The null class was introduced as an additional class
during training, providing the model with examples of spectrum
sections devoid of meaningful signals.

This approach proved highly effective in mitigating the AWGN
misclassification issue. As shown in Figure 7, the confusion matrix
for the mimic scenario—where inputs are replaced with AWGN
matching the power of class 0—now demonstrates the model’s
ability to correctly classify these inputs as class 7 ("noise"). This
can be seen both in the unaugmented case, and in the mimic case.
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Figure 5: ORACLE time domain CAM under three AWGN replacement scenarios. Each scenario shows the model accuracy over
the range of input slices (top row) and the model CAM response overlayed over the input data (bottom row).
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Figure 6: Confusion matrix of unaugmented data (left) and
augmented data(right) in which the signal is replaced with
AWGN matching class 0 power. The model can be seen to
misclassify noise that matches the power level of one of the
classes, suggesting power as the dominant feature learned.

Original Confusion Matrix Augmented Confusion Matrix (AWGN Replacement) Noise Class

100

Figure 7: Mitigation with a noise class (6). Classes 0-5 as in
Fig. 6; class 6 = noise. Power-matched AWGN is now correctly
classified as noise rather than as class 0.

Unlike the original model behavior, where all augmented inputs
were misclassified as class 0 if they matched class 0 power, the
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updated model consistently recognizes pure noise, regardless of
power level.

Adding the null class enhances the model’s ability to differentiate
real signal inputs from noise, a crucial capability for deployment in
real-world RF environments. By training the model to recognize
noise as a distinct class, we effectively address the AWGN-induced
distribution shift, improving generalization and robustness.

5 Technical Implementation
5.1 Input Augmentations

This section details the various signal augmentations implemented
in the AURA framework. Each augmentation tests the pretrained
RF machine learning model under different challenging conditions.
The inputs to the models are assumed to be two-channel time-
domain IQ samples, with channel 0 representing the in-phase (I)
component and channel 1 the quadrature (Q) component.

5.1.1 Additive White Gaussian Noise (AWGN) Replacement. In the
AWGN replacement augmentation, we substitute the original sig-
nal with white Gaussian noise to simulate an extremely low-SNR
scenario. Concretely, we set xawgn[n] = N(0, 0?), where N (0, 6?)

denotes a Gaussian distribution with mean 0 and variance o2.

5.1.2 SNR Reduction. SNR reduction adds noise to the original

signal to decrease the effective SNR. Specifically, xsnr[n] = x[n] +

P .
2 2 _ signal
N (o, Utarget)’ where O'target ~ SNRiarget

of the original signal, and SNRyarget is the desired signal-to-noise
ratio.

. Here, Pgigpa) is the power

5.1.3 Frequency Shift. Frequency shifting tests the model’s abil-
ity to handle offsets between transmitter and receiver. We apply
Xfreq[n] = x[n] - /2 fnit where Sshift 1s the shift in Hz.
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5.1.4  Phase Flip. Phase flip inverts the phase of the signal as
Xphase_flip[?] = x[n] - /. This challenges the model’s reliance
on phase-sensitive features.

5.1.5  Phase Rotation. Phase rotation applies a constant phase shift
0 to the entire signal: Xphase rot[n] = x[n] - €/ 9. This tests the
model’s sensitivity to uniform phase variations.

5.1.6  Free Space Path Loss. To simulate path-loss attenuation due
to distance d, we scale the signal by xpathioss[#] = x[n] - dLa Here, o
is the path loss exponent. This simplified approach omits frequency
dependence but preserves the spirit of signal attenuation.

5.1.7 1Q Imbalance. We set X19 imbalance[?] = (I[n] + €I[n]) +
Jj (Q[n] + €Q[n]), where € is the gain/phase imbalance factor. IQ
imbalance accounts for hardware imperfections in the in-phase and
quadrature components.

5.1.8 Open Augmentation Function. AURA also supports user-defined

or MATLAB-based signal processing effects, represented generally
as xopen[n] = f(x[n], params), where f is a function applying the
augmentation, and params controls its behavior.

5.2 Class Activation Mapping

SCORE-CAM [20] is an explainable AI (XAI) technique originally
developed for image processing. Unlike gradient-based methods
such as Grad-CAM [13], SCORE-CAM probes multiple perturbed
inputs and observes changes in class logits. The resulting activation
map highlights which regions most strongly influence the model
classification. We use Score-CAM because it (i) does not require
gradients at the target layer making it more robust to saturating
activations and vanishing gradients, (ii) treats the model largely as
a black box beyond the chosen layer, and (iii) yields stable maps
under small perturbations, which we found important for 1D IQ
slices. Grad-CAM is lightweight but depends on gradient quality;
SHAP offers feature attribution but is expensive for dense time
series and requires careful background choices. We adapt SCORE-
CAM from 2D images to both time and frequency domains in 1D
RF signals.
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creates masks derived from the activation profiles in a chosen model
layer, then measures how much each masked input decreases the
logit of the target class relative to a baseline. These steps closely
follow SCORE-CAM'’s original formulation, but are tailored for
one-dimensional IQ data.

5.2.2  Frequency Domain. In the frequency-based approach (Algo-
rithm 2), we first transform the signal into the spectral domain,
then mask out individual frequency bins via notch filters. After an
inverse transform, we compare the class logit to a baseline to gauge
each bin’s significance. The remainder of the weighting and final
CAM aggregation mirrors the time-domain version, but operates
on spectral components rather than per-channel time slices.

Key Differences. Although both versions use softmax weight-
ing and a final ReLU-based combination of activation maps, the
frequency-domain method (Algorithm 2) applies notch filters to
individual bins. By comparing the drop in logit (relative to Xj), we
deduce each bin’s relevance to the model’s decision. In contrast, the

Time Domain. The time domain implementation (Algorithm 1)
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Algorithm 1: SCORE-CAM for 1D Time Series

Input: 1D time-series Xp, model f(X) with chosen layer [,
baseline X, target class ¢

Output: Score-CAM output L30re-CAM

1: Initialization: Load Xj into f(-).

2: Activation of Layer [: Obtain activation profiles Al for
Xp.

3: Channel Masking: Let C be the number of channels. For
each channel k:

e Upsample Ai to match Xy in time length.
o Normalize to form Mllc‘
e Compute the masked input Mllc o Xp and collect in set M.

4: Batch Processing: Pass all masked signals M through f
in batches.
5: Class Logit Calculation: S; « f.(M) — f¢(Xp).
K
6: Weight Calculation: ¥ — %.

7: Score-CAM Output: L30"¢CAM  ReLU (Y ok Ai)

Algorithm 2: Frequency-Domain Adaptation for CAM

Input: 1D time-series Xj (length N), model f(-) with

chosen layer [, baseline X}, target class ¢

Output: Frequency-based CAM output LfreqCAM

1: Initialization: Load Xj into f(-).

2: Frequency Transform: Compute X r using DTFT,
X¢[k] = N5 Xo[n] e/ K En,

3: Generate Frequency Masks: For each bin k, create a
mask My that selectively zeroes or scales X [k]. Collect all
masks in set M.

4: Inverse Transform: For each masked X o M, apply

2 27T
Xolnl = & EN-L(X7[m] My[m]) e/ N ™.
5: Class Logit Calculation: S¢ — | f(Xp) — f2(Xo.x)|-

k
6: Weight Calculation: o « %.
k c

7: Construct FreqCAM: LEquCAM — ReLU(Xx aé‘ Ai)

time-domain method (Algorithm 1) creates channel-wise masks di-
rectly on upsampled activation profiles. Both approaches ultimately
highlight the regions (time or frequency) that most affect the target
class logit.

6 Evaluation

We first interpret behaviors with CAM, then present quantitative
effects of augmentations on accuracy and embedding-space geome-
try. Across ORACLE (RF fingerprinting), frequency/phase distor-
tions have minor impact while power-affecting transforms (AWGN
replacement, severe SNR reduction, path-loss scaling) dominate
accuracy loss (Fig. 4). For T-Prime (waveform classification), de-
creasing SNR and large CFO translate clusters in embedding space
before collapsing toward a noise-like region (Figs. 10-11), suggest-
ing embedding translation-based mitigation could be promising at
moderate impairment levels.
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802.11a Packet with CAM Overlay

802112 OFDM
Sync Sequence

Real Part of IQ Data

8400 8600 8800 9000

Index

Figure 8: Aggregated Time domain CAM overlay of 802.11a
sync sequence input seen by the ORACLE RF Fingerprinting
Model. Sections of the packet which were maximally respon-
sible for the classification are highlighted by the CAM.

Spectrogram of 802.11a Packet Spectrogram of 802.11a Packet
With CAM overlay

OFDM Sync Sequence

Sample Index

40

20

-2.586 -2.586

0
Frequency (Hz)

Figure 9: Spectrogram visualization of multiple sequential
test input slices with no augmentation. Frequency CAM high-
lights regions of signal while ignoring regions of noise. The
sync sequence highlighted is the same as Figure 8.

6.1 CAM Evaluation in Time and Frequency
Domains

We employ CAM in both the time and frequency domains to exam-
ine which signal regions most strongly influence the model’s classi-
fication decisions. This dual analysis also verifies the correctness of
our CAM implementations by comparing known signal-processing
expectations with the model’s highlighted areas.

6.1.1 Time-Domain Analysis. A practical way to validate CAM
in the time domain is to use known aspects of an 802.11a packet
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where we have strong intuition. Specifically, we target sequential
slices leading up to the start of a packet, where we expect minimal
CAM activation in noise and a clear activation once the true signal
begins. As shown in Figure 5, the model correctly exhibits low
activation in noise regions and higher activation where the signal
is strongest, illustrating its effectiveness as a “negative hypothesis
test” for unwanted features. We further investigate the commonly
studied preamble section, also known as the sync sequence, which
is identical across all transmitted packets. In principle, this region
can reveal subtle device differences for RF fingerprinting [6, 14],
yet our results (Figure 8) show that the ORACLE model places
comparatively low emphasis on this lower-power preamble. This
aligns with earlier observations that ORACLE over-relies on power-
based cues. While other works have shown success with preamble-
focused approaches [11], here it appears that preamble features do
not strongly resonate with ORACLE’s learned representation.

6.1.2  Frequency-Domain Analysis. We apply the same principle
in the frequency domain by masking out specific frequency bins
and observing changes in classification confidence. Figure 9 shows
how the model highlights spectral regions corresponding to the
packet’s main signal while ignoring adjacent noise-only frequencies,
indicating that it is not inadvertently latching onto out-of-band
environment noise. Interestingly, like in the time-domain case, the
model again shows only a moderate response to the sync sequence’s
subcarriers, suggesting it does not rely heavily on that portion of
the waveform for final classification.

Taken together, these time-domain and frequency-domain CAM
evaluations suggest that while the model responds correctly in
broad signal versus noise discrimination, it prioritizes higher-power
segments over subtle features like the preamble. This insight can be
valuable for refining model architectures or training approaches to
ensure future classifiers exploit more robust features than power-
related cues.

6.2 Distribution Shifts in Augmented Data: A
Case Study with T-Prime

In this subsection, we analyze the distribution shifts introduced
by different augmentations and their impact on model behavior
using embedding similarity metrics. To expand our evaluation,
we introduce the T-Prime model, which is designed for over-the-
air (OTA) Wi-Fi waveform classification [2]. Unlike the ORACLE
model, which focuses on RF fingerprinting, T-Prime operates in
a broader spectrum sensing context and has demonstrated real-
world test cases. This makes this model better suited for evaluating
channel-related augmentations such as signal-to-noise ratio (SNR)
degradation and frequency offsets, as we can cross-validate our
findings with their experiments. This shift in focus also highlights
AURA’s versatility in analyzing different model architectures and
application domains.

To understand how different augmentations manifest as distri-
bution shifts, we compare the embedding similarity between the
original and augmented test data for three cases:
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T-SNE Feature Visualization Over Varying SNR

Label 0 Oniginal
Label 0 Augmented

i s0 0

Label 3 Augmented ®

9 20dB SNR | °

o Label 0 Original
@ Label 0 Augmented
o Label 1 Original
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Label 3 Original
Label 3 Augmented
-

0dB SNR | _
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TestAcc: 24%
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TestAcc: 91%

Figure 10: t-SNE plot of model embeddings as SNR decreases. At 20,dB, augmented data (black borders) remains near the original
data (no borders). As SNR drops, embeddings diverge and ultimately converge into a noise-like cluster at -20,dB.

¢ SNR Augmentation: A control case where reduced SNR
should cause increasing ambiguity in the decision bound-
aries. Designed to compare results directly to the original
paper. Results in Figure 10

e Frequency Offset Augmentation: A scenario that simu-
lates the practical challenge for Wi-Fi classification systems
of monitoring broadly across all channels, where activity
on an adjacent channel 5MHz away could be seen as a fre-
quency offset from the center frequency, but ideally would
still classify.

o AWGN Augmentation: The same scenario as presented to
the ORACLE model to compare and contrast model behav-
iors.

Using t-SNE visualizations of the embedding space, we explore the
degree and nature of the shifts induced by these augmentations.
For each case, we analyze the behavior of the T-Prime model under
varying augmentation levels to observe trends.

In Figure 10 we see the class clusters degrade as the SNR in-
creases. This is the expected result, with very little change in the
20dB case and nearly complete separation in the -20dB scenario.
Test accuracy is comparable to the original reported SNR tests in
which they got 25%, 60% and 90%. For SNR, the loss of classification
confidence is expected and points to a general limitation in model
resilience under extreme conditions. The 0dB scenario, however, of-
fers an interesting observation. In this scenario, we can see that the
clusters have shifted but have largely maintained their respective
shapes. The observed translation in the embedding space suggests
that this augmentation can be mitigated during training with appro-
priate data augmentation strategies, improving robustness without
fundamentally altering the learned feature space.

We can see additional support for this possibility in the Fre-
quency augmentation case, seen in Figure 11. Here we see very
similar embedding translation behavior in the extreme case, sug-
gesting that both could be improved by data augmentation. Many
works with substantial success have explored this [7, 16]. However,
in the examples seen, the data augmentation strategies are used
to improve the accuracy of the test dataset provided rather than
compare the test accuracy to new real-world test scenarios unseen
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Figure 11: TSNE Plot of model embeddings under CFO aug-
mentation.

during training. Future work aims to explore these techniques with
a focus on real-world unseen scenarios.

The final scenario we investigate is the AWGN test case, which
compares T-Prime to ORACLE. These two models have vastly dif-
ferent applications and so they cannot truly be directly compared,
but for this general AWGN case, it is interesting to discuss the
difference. In Section 4.4 we found that by mimicking the power
of any of the devices, we could cause a purely random input to
be classified as that device with high confidence. We perform that
same experiment on T-Prime to see if the models exhibit similar
behavior. Interestingly, what we found instead was that no matter
which waveform we attempt to mimic in power, the embeddings of
the augmented noise samples consistently end up in the decision
region of class 0. We hypothesize the reason for this as class 0 is
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the most similar class to noise. This is due to class 0 in the T-Prime
case being the 802.11g Wi-Fi protocol with 1024 OFDM subcarriers.
Without synchronization in the time domain, this number of carri-
ers shares a strong resemblance to pure noise. This highlights an
interesting difference in learned features between the models.

Key takeaways.

e Power sensitivity dominates failure modes in ORACLE.
Adding a noise/null class mitigates spurious decisions on
power-matched AWGN.

e Embedding translations precede collapse under SNR/CFO
in T-Prime, indicating room for robustness via targeted train-
ing augmentations.

o CAM complements metrics: time/frequency maps confirm
that high-power regions drive decisions, while alternative
power regions such as preamble-only receive lower emphasis
in ORACLE.

7 Conclusion and Future Work

This paper introduced AURA, a systematic framework for evaluat-
ing and improving the robustness of machine learning models in
RF applications. Using test-time augmentations, embedding-space
analysis, and class activation mapping implementations in both
time and frequency domains, AURA uncovers critical vulnerabili-
ties—such as over-reliance on power-based features—and clarifies
how models behave under realistic channel impairments. By bridg-
ing deep learning architectures with signal-processing intuition,
AURA provides an interpretable view of model decision-making
and highlights concrete paths for remediation. Our future goal is to
enhance AURA’s capabilities by incorporating more realistic chan-
nel effects during training, introducing noise-specific classes to
mitigate misclassifications under adverse SNR, exploring advanced
normalization techniques that adapt to diverse impairments, and
systematically evaluating different model architectures to identify
those best suited for real-world wireless environments. Through
these iterative improvements, AURA enables the design of ML-
driven RF systems that maintain high performance under unpre-
dictable, distribution-shifting conditions in practical deployments.
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