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ABSTRACT
This paper proposes and experimentally validates a new paradigm
for computing with wireless signals over-the-air (OTA). It demon-
strates the first fully connected (FC) neural network (NN) con-
structed entirely using channel propagation and signal interference
principles. Our design is based on architecting the desired linear op-
eration of an FC layer through the superposition of signals emitted
from multiple transmitters and received at a single receiver, similar
to multiple input single output (MISO) systems. Our design takes
into account several practical considerations, such as the impact
of multiple subcarriers, the number of transmit antennas, and the
changing wireless channel. The key outcome of our work is devel-
oping a principled methodology that transforms a given trained
digital FC NN into its OTA equivalent. This novel computational
paradigm, which we call AirFC, allows us to run NN tasks without
compute-specific hardware during tests. We validate our design
using 9 time-synchronized software-defined radios (SDRs) available
on the ORBIT testbed, emulating a 16 antenna array. We use the
MNIST dataset as input to our wireless FC NN and demonstrate
classification with 92.61% accuracy, which proves that our NN with
OTA FC layers performs similar to the conventional, all-digital
version with an accuracy decrease of only 0.73%.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Networks
→ Network experimentation.
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Figure 1: AirFC architecture shows the FC operation per-
formed over-the-air using a MIMO system. 𝑁 transmitters
are used to send 𝑁 complex data samples. The output at each
neuron is obtained using different OFDM sub-carriers and a
single receiver. The MIMO architecture allows to switch the
roles of transmitters and receivers to replicate the input and
output of the FC layer without a feedback loop.

1 INTRODUCTION
Radio Frequency (RF) signals are being increasingly used for excit-
ing applications that go beyond traditional communications, such
as sensing, imaging and positioning. As illustrative examples of this
paradigm shift that uses classical communications systems and links
for alternative applications, massive MIMO and re-configurable in-
telligent surfaces (RIS) have enabled activity/gesture recognition [1],
digital twin of propagation environment [2], object detection [3],
and others [4, 5]. Along this direction, we specifically highlight the
possibility of joint communications and computing, which forms
the main focus of this work. While early research has shown great
promise in simultaneously transmitting and averaging data from
field-deployed sensors to a central aggregation point [6], we pro-
pose and demonstrate experimentally a fundamentally new form
of over-the-air (OTA) analog computation. Going beyond the state-
of-the-art, our approach enables operations required for a neural
network using OTA wireless signals.

1.1 Concept of Wireless Analog Computation
OTA computation aims to shift the processing complexity to the
analog (wireless) domain by taking advantage of channel transfor-
mations and engineering precisely controlled signal reflections and
interference, with overall aim of emulating a specific mathematical
operation. Recent works have explored OTA computation in the
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Figure 2: The average percentage of unused PRBs for a fixed
time duration when users are; (a) Constantly active, and (b)
Randomly active.

context of wireless data aggregation [7] and OTA federated learn-
ing [8] (see sec. 8). However, these works are limited to analytical
results and validation via simulations. Without a systems-level val-
idation, many practical challenges that occur in actual deployment
conditions, including the impact of the channel and the limitations
of hardware are not comprehensively considered.

1.2 Building Wireless Neural Networks
We propose harnessing the capability of OTA computation to run
inference on a neural network (NN) consisting of a set of fully
connected layers (FC). To do so, we design AirFC, the first OTA
computation-based neural network that is equivalent to its all-
digital counterpart. In general, FC layers are composed of a set of
neurons that compute linear operations (weighted sum) followed by
a non-linear operation or activation function. In AirFC, we model
the weighted sum as a superposition of signals that interfere at the
receiver and replicate the linear operation of an FC layer.

Fig. 1 shows the AirFC architecture performing the FC operation
over-the-air using a MIMO system, where the number of neurons in
each layer is mapped to the equivalent number of transmit antennas
in the MIMO architecture, and each transmit stream uses OFDM
sub-carriers to perform parallel computation of the different out-
put layer neurons. Therefore, AirFC can compute a matrix-vector
multiplication of one layer in one single time slot (i.e., in a symbol
time).
1.3 Challenges in AirFC
Designing and implementing AirFC poses a number of challenges:
• Error characterization: Inaccuracies in channel estimation,
equalization and the receiver thermal noise adversely affect the
OTA inference. We first characterize these distortions through em-
pirical measurements using software defined radios. Given that the
channel estimation error highly depends on the properties of the
training signal, aside of the channel conditions, we investigate the
error performance for different training sequence configurations.
• System synchronization: In order to achieve coherent reception
and the desired interference at the receiver, all system components,
including host machines and radios require both time sample-level
and frequency synchronization. For instance, in Fig. 1, all transmit-
ters are assumed to be synchronized. This enables to have all radios
transmit at the same time, with a time synchronization error smaller
than a symbol time (which is 𝜇𝑠-level in our implementation).

Examples of unused resources

(a) (b)
Figure 3: Spectrograms generated out of srsRAN OTA cap-
tures. PHY resources are not uniformly used throughout the
time-frequency axes, and this usage depends on different
traffic conditions.

• Beamforming:Multiple antennas will synchronously work to
enable coherent transmissions. Thus, system level synchroniza-
tion is required to implement zero-forcing pre-equalization, which
includes channel estimation, channel feedback and beamforming
weights computation. Zero-forcing beamforming helps to compen-
sate for the non-uniform fading between multiple antennas.
• Complex-valued NN: Wireless signals are represented using
complex numbers that include both amplitude and phase informa-
tion. As shown in Fig. 1, the input data, as well as the weights,
are represented using complex values. Thus, we need to design
a complex-valued FC layer to fully exploit the unique wireless
properties, over the real-valued equivalent NN model.
• Array-inspired NN: AirFC relies on leveraging the underlying
and pre-existing infrastructure of the network, in terms of available
radio/network resources. Thus, the FC layer computation should
be designed considering jointly the system limitations and test
accuracy of the NN, and this include optimizing the outcome based
on number of antennas and number of neurons in each layer of the
model.
1.4 Contributions
Our main contributions are as follows:

• We develop and validate the theory that maps digital fully
connected layers and analog over-the-air interference.

• We derive an analytical framework to characterize the chan-
nel and receiver noises under both perfect channel knowl-
edge and with channel estimation errors.

• We consider realistic limitations on number of available an-
tennas and propose a re-transmission based approach to
overcome such hardware limitations.

• As a systems contribution, we demonstrate inference over-
the-air using the ORBIT test-bed composed of SDRs.

• We compare the performance of a single layer and end-to-
end inference over-the-air with a fully digital implementa-
tion, resulting with a 92.61% accuracy on the MNIST dataset,
which represents only a 0.73% reduction in comparison to
the all-digital counterpart.

2 USE CASES OF AIRFC
• High frequency-band UM-MIMO arrays: 5G/6G cellular com-
munications will exploit higher frequencies in the spectrum, in-
cluding mmWave and reaching up to sub-THz. Given that antenna
dimensions scale proportionally to its wavelength, large arrays with
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sub-millimeter antennas will be employed in communications sys-
tems in this extremely high frequencies. This will facilitate integrat-
ing large numbers of antennas (i.e. 1024x1024 [9]) in nano-antenna
arrays, usually referred to as ultra massive MIMO (UM-MIMO)
systems. Given that AirFC leverages multi-antenna systems, the
availability of large arrays opens up opportunistic scenarios where
AirFC can coexist with regular communications, while benefiting
from such antenna array that allows higher number of neurons in
the FC layer.
• AirFC on-chip: Another enticing application is wireless network
on-chip communication (WiNoC) where mmWave/THz band signals
can enable inter-core communication among processors embedded
on-chip by utilizing nano-scale antenna arrays [10]. Recent studies
have reported that mmWave-based WiNoC outperforms conven-
tional wired NoC architectures in terms of achievable band-width
and energy dissipation [11]. This increases the possibility of design-
ing metasurface-based on-chip antenna [12], which will present
many opportunities to implement AirFC at a chip-level.
• Shared Resources for Cellular Networks: Cellular deploy-
ments are becoming dense and the large body of work on network
slicing suggests the potential of sharing of resources among nodes.
AirFC can reuse existing deployments without requiring any dedi-
cated hardware. Thus, we envision AirFC as an add-on capability
to existing and future wireless networks, where resources can be
shared between other technologies based on demand.
2.1 AirFC in Practical Cellular Networks
AirFC can coexist within an existing OFDM communication sys-
tem. In this section, we show how to integrate it within a standard
4G/5G PHY frame structure. This frame structure is divided into dis-
crete resource elements and grouped into physical resource blocks
(PRBs), which are then assigned to cellular users based on channel
conditions and traffic demands [13]. As reported in [14], not all
PRBs are used at all times (see Fig. 3), even after fulfilling all users’
traffic demands. This represents an opportunity for leveraging the
unused subcarriers for AirFC when traffic demand is low.
2.1.1 Experimental Study. We use the Colosseum emulator [15] to
run srsRAN-based (open software formobilewireless networks [16])
scenarios to analyze cellular resource usage under different traffic
loads. In particular, we use a base station (eNB) serving up to 4 users
and 3 different types of cellular traffic, Enhanced Mobile Broadband
(eMMB), Massive Machine-Type Communications (mMTC) and
Ultra-High Reliability & Low Latency (URLLC). The eNB divides
the available spectrum into three slices, with each slice having a
total of 50 PRBs assigned as radio resources. To allocate resources
among active users in each slice, srsRAN utilizes a round-robin
scheduling algorithm. Fig. 2 shows the average percentage of un-
used PRBs for a fixed time duration, and for different traffic types
and number of users. Additionally, we distinguish between two
different user activities: constantly active and randomly active over
time. While at different levels, we observe that spectrum resources
remain unused in the range 23.5-99.94% considering all scenarios.

3 SYSTEM MODEL OF AIRFC
Consider a wireless system with a single receiver and a different
transmitter with a total ofN antennas, or conversely,N transmitters
each with a single antenna that are synchronized. From Sec. 1, our
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Figure 4: Edges in a FC layers connecting every input neuron
to every output neuron are allocated a weight. The output of
every neuron prior to the activation function is the weighted
sum of the input 𝑥 and the weights𝑤 .

goal is to replicate the linear function that is performed by a fully
connected (FC) layer widely used in neural networks.

3.1 Over-The-Air Fully Connected Layers
In this section, we explain the theoretical formulation of the equiv-
alent relationship between the two diverse concepts of (i) FC neural
networks and (ii) classical propagation and interference effects.

The parameters (interchangeably used as ‘weights’) of a FC layer
are defined as set of numerical weights that connect every input
neuron with every output neuron. As shown in Fig. 4, every input
value 𝑥𝑖 is multiplied by the weight𝑤𝑖 𝑗 connecting to the output
neuron 𝑦 𝑗 . All the weighted input values (𝑥𝑖𝑤𝑖 𝑗 ) are summed as:

𝑦 𝑗 = 𝑥1 ∗𝑤 𝑗1 + 𝑥2 ∗𝑤 𝑗2 + · · · + 𝑥𝐿 ∗𝑤 𝑗𝐿 =

𝐿∑︁
𝑖=1

𝑥𝑖 ∗𝑤𝑖 𝑗 (1)

Given that wireless signals and channels can be represented
with magnitude and phase, let 𝑥 ,𝑤 and𝑦 be complex valued scalars.
As we describe in Sec. 6.3.1, this enables us to design complex-
valued neural networks, whichmay have the added benefit of higher
performance than their real-valued equivalent [17].
• Over-the-air FC computation: Our goal is to artificially con-
struct a series of signal transformations with the physical environ-
ment that will jointly combine at the receiver. In particular, given a
sequence x of length 𝐿 and a set of 𝑁 transmitters, every transmit-
ter 𝑖 will transmit a symbol xi in specific time-steps. The remainder
of this section assumes that the number of transmitters is equal or
greater than 𝐿 (𝑁 ≥ 𝐿). We analyze the particular case of 𝑁 < 𝐿 in
Sec. 5. Without loss of generality, we consider that the sequence x
as the desired input to a neural network. Then, the received signal
𝑟 can be expressed as:

𝑟 =

𝐿∑︁
𝑖=1

𝑝𝑖ℎ𝑖𝑥𝑖 + N𝑧 , (2)

where 𝑟 is the received signal,ℎ𝑖 is the flat-fading channel coefficient
from transmitter 𝑖 to the receiver, 𝑝𝑖 is a pre-equalization term
applied on the transmitter side andN𝑧 is the receiver noise, modeled
as a random variable that follows a Gaussian distribution with mean
0 and variance 𝜎2𝑧 . Assuming that the channel state information
(CSI) is known at every transmitter, the coefficient 𝑝𝑖 is computed
such that the product 𝑝𝑖ℎ𝑖 is equal to a desired neural network
weight 𝑤𝑖 , (𝑟 =

∑𝐿
𝑖=1𝑤𝑖𝑥𝑖 + 𝑧). Thus, the expression for the FC

neuron output 𝑦 is equivalent to the received signal 𝑟 with AWGN
and pre-coding weights 𝑝 = 𝑤 ℎ̂∗

∥ℎ̂∥2
, with ℎ̂∗ given by the complex

conjugate of the estimated CSI. Notice that in this formulation, 𝑝
acts as a zero-forcing equalizer, but the working principle is totally
independent of the equalization algorithm employed.



MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Reus and Alemdar, et al.

𝑥!,#𝑝!,#

𝑓𝑤$%𝑤$&𝑤$' 𝑤$$

𝑥$𝑥&𝑥' 𝑥%

𝑦%𝑦& 𝑦$

𝑥$𝑥&𝑥' 𝑥%

𝑦%𝑦& 𝑦$

𝑓

𝑇𝑥	𝑊𝑎𝑣𝑒𝑓𝑜𝑟𝑚	𝑅𝑎𝑑𝑖𝑜	𝑖

R𝑥	𝑊𝑎𝑣𝑒𝑓𝑜𝑟𝑚

𝑭𝒖𝒍𝒍𝒚	𝑪𝒐𝒏𝒏𝒆𝒄𝒕𝒆𝒅	𝑳𝒂𝒚𝒆𝒓 𝑨𝒊𝒓𝑭𝑪

𝑦! =#𝑥",!𝑝",!ℎ",! +𝒩$

%

"&'

		

Figure 5: AirFC leverages OFDM waveforms to parallelize
different weighted sums over the air. Every subcarrier repre-
sents the output to a different neuron (𝑦𝑘 ) of FC layer.

• OFDM parallelization: The formulation presented up until now
only considered single carrier waveforms. Here, we leverage multi-
carrier schemes (OFDM) as a technique to parallelize multiple math-
ematical operations, as shown in Fig. 5. In particular, we aim to
use each different subcarrier to represent an independent weighted
sum, mapping to a different output neuron. Then, for a given FC
layer with 𝑁 input neurons and 𝑀 output neurons, every subcar-
rier 𝑘 is used to independently compute the output of one of the𝑀
neurons. Thus, the received signal can be expressed as:

𝑟𝑘 =

𝐿∑︁
𝑖=1

𝑝𝑖,𝑘ℎ𝑖,𝑘𝑥𝑖,𝑘 + N𝑧 , (3)

where 𝑘 represents the subcarrier index. Note that this approach
does not necessarily assume that the number of available subcarri-
ers is always greater than𝑀 , and OFDM is simply proposed as an
additional parallelization technique that reduces by a factor of 𝐾
(number of subcarriers) the number of required transmissions.

3.2 End-to-End System Architecture
•Architecture overview.Weutilize aMISO (Multiple-Input Single-
Output) system to implement AirFC. Note that the availability of
MIMO (Multiple-Input Multiple-Output) systems will further en-
hance AirFC, as MIMO allows running the FC forward pass in either
direction of the link (Fig. 1). As opposed to this flexibility, a MISO
system allows running a forward pass in only one link direction.
Due to implementation and experimental validation constraints,
the rest of the paper will only consider a MISO system, but the
operations can be trivially extended to MIMO as well. The system
architecture is summarized in Fig. 6, where we see that the com-
putation of each FC layer in the forward pass is implemented by
a set of synchronized transmissions towards a certain receiver. If
indeed multiple antenna elements are available on the transmitter
and receiver side, each FC layer can be implemented through back
and forth transmissions between both agents. Here, the System
Orchestrator is assumed to have full knowledge of model pa-
rameters and system architecture (i.e., available TX/RX-nodes and
radios), and allocates the required resources based on the structure
of the neural network. It also orchestrates any re-transmissions if
needed, specifically for the case 𝐿 > 𝑁 as described in Sec. 5. Con-
sequently, the System Orchestrator distributes the required model
weights and FC layer inputs to the corresponding node-TXs. A node
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Figure 6: AirFC system architecture showing hardware and
software components of the system.

consists of a host machine connected to a number of SDRs with 𝛽
antennas. Each node-TX performs supporting operations needed
to fully implement AirFC (i.e. precoding, channel pre-equalization)
before starting the transmissions on each SDR. In turn, for every
transmitted stream, the node-RXwill perform synchronization oper-
ations and channel estimation, which will be part of the feedback to
the node-TXs for the following transmission round. As mentioned
before, all radios need to be synchronized in time and frequency
to ensure coherent detection. This is achieved by connecting all
devices to a common clock and time reference, i.e., [18].
• Channel model and compensation. As mentioned previously,
AirFC employs OFDM waveform. Thus, the wireless channel from
transmitter i and subcarrier k can be expressed as a complex number
ℎ𝑖,𝑘 (Eq. 3). Given that the channel estimates are required at the
node-TXs to compute the precoding weights 𝑤 , the node-RX will
send back the channel information as feedback. We define the
channel information as H = [ℎ1, ℎ2, ..., ℎ𝛽 ], where ℎ𝑖 is a vector
of channel estimates for antenna 𝑖 and all sub-carriers. In order
to estimate H for all transmitters, every antenna element sends a
reference signal with good cross-correlation properties (i.e. Gold
sequences). This allows the receiver to detect such sequences and
isolate each one of them to conduct multiple independent estimates.

4 FEASIBILITY STUDY
In this section, we empirically analyze the different sources of noise
considering experimental data and the system model described
in Sec. 3. Additionally, we provide initial results to analyze the
feasibility of AirFC.

4.1 Error Characterization
As described in Eq. 2, our system model considers two sources
of noise, which include the receiver thermal noise (N𝑧 ) and the
imperfect channel estimation (ℎ̂ = ℎ + ℎ𝜖 ). In order to evaluate our
approach under realistic conditions, we empirically measure such
distortions with real data collected using SDRs. For details about
the experimental setup and testbed, we refer the reader to Sec. 6.
• Channel estimation error:We conduct a data collection cam-
paign of total of 10K channel measurements using least squares
(LS) estimation. The data was collected under static conditions, and
the channel coherence time was assumed to be greater than the
measurement time. Additionally, in order to characterize the effect
of using multiple Gold sequences to estimate each independent
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Figure 7: (a) Variance in channel measurement data for
the different number of transmitters. (b) Number of re-
transmissions (R-TX) needed (𝑙𝑜𝑔𝑁 (𝐿) − 1) vs number of Tx
(𝑙𝑜𝑔2 (𝑁 )) for different sequences length (𝐿).

transmitter to receiver channel, we measure the channel variation
while using up to 8 transmitters at a time. We present the results
in Fig. 7a. It can be observed that there is no dependency on the
number of transmitters used given the strong orthogonality of the
used Gold sequences.
• Receiver thermal noise: Additionally to the channel estimation
error, we also conduct a noise measurement campaign in order to
conduct simulation-based studies that will consider realistic noise
levels. The additive noise was measured by collecting IQ samples at
the receiver, while keeping all transmitters off. Measurement data
indicates a noise power of -65dB.

4.2 Preliminary Results
In order to evaluate the feasibility of AirFC, we conduct a simulation
study considering the realistic channel and hardware impairments
described in the previous subsection. In particular, we train a neu-
ral network on MNIST [19], a dataset of 10 different handwritten
digits consisting of 28x28 black and white images. MNIST has been
widely adopted as a baseline to evaluate different machine learning
approaches, and we choose this dataset to highlight the flexibility
of AirFC to work on a variety of input types, including images. We
train a 2 layer perceptron with an input size of 784 and 16 and 10
neurons on each layer. Additionally, we add (i) Gaussian noise to
the neuron weights proportional to the channel estimation error,
and (ii) additive noise at every neuron, equivalent to the receiver
thermal noise. We obtain an accuracy of 93.51% after 20 epochs.
Additionally, we show that a deeper model, with 5 FC layers in-
stead of 2, achieved an accuracy of 98.2% under the same channel
and hardware impairments. However, to facilitate implementation
efforts (Sec. 6), the remaining of this paper will focus on the two
layer network. In closing, we reiterate that our contribution is on
reproducing comparable results to a digital model implementation,
and not in advancing the state-of-the-art of a specific model itself.

5 FC WEIGHTED SUM FOR 𝐿 > 𝑁

In this section, we propose a re-transmission approach for cases
when the number of antennas is not sufficient to compute the FC
or convolutional operations (𝑁 < 𝐿). We analytically derive how
the channel and receiver noises impact the resulting computation.
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Figure 8: Re-Transmission approach to compute weighted
approach when 𝐿 > 𝑁 . Here, 𝐿 = 4 and 𝑁 = 2. In the first
iteration (𝑡1), 𝑇𝑥1 transmits 𝑥1 and 𝑥2, whereas 𝑇𝑥2 transmits
𝑥3 and 𝑥4. The two sequences add up together at the Rx, con-
structing a new sequence (𝑟1) with length 2. In iteration 𝑡2,
each 𝑇𝑥 transmits one sample and the receiver obtains the
weights sum of the input sequence 𝑥 . The pre-equalization
steps and the receiver noise are not shown in this diagram.

5.1 Number of Iterations
In Eq. 2, we assumed 𝑁 ≥ 𝐿. Therefore, the weighted sum is ob-
tained through a single transmission, where every antenna trans-
mits an individual sample from the input sequence x. However, FC
layers can be formed by hundreds of neurons, and in the general
case, even state-of-the-art mMIMO (massive MIMO) systems may
not scale proportionally [20]. In order to resolve this mismatch be-
tween 𝐿 and𝑁 , we propose a re-transmission based approachwhere
the input sequence is recurrently truncated into 𝑁 sub-sequences,
until the sub-sequence length is ≤ 𝑁 . We describe this in Fig. 8.

Consider a sequence x of length 𝐿 and a set of 𝑁 transmitters,
with 𝑁 < 𝐿. We divide the sequence x in 𝑁 sub-sequences of length
𝐿1 = ⌈𝐿/𝑁 ⌉, with each one of them subsequently transmitted by a
different radio. Then, the received sequence 𝑟 of length 𝐿1 contains
the element-wise sum of the sub-sequences transmitted by each
individual transmitter. Next, 𝑟 is divided again into 𝐿 sub-sequences,
reducing the received sequence 𝑟2 to 𝐿2 = ⌈𝐿/𝑁 2⌉ samples. This
process can be repeated iteratively, until the length of the sequence
𝑟𝑖 is smaller than the number of transmitters (𝐿𝑖 < 𝑁 ), which
results in a single value on the receiver side. The total number of
re-transmissions is expressed as:

R = ⌈𝑙𝑜𝑔𝑁 (𝐿)⌉ − 1 (4)
In Fig. 7b, we analyze how R varies for different 𝐿 and 𝑁 values.

Note that if 𝑁 ≥ 𝐿, one single transmission is enough and no re-
transmissions are needed (⌈𝑙𝑜𝑔𝑁 (𝐿)⌉ = 1), as discussed in Sec. 3.1.
While this approach resolves the disparity between the sequence
length and the number of transmitters, the final weighted sum is
distorted by multiple rounds of channel equalization error and the
noise at the receiver. We derive an analytical formulation to analyze
such errors in the following subsection.

5.2 Error Analysis
Here, we analyze the approach presented in the previous subsection
under perfect and imperfect channel knowledge. We consider the
channel model described in Sec. 3.1. In particular, we express the
estimated channel ℎ̂ as the perfect channel ℎ plus the estimation
error ℎ𝜖 (i.e. ℎ̂ = ℎ +ℎ𝜖 ). Then, the received signal 𝑟 is expressed as:
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𝑟 =

𝑁∑︁
𝑖=1

𝑥𝑖ℎ𝑖
(ℎ∗

𝑖
+ ℎ𝜖 )

∥ℎ̂𝑖 ∥2
+ N𝑧 (5)

=

𝑁∑︁
𝑖=1

𝑥𝑖ℎ𝑖ℎ
∗
𝑖

∥ℎ𝑖 ∥2
+ 𝑥𝑖ℎ𝑖ℎ𝜖

∥ℎ̂𝑖 ∥2
+ N𝑧 , (6)

where the second term is a noise factor due to the channel esti-
mation error and N𝑧 is the receiver noise. After the experimental
characterization in Sec. 4.1, we observe that channel error follows
a Gaussian distribution:

𝑟 =

𝑁∑︁
𝑖=1

𝑥𝑖 + N(0,
𝑁∑︁
𝑖=1

𝑥2𝑖 𝜎
2
ℎ
+ 𝜎2𝑧 ), (7)

where the first term is the desired signal, the second term represents
the receiver thermal noise and the beamforming noise due to the
channel estimation error. After the first re-transmission (𝑟2), the
received signal can be expressed as:

𝑟2 =
𝑁∑︁
𝑖=0

𝑟 𝑖/𝑁ℎ𝑖

(
ℎ∗
𝑖

∥ℎ̂𝑖 ∥2
+ ℎ𝜖

∥ℎ̂𝑖 ∥2

)
+ N𝑧 , (8)

where 𝑟 𝑖/𝑁 represents the ith sub-sequence of 𝑟 . From Eq. 7-8, we
observe that no close-form formulation is possible for the accu-
mulated noise in terms of the number of re-transmissions. Hence,
we evaluate numerically the impact of such re-transmissions in
Sec. 7. Next, we give a close-form formulation of the total accumu-
lated noise per number of re-transmissions under the assumption
of perfect channel knowledge (𝜎2

ℎ
= 0). The received signal can be

expressed as 𝑟 =
∑𝑁
𝑖=1 𝑥𝑖 + N(0, 𝜎2𝑧 ). Then, 𝑟2 becomes:

𝑟2 =
𝑁∑︁
𝑖=1

𝑟
𝑖/𝑁
1 + N𝑧 =

𝑁∑︁
𝑖=1

𝑥
𝑖/𝑁
1 + (𝑁 + 1) ∗ N𝑧𝑖 (9)

whereN𝑧𝑖 is a Gaussian distribution with the same statistics asN𝑧 .
Following this re-transmission pattern, the resulting weighted sig-
nal sum 𝑦𝑡 after all the required re-transmissions can be expressed
as:

𝑦𝑡 =

𝐿∑︁
𝑖=1

𝑥𝑖 + N𝑧𝑡 (10)

𝜎2𝑡 =𝜎2𝑧

R∑︁
𝑘=0

𝑁𝑘 = 𝜎2𝑧

(
1 − 𝑁R+1

1 − 𝑁

)
, (11)

where N𝑧𝑡 = N(0, 𝜎2𝑡 ) is the total accumulated noise that fol-
lows a Gaussian distribution with variance 𝜎2𝑡 , which can be com-
puted following a geometric series. In conclusion, that after R re-
transmissions, the obtained weighted sum will include additive
noise with mean zero and standard deviation 𝜎2𝑡 .

6 SYSTEM IMPLEMENTATION
6.1 AirFC Validation on the ORBIT Testbed
In this section, we describe the AirFC implementation details using
COTS SDRs in the ORBIT (Open-Access Research Testbed for Next-
Generation Wireless Networks) testbed [21].
•Large-scale testbed: ORBIT consists of 400 radio nodes placed
in a 20×20 grid with 1m spacing between the adjacent nodes. These
nodes are equipped with various radio platforms including 802.11
a/b/g, Bluetooth, Zigbee, and various versions of SDRs, i.e., USRPs.
For the implementation presented in this work, we utilize a total
of four mini-racks of SDRs, where each of the latter contains eight

Figure 9: Outline of ORBIT grid testbed utilized for AirFC
implementation. There are four mini-racks located in the
corners of the grid. Each rack contains 8 Ettus USRP X310
SDRs attached with two UBX160 radio daughterboards. Fig-
ure showcases the allocation of AirFC nodes used to realize
complex-valued neural network shown in Fig. 11.

Ettus USRP X310 SDRs [22]. All resources in ORBIT are accessed
remotely via SSH. All nodes are configured using the experiment
controller service (OMF), which allows us to configure radios with
desired settings.
•Tx-Rx hardware as neurons: We select a total of nine radios
from the mini-racks, where eight radios are transmitters and the
ninth one is the receiver, as illustrated in Fig. 9. Given that each
X310 radio has two RF chains with UBX 160MHz daughterboards,
we use a total of 16 transmitting antennas. All USRPs in a mini-
rack are connected to the ORBIT network via 10Gbps Ethernet
connections, which grants access to them from any selected node.
We select four X310 radios from two different locations that provide
moderate SNR conditions. Each cluster of four radios is controlled
by a single host machine. Thus, we use a total of 8 radios with 16
transmitting antennas, with each one of them transmitting signals
pertaining to one FC layer neuron, followed by reception at one
receiver, which gives the cumulative output of the neurons.
•Synchronized SDRs: A mini-rack has its local reference clock
(Octoclock-G CDA-2990 [23]) that provides PPS and 10MHz clock
synchronization signals to all its installed SDRs. In turn, all Octo-
clocks are connected to a master reference clock, which provides
common reference signals to each one of them. The use of equal
length cables and a symmetric topology ensures that all connected
devices will see the same reference signals with very little deviation
in phase and time.
6.2 AirFC Framework
Here, we describe the framework required to implement AirFC.
•System orchestration: All network connected nodes in ORBIT
domain can communicate through Ethernet connections. This al-
lows us to: (i) orchestrate data distribution among the transmitter
nodes, (ii) run coordinated transmissions, and (iii) relay feedback
messages from receiver to transmitters. The neural network model
is known at the orchestrator, which runs in one of the host machines
connected to the radios. Then, it sends the desired IQ symbols to
each transmitter considering the number of neurons, layers, input
data size and number of transmitters. To achieve synchronized start
time of an AirFC transmission (beside hardware-level synchroniza-
tion achieved using Octoclocks), we establish software-based time
synchronization by combining Network Time Protocol (NTP) and
Precision Time Protocol (PTP), providing hardware time-stamping
for all nodes.
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Figure 10: Precise synchronization between node-Txs where
each node-Tx consists of 4 transmit antennas: (a) Correlation
inaccuracy due to sample-level misalignment, (b) Aligned
cross-correlation peaks after time correction.

•Frame structure: Each transmitted frame consists of a training
sequence, acting as a preamble, and an appended payload of IQ sym-
bols, which are the input values of each neuron. The symbols are
OFDM modulated. Each block has a cyclic prefix (CP) at the OFDM
modulation to mitigate inter symbol interference (ISI). Further, we
use pre-defined Gold sequences [24] as preambles for synchroniza-
tion and channel estimation. Each of these unique sequences is
assigned to the payload of IQ symbols at each transmitter antenna.
Due to their well-known autocorrelation and crosscorrelation prop-
erties, Gold sequences allow to estimate channels accurately and
detect each transmitted stream concurrently, which will later enable
synchronization between each data stream.
•Channel estimation and feedback: Channel estimation is con-
ducted at the node-RX (output neuron). Cross-correlation between
the received preambles and pre-defined reference Gold sequences is
conducted to obtain a specific signal transmitted on a given antenna.
Here, we use Least Squares (LS) to obtain the multiple indepen-
dent channel estimates from each antenna 𝑖 to the receiver node i.e.
�̂� = �̂�/𝑮 , where �̂� is the estimated response, 𝑮 the transmitted
Gold Sequences and �̂� = [𝑔1, 𝑔2, ..., 𝑔𝛽 ] are the received training
symbols. In our implementation of AirFC, we assume the band-
width of the transmitted signal to be smaller than the coherence
bandwidth. Thus, the channel response from a transmitter antenna
to the receiver is assumed to be flat. However, AirFC is independent
of the channel estimation technique and is broadly applicable inde-
pendent of the channel conditions or bandwidth of the signal used.
Finally, in order to ensure coherent detection, the node-TX esti-
mates the misalignment between the received frames by inspecting
the correlation indices in the time domain. Then, the receiver sends
back a feedback packet containing (i) the channel estimation that
is estimated from channel response of each transmitter, (ii) a time
correction for preventing misalignment between preambles, and
(iii) if re-transmission is needed (see Sec. 5), sum of sub-sequence
transmitted by each individual transmitter at the receiver as an
input to next transmission.
•Timing and synchronization: Recall, all radios share a common
clock which distributes 10MHz and 1PPS signal externally to en-
able hardware-level frequency and time synchronization among
them. In addition to hardware-level synchronization, we provide
software-level synchronization among transmitters to enable syn-
chronized transmission time. Software-level synchronization is nec-
essary given that we require sample-level precision, which trans-
lated into 𝜇𝑠-level accuracy (see Fig. 10a). This is achieved by in-
specting cross-correlation indices for all received Gold sequences

784
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Input
(MNIST
Dataset)

Output

Part 2

Figure 11: The neural network architecture model with com-
plex weights used for image recognition. Each the FC and OUT
layers are complex-valued FC layers. The input is converted
to complex domain to be fed to the complex-valued FC layers.
We represent the twoweightmatrices of the network as Part1
and Part2 to design the validation pipeline for performance
analysis.

and identifying the sample-level misalignment among all received
streams. Such time corrections are sent back to the transmitters,
which will zero-pad their respective sequences to correct for the
detected misalignment. As shown in Fig. 10b, we achieve sample-
level synchronization after correcting for the detected sequence
misalignment.

6.3 AirFC for Image Recognition
Next, we demonstrate how the over-the-air weighted sum in AirFC
is accurate enough to replace its digital equivalent for a real-world
problem of image recognition.
•Dataset description and model architecture: We consider the
well known MNIST dataset [25] of handwritten digits that con-
tains training and test set of of 60,000 and 10,000 examples, re-
spectively. We use a two-layer complex-valued neural network
architecture [26] where the two weight matrices are realized by
over-the-air computation of proposed AirFC framework. As the
overall goal of AirFC is to realize the weighted sum computation of
different weight matrices in the subsequent layers, we choose a 2-
layer architecture for easier understanding. The model architecture
of the NN architecture is presented in Fig. 11, where the complex-
valued weight matrices𝑊1 and𝑊2 are replaced with over-the-air
transmission of AirFC while validation. To make the model robust
to the changing wireless environment, we add noise to the weights
of the layer as well as additive noise while training. The Pytorch
implementation of our training and validation pipeline is available
to the research community [27].
•Generation of trained model:We create a trained model on the
MNIST dataset with stochastic gradient decent optimization and
negative log likelihood loss with 0.001 learning rate. This enables
us to obtain log-probabilities by adding a LogSoftmax layer in the
last layer. The model is trained for 20 epochs, achieving a training
accuracy of 96%.

6.3.1 Complex-valued neural networks. Wireless signals are often
represented using complex numbers, to express amplitude and
phase information. We leverage this property to design a neural
network based on complex-valued data and weights, similar to [28],
which has the potential to provide superior performance to real
valued neural networks [17]. Considering the distributive property
of the product operation, the output of a complex-valued fully
connected layer can be expressed as:
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Figure 12: Linear Operation MSE for full channel knowledge (a) and imperfect channel knowledge (b). This simulation uses
𝜎2𝑧 = 1𝑒−4 for both scenarios and 𝜎2

ℎ
= 1𝑒−4 for the imperfect channel knowledge case. Linear OperationMSE [dB] under different

receiver noise and channel error levels with (c) 𝑁 = 2 and (d) 𝑁 = 128. L was kept constant to 128 in this simulation. (e) shows
AirFC performance for different 𝜎2𝑧 and 𝜎2

ℎ
values.

𝑦𝑜𝐹𝐶 =

𝑁∑︁
𝑖=1

𝑥𝑅 ×𝑤𝑜,𝑖
𝑅

− 𝑥𝐼 ×𝑤𝑜,𝑖
𝐼

+ 𝑗 (𝑥𝑅 ×𝑤𝑜,𝑖
𝐼

+ 𝑥𝐼 ×𝑤𝑜,𝑖
𝑅
), (12)

where 𝑦𝑜
𝐹𝐶

is the output of neuron 𝑜 ,𝑤𝑜,𝑖 is the weight of the edge
from input 𝑖 to output 𝑜 and 𝑁 the number of input neurons. We
leverage the expression in Eq. 12, where the real and imaginary val-
ues are treated independently, to implement complex-valued layers
using two real-valued layers, where each one of them represents
the real (𝜙𝑤𝑅

) and imaginary parts (𝜙𝑤𝐼
). We refer the reader to the

work in [28] for further details.
6.3.2 Weight clipping. Here, we discuss how the power limitations
of realistic testbeds constrain the weights that can be implemented
in AirFC. First, we describe the transmitted power (𝑃𝑡𝑥 ) as:

𝑃𝑡𝑥 = |𝑝 |2 |𝑥 |2 = |𝑤 |2︸︷︷︸
𝑃𝑤

×
����� ℎ̂|ℎ |2

�����2︸ ︷︷ ︸
𝑃𝑒𝑞.

× |𝑥 |2︸︷︷︸
𝑃𝑥

, (13)

where 𝑃𝑤 represents the power associatedwith the FC layerweights,
𝑃𝑒𝑞. is the power of the pre-equalization term and the 𝑃𝑥 repre-
sents the power of 𝑥 . We see that 𝑤 is the only term added by
AirFC on top of any regular communication operation. Then, given
a certain power budget limited by 𝛾𝑚𝑎𝑥 , the transmitted power
should always remain lower than the designated power constrain
(𝑃𝑡𝑥 ≤ 𝛾𝑚𝑎𝑥 ). Thus,𝑤 is constrained to: |𝑤 | ≤

√︃
𝛾𝑚𝑎𝑥

𝑃𝑒𝑞.𝑃𝑥
.

In this paper, we do not include any power requirement thresh-
old for AirFC. We achieve that by imposing a constrain on the
weights of the neural network, such that they stay within the uni-
tary value circle (|𝑤 | ≤ 1). This constraint is imposed during the
model training phase by clipping the weights that go beyond the
designated threshold.
7 PERFORMANCE EVALUATION
This section evaluates the equivalence between the operations com-
puted by AirFC and its digital counterpart.

7.1 Validating Accuracy of Linear Operation
7.1.1 Number of transmitters. We evaluate the performance of
an independent weighted sum, considering different number of
transmitters are available, as well as different sequence lengths.
Fig. 12a-12b show the mean square error (MSE) under full and
imperfect channel knowledge for varying 𝑁 . It can be observed that
when only the receiver noise is considered, the accumulated error
decreases as 𝑁 increases, as expected, until 𝑁 ≥ 𝐿. On the contrary,
when the channel estimation error is taken into consideration,
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Figure 13: The validation pipeline of AirFC.

the MSE only reduces noticeably when the total number of re-
transmissions decreases, as described in Eq. 4.
7.1.2 Noise level. The different noise levels impact the received
signal generating errors when compared to the clean output ex-
pected on the received side. In Fig. 12c-e, we evaluate the impact of
the receiver noise (𝜎2𝑧 ) and the channel estimation error (𝜎2

ℎ
) on the

weighted sum at the receiver side. It can be observed that for the
noise levels measured in Sec. 4.1, the MSE does not exceed ≈ −10dB
for neither 𝑁 = 2, nor 𝑁 = 128. Given that the tolerable error
uniquely depends on the targeted application, in the following sub-
section we evaluate how the different noises affect the performance
of a neural network.

7.2 Simulation Results
We evaluate the performance of the model in Fig. 11 under different
noise conditions. In particular, we test the model with different
additive noise and beamforming noise in simulation. The model
performance is tested for additive noise from −20dB to 5dB and the
channel estimation error from −50dB to −20dB. The noise ranges
were selected after identifying where the trained model perfor-
mance is heavily impacted. It can be observed that for 𝜎2

ℎ
= −31dB,

an accuracy > 90% is achieved for 𝜎2𝑧 < −9.5dB. Equivalently, for
𝜎2𝑧 = −9.5dB, an accuracy > 90% is achieved for 𝜎2

ℎ
< −31dB.

7.3 OTA Validation Pipeline and Results
The trained model (discussed in Sec. 6.3) is deployed over the real-
world large testbed (discussed in Sec. 6.1) for inference following
the AirFC framework. We use 10,000 examples of the test set of
MNIST dataset for validating the proposed AirFC framework. The
validation pipeline is shown in Fig. 13. The first setting (𝑆1) of
our validation pipeline infers how the trained model performs in
all-digital environment. In the next two settings (𝑆2 and 𝑆3), we
realize either of weight matrices𝑊1 or𝑊2 through OTA transmis-
sion within the AirFC framework at the hidden or output layers,
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Settings Validation Pipeline Accuracy (%)
𝑆1 Digital NN 93.34
𝑆2 Digital (Part1) + AirFC (Part 2) 91.29
𝑆3 AirFC (Part1) + Digital (Part 2) 92.83
𝑆4 AirFC (Part1) +AirFC (Part 2) 92.61

Table 1: The accuracies of different settings following the
validation pipeline in Fig. 13.

respectively. In the final setting (𝑆4), we implement AirFC OTA
transmission for both the𝑊1 and𝑊2 and perform the weighted
sum at the output layer. This 𝑆4 setting can also be referred as AirFC
end-to-end implementation, where the end-to-end neural network
model is deployed in a real-world OTA environment. The results of
those different settings are shown in Tab. 1.

Overall, from the different settings of the proposed validation
pipeline, we observe AirFC returns competitive test accuracy with
only a 0.73 reduction when compared with the digital counterpart,
which is negligible for small to medium-scale implementation..
7.4 Discussions
The advantage of AirFC over the conventional computing platforms
is that AirFC can perform computation of a FC layer in one single
transmission that generally requires many consecutive operations
on a digital platform. In this work, we do not optimize the system
design in terms of energy and inference time; rather, we provide
a proof-of-concept of AirFC with the real-world implementation
and leave the enhanced engineering design and optimization for
future work. We next analyze the system complexity of AirFC and
discuss how AirFC can potentially compete with digital computing
platforms by leveraging upcoming advanced wireless technologies.
•Complexity analysis:We define the complexity of a classifier
during inference by the number of computations required to classify
input data. For example, a 𝑛 × 𝑛 matrix multiplication of one FC
layer requires𝑂 (𝑛2) digital MAC (multiply-accumulate) operations,
where a dot product between the input layer and weight matrix
requires 𝑛 multiplications and 𝑛 − 1 additions. Since they are 𝑛
elements, the dot product needs to be computed 𝑛 times, resulting
in 𝑛(2𝑛 − 1). Today, one MAC operation is performed in one clock
cycle of the processor, e.g., a computer having clock rate in the
order of 1GHz can perform 109 MAC/s. In contrast, AirFC’s com-
putation time is bound to a digital base band signal with available
bandwidth, which is directly related to sampling rate of the radio,
and OFDM block design. To expand this, we express subcarrier
frequency spacing, Δ𝐹 = 𝐵/𝑁𝐹𝐹𝑇 , where 𝐵 is bandwidth utilized
to perform OTA inference and 𝑁𝐹𝐹𝑇 as the size of Fast Fourier
Transform (FFT). Then, we derive the OTA inference time of one
FC layer as follows:

𝜏 =

{
1
Δ𝐹 , if 𝑁 ≥ 𝐿∑𝑅
𝑘=1

1
Δ𝐹 𝐿𝑘 , if 𝑁 < 𝐿,

(14)

where 𝐿𝑘 and 𝑅 represent the length of sequences for 𝑘th R-TX
and total number of re-transmissions, respectively. Note that we
assume𝑀 ≥ 𝑁𝐹𝐹𝑇 for a given FC layer with 𝑁 input neurons and
𝑀 output neurons. Considering the parameters of the implemented
system in this work where bandwidth, 𝐵, is 1MHz and FFT size,
𝑁𝐹𝐹𝑇 , is 128, we calculate the inference time of MNIST data set
with proposed complex-valued NN architecture as 6.8𝑚𝑠 for the
Part1 and 128𝜇𝑠 for the Part2 (see Fig. 11). The number of R-TX
is directly proportional to increased inference time from Part1.

This can be reduced by increasing number of antennas allocated
in network, thereby reducing number of R-TX. Furthermore, the
computation time of Part1 and Part2 can reduce to 169.6𝜇𝑠 and
3.2𝜇𝑠 , respectively, for WiFi standard 802.11ac/x [29].

Another system parameter we need to consider is the compu-
tation for channel estimation. In AirFC framework, our implemen-
tation requires two consecutive computations: (i) correlation of
training sequences, and (ii) LS estimation for channel as explained
in sec 6.2. Algorithmic complexity for both operations is 𝑂 (𝐾)
where 𝐾 represents the length of training sequences. We note that
one estimated channel value per transmitter can be used to equalize
many transmissions as long as the channel is flat and the condition,
𝑡𝑐𝑜𝑟𝑟 < 𝑇𝑐 , holds that computation time of correlation should be
within channel coherence time. Therefore, the computation time
of channel estimation should not be considered only for one OTA
inference, but numerous AirFC transmissions. Additionally, time-
efficient channel estimation techniques, such as channel sounding
or channel reciprocity [30], can be implemented for AirFC to reduce
computation time, instead of feedback-reliant approaches.
•Future directions: Emerging technologies like THz communica-
tion is making rapid strides in terms of device technology [31] and
channel modeling and propagation [32, 33]. The authors in [34]
reported ultrabroadband communication above 100GHz with differ-
ent channel bandwidths (from 2GHz to 32GHz). When we apply the
proposed physical layer parameters from [34], i.e., 32MHz subcar-
rier spacing, 64-point FFT size and sampling clock at 2.048GHz, the
computation time of Part1 and Part2 reduce to 1.7𝜇𝑠 and 31.3𝑛𝑠 ,
respectively. The digital counterpart running with a clock rate of
1GHz consumes 12.7𝜇𝑠 . Thus, for larger NNs, AirFC will benefit
from the OTA inference to compute 𝑛 × 𝑛 FC layer in nano-second
duration while the computation time of same network in an all-
digital platform will increase as the NN becomes larger.

8 RELATEDWORKS
A number of works have proposed OTA computations (AirComp)
using RF signals for numerous applications [35][36][37][38][39].
The work in [35] enables low-latency uploads and aggregating the
weights of the machine learning models by exploiting simultaneous
co-channel transmission and waveform superposition. In AirComp
[36], the authors perform wireless data aggregation using a MIMO
architecture, whereas the work in [37] leverages the AirComp con-
cept for averaging the model weights in a federated learning setup.
The authors in [38] describe OTA implementation of a set of linear
and non-linear functions, including variance, linear regression and
max function. Similarly, the work in [39] presents a beamforming
framework for multi-function OTA computation and applies it to
MIMO multi-modal sensor networks, highlighting the relevance
of such architectures for supporting distributed learning and infer-
ence. However, all aforementioned works are limited to analytical
studies, only validated in simulation. To the best of our knowledge,
in this paper we present the first experimental validation of OTA
computation and apply it for inference tasks using a NN.

Experimental approaches that perform training or inference on
NN have been proposed in [40][41][42][17]. In [40], authors use
stochastic gradient descent to train an analog NN by varying the
conductance of programmable resistive diodes. The work in [41]
demonstrates an analog recurrent NN using acoustic signals by
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leveraging wave physics properties, whereas [42] presents a RIS-
based experimental prototype testbed to performOTA convolutions,
which raises concerns of scalability. In [17], the authors implement
an optical neural chip to realise complex-valued NN. However,
they do not address the limitation of large FC layers, and thus,
their solution limits the dimensions of the FC layers. Motivated
by the shortcomings in the state-of-the-art, we present AirFC in
this paper, which is the first-of-its-kind experimental and scalable
implementation of over-the-air FC layers.

9 CONCLUSIONS
In this paper, we demonstrate the first-of-its-kind over-the-air neu-
ral network inference using FC layers on a real system using COTS
devices. In particular, we leverage a programmable 16-transmitter
MISO system and we show the feasibility of engineering trans-
missions to accurately replicate the linear operations of a FC. Fur-
thermore, we propose and characterize a re-transmission based
approach that enables FC layer computation when the number of
available antennas is smaller than the input dimensions. Overall,
AirFC achieves an experimentally observed accuracy of 92.61% on
the MNIST dataset, which represents only a 0.73% accuracy loss
compared to its digital counterpart.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the funding from the US Na-
tional Science Foundation (grant CNS-2112471).We are also grateful
to Joshua Groen for his great help and insightful suggestions.

REFERENCES
[1] Q. Pu, S. Gupta, S. Gollakota, and S. Patel, “Whole-home gesture recognition

using wireless signals,” in Proceedings of the 19th Annual International Conference
on Mobile Computing Networking, ser. MobiCom ’13, NY, USA, 2013, p. 27–38.

[2] H. X. Nguyen, R. Trestian, D. To, and M. Tatipamula, “Digital twin for 5g and
beyond,” IEEE Communications Magazine, vol. 59, no. 2, pp. 10–15, 2021.

[3] X. Shuai, Y. Shen, Y. Tang, S. Shi, L. Ji, and G. Xing, “Millieye: A lightweight
mmwave radar and camera fusion system for robust object detection,” ser. IoTDI
’21, NY, USA, 2021, p. 145–157.

[4] T. Wild, V. Braun, and H. Viswanathan, “Joint design of communication and
sensing for beyond 5g and 6g systems,” IEEE Access, pp. 30 845–30 857, 2021.

[5] C. Chaccour, W. Saad, O. Semiari, M. Bennis, and P. Popovski, “Joint sensing and
communication for situational awareness in wireless thz systems,” in ICC 2022 -
IEEE International Conference on Communications, Seoul, South Korea, 2022.

[6] M. Goldenbaum, H. Boche, and S. Stańczak, “Harnessing interference for analog
function computation in wireless sensor networks,” IEEE Transactions on Signal
Processing, vol. 61, no. 20, pp. 4893–4906, 2013.

[7] G. Zhu, J. Xu, K. Huang, and S. Cui, “Over-the-air computing for wireless data
aggregation in massive iot,” IEEE Wireless Communications, pp. 57–65, 2021.

[8] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-the-air com-
putation,” Trans. Wireless. Comm., vol. 19, no. 3, p. 2022–2035, mar 2020.

[9] I. F. Akyildiz and J. M. Jornet, “Realizing ultra-massive mimo (1024×1024) com-
munication in the (0.06-10) terahertz band,” Nano Commun. Networks, 2016.

[10] S. Abadal, E. Alarcón, A. Cabellos-Aparicio, M. C. Lemme, and M. Nemirovsky,
“Graphene-enabled wireless communication for massive multicore architectures,”
IEEE Communications Magazine, vol. 51, no. 11, pp. 137–143, 2013.

[11] S. Deb, K. Chang, X. Yu, S. P. Sah, M. Cosic, A. Ganguly, P. P. Pande, B. Belzer,
and D. Heo, “Design of an energy-efficient cmos-compatible noc architecture
with millimeter-wave wireless interconnects,” IEEE Transactions on Computers,
vol. 62, no. 12, pp. 2382–2396, 2013.
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