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Abstract—Airborne Base Stations (ABSs) allow for flexible
geographical allocation of network resources with dynamically
changing load as well as rapid deployment of alternate con-
nectivity solutions during natural disasters. Since the radio
infrastructure is carried by unmanned aerial vehicles (UAVs) with
limited flight time, it is important to establish the best location
for the ABS without exhaustive field trials. This paper proposes
a digital twin (DT)-guided approach to achieve this through the
following key contributions: (i) Implementation of an interactive
software bridge between two open-source DTs such that the same
scene is evaluated with high fidelity across NVIDIA’s Sionna and
Aerial Omniverse Digital Twin (AODT), highlighting the unique
features of each of these platforms for this allocation problem,
(ii) Design of a back-propagation-based algorithm in Sionna
for rapidly converging on the physical location of the UAVs,
orientation of the antennas and transmit power to ensure efficient
coverage across the swarm of the UAVs, and (iii) numerical
evaluation in AODT for large network scenarios (50 UEs, 10
ABS) that identifies the environmental conditions in which there
is agreement or divergence of performance results between these
twins. Finally, (iv) we propose a resilience mechanism to provide
consistent coverage to mission-critical devices and demonstrate
a use case for bi-directional flow of information between the two
DTs.

Index Terms—Digital Twin, Ray Tracing, Optimization, UAV,
Airborne Base Stations, Network Planning

I. INTRODUCTION

Unmanned Aerial Vehicle (UAV)-mounted Base Stations,
or Airborne Base Stations (ABSs), have gained significant
attention as a complement to ground-based cellular networks
[1]. As UAVs become more accessible, their ability to navigate
3-dimensional (3D) space provides flexibility in adapting to
dynamic network demands [2], [3], enabling line-of-sight links
for mission-critical units [4] and enhancing user tracking
[5]. However, ABS-enabled connectivity introduces challenges
such as collision avoidance, coordinated coverage, and optimal
placement, considering limited flight times of 20 to 100
minutes [6]. These challenges are highly dependent on the
RF propagation environment, making prior channel knowledge
essential for effective network planning.
• Motivation for Digital Twins: Optimal placement of Base
Stations (BSs) is traditionally handled by telecom operators
relying on domain knowledge and best practices. Various
factors, including geography, network performance, and costs,
influence these decisions. Digital Twins (DTs) and, specifi-
cally, Digital Twins for Networking (DTNs) [7], have emerged
as strategic tools for network simulation, performance analysis,
and “what-if” scenarios. DTNs aid in planning, performance

Fig. 1: Overview of proposed optimization and validation
framework for Airborne Base Stations (ABSs) deployment
using Multiple Digital Twins.

tuning, and machine learning-driven traffic modeling. In wire-
less networks, they also enable accurate propagation modeling,
antenna design, and multi-antenna configurations, playing a
key role in developing 6G systems and beyond.
• Challenges in Using Digital Twins: Despite advancements
in DTN tools, no single solution can comprehensively sim-
ulate complex wireless networks. Engineering such systems
requires expertise in signal processing, propagation modeling,
and software architectures. DTs offer varying capabilities,
from network optimization to large-scale physical simulations.
Integrating multiple DTs can enhance planning but introduces
challenges such as 3D site model sharing, node placement
consistency, and coherent interpretation of simulation results
across different solvers.
• Contributions of the Paper: This work presents a Multiple-
Digital Twin (Multi-DT) system for autonomous ABS de-
ployment in city-scale environments. We integrate NVIDIA’s
Sionna and Aerial Omniverse Digital Twin (AODT) to: (i) use
Sionna’s differentiable simulation to optimize ABS trajecto-
ries and orientations, (ii) validate deployments with AODT-
generated large-scale simulation data, (iii) leverage AODT
data to enhance ABS resilience for mission-critical coverage,
and (iv) bridge interoperability gaps between DTs to enable
cooperative functionalities. This framework demonstrates the
advantages of Multi-DTs for complex wireless tasks and
promotes their adoption in research. Proposed implementation
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Fig. 2: Multi-DT framework showing task separation: Sionna
(left) performs gradient-based optimization, AODT (right)
handles validation and mobility simulation, and the Shared
Data Layer enables bidirectional communication through stan-
dardized data exchange (3D models, ABS configurations,
User Equipment (UE) trajectories and simulation results).
Arrows demonstrate the synergistic information flow between
platforms at each computation step.

overview is shown in Fig. 2.

II. RELATED WORK

ABS deployments have been explored for various applica-
tions [8], [9], including enhancing network capacity in dense
areas [2], supporting vehicular networks [10], and aiding
disaster-affected regions [11]. Autonomous ABS deployment
is crucial in hazardous or inaccessible environments: Rein-
forcement Learning (RL)-based approaches have been pro-
posed for ABS deployment in coverage-limited areas, opti-
mizing position and orientation for backhaul connectivity [12],
[13]. These models do not account for physical obstacles, lim-
iting real-world applicability. Moreover, while RL approaches
can be effective when ABSs have limited environmental data,
they require extensive sensing and data generation for training.
In contrast, our approach leverages complete environmental
knowledge through Digital Twins, enabling direct gradient-
based optimization without the computational overhead of
exploration and learning phases required by RL methods.
Some studies incorporate obstacles for UAV route planning
in sensor data collection [14] and coverage optimization [15],
but focus on single UAV operation or single target areas.
While RL is useful when ABSs have access to limited en-
vironmental data, it demands extensive sensing and large-
scale data generation for effective training. Furthermore, these
works rely on stochastic channel models rather than precise RF
propagation modeling. Recently, [16] proposed a placement
approach based on radio propagation maps and discretized 3D
locations, but it doesn’t consider navigation or interference
caused by multiple UAVs deployment.

DTNs have gained interest as high-fidelity replicas of real-
world networks scenarios [7], [17], [18], facilitating testing
of UAV placements and communication technologies. Some
studies explore DTs-supported UAV resource allocation [19]
and network reconstruction [20], but comprehensive, license-
free DTNs integrating accurate wireless propagation, client
mobility, and system-level RAN control remain underdevel-
oped. Table I summarizes the features of proposed approach
compared to related works presented in this section.

III. BRIDGING SIONNA AND AODT: A UNIFIED DIGITAL
TWIN FRAMEWORK

The concept of using multiple DTs concurrently for a shared
objective is still emerging [21]. This work focuses on DTNs
with Ray Tracing [22] rather than statistical channel modeling,
as they allow realistic multi-path propagation simulation in
detailed 3D urban environments. We utilize two NVIDIA’s
DTNs: Sionna1 [23] and Aerial Omniverse Digital Twin
(AODT)2 [24]. Sionna and AODT represent a new class of AI-
native, high-fidelity wireless simulation tools that go beyond
the capabilities of traditional network simulators like NS-
3 [25] and OMNeT++ [26], or EM tools like Remcom Wireless
InSite [27] and ANSYS HFSS [28]. While traditional simu-
lators focus on protocol-level abstraction or detailed electro-
magnetic modeling in static environments, Sionna and AODT
integrate differentiable physical-layer models, photorealistic
3D environments, and efficient Ray Tracing simulation to
support AI-driven design and optimization of 5G and 6G net-
works. This makes them uniquely suited for creating dynamic,
end-to-end digital twins of urban wireless systems—enabling
realistic channel modeling, beamforming, and users’ mobility-
aware optimization within a fully interactive environment. For
researchers and engineers developing next-generation wireless
technologies with AI at the core, Sionna and AODT offer a
future-ready platform that bridges the gap between high-level
network design, and low-level physical realities in a scalable,
GPU-accelerated workflow. This section summarizes their key
features and highlights their design differences.
• Sionna Ray Tracing (RT): Sionna RT is part of NVIDIA’s
Sionna [29] link-level simulation library. Its key feature is
differentiability in RF simulation blocks, including statistical
models and Ray Tracing, enabling direct optimization of
network parameters and antenna orientation based on EM
propagation effects. It leverages TensorFlow [30] for auto-
matic differentiation and scalable gradient-based optimization.
The Ray Tracing module utilizes the Mitsuba3 differentiable
renderer [31], built on Dr.Jit [32], for efficient gradient com-
putation. Fig. 3a illustrates a Coverage Map generated with
Sionna.
• Aerial Omniverse Digital Twin (AODT): AODT, part
of NVIDIA’s Omniverse DT ecosystem, supports EM prop-
agation and system-level simulations. It enables realistic net-
work deployment, leveraging NVIDIA Aerial CUDA Accel-
erated RAN [33] for full GPU acceleration of 5G L1/L2
layers. Its high-performance Ray Tracing engine, written in

1Version 0.19, October 2024
2Version 1.1.1, October 2024
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Autonomous ABS Feature / Capability
RL-based ABS

deployment
(e.g. [12], [13])

Obstacle-aware UAV
route / coverage
(e.g. [14], [15])

Radio-map-based
placement

[16]

DT-supported UAV
deployment

(e.g. [19], [20])

Proposed
approach

Learning/optimization based ✓ ✓ ✓ ✓ ✓
Continuous-space UAV locations ✗ ✓ ✗ ✗ [19] ✓ [20] ✓
Handles physical obstacles ✗ ✓ ✓ ✗ ✓
Multi-UAV ✗ ✗ [14] ✓ [15] ✓ ✓ ✓
Multi-target-area coordination ✗ ✓ [14] ✗ [15] ✓ ✓ ✓
Ray Tracing RF propagation modeling ✗ ✗ ✓ ✗ ✓
Navigation / dynamic repositioning ✗ [12] ✓ [13] ✓ ✗ ✗ [19] ✓ [20] ✓
Interference management among multiple UAVs ✗ ✗ ✗ ✓ ✓
High-fidelity digital-twin network (DTN) ✗ ✗ ✗ ✓ ✓
Integrates clients mobility ✗ ✗ ✗ ✗ [19] ✓ [20] ✓
Allows system-level RAN simulation ✗ ✗ ✗ ✗ ✓
Free to use / open-source framework ✗ ✗ ✓ ✗ ✓

TABLE I: Feature comparison of existing ABS-related approaches versus ours. Proposed Multi-DT approach provides unique
capabilities including continuous-space optimization, comprehensive obstacle handling, and differentiable RF propagation
modeling that enable superior performance compared to learning-based alternatives that lack complete environmental
information. Note that [20] outlines a DT-based coordination framework, but does not propose any explicit autonomous UAV
deployment solution.

(a) (b)

Fig. 3: The same Tokyo 3D map from high-detail PLATEAU dataset loaded in Sionna and AODT, used to demonstrate the
proposed approaches for Multi-DT framework. (a) shows a path gain Coverage Map computed with Sionna and (b) presents
a simulation frame from AODT multi-UE simulation in the same map location.

C++/CUDA, outperforms Sionna’s Python-based implemen-
tation while maintaining functionally identical EM propaga-
tion effects. Though non-differentiable, AODT supports rapid
multi-User Equipment (UE) simulation data generation for
offline analysis and ML/DL model training. This work focuses
on AODT’s L1 EM simulation, leaving L2 integration for
future studies. Fig. 3b shows an EM simulation in AODT.

• DTNs Choice Motivation: Our motivation for combining
these specific DTNs is as follows: (i) Sionna outperforms
commercial competitors [34], while AODT supports multi-
UE mobility, diverse antenna configurations, and efficient
Ray Tracing; (ii) As shown in Table II, they offer distinct
functionalities, such as differentiable tensor blocks in Sionna
and system-level simulation in AODT; (iii) Both are freely
available. While Sionna provides a differentiable Ray Tracer
for gradient-descent optimization in multi-path propagation
models, AODT supports large-scale simulations with higher
Ray Tracing sampling and mobility features. As telecom
operators explore next-generation networks, these DTNs offer
complementary capabilities for innovative solutions. Integrat-
ing their outputs enables tackling complex challenges.

IV. CHALLENGES IN COMBINING DIGITAL TWINS

Integrating multiple DTNs presents several challenges due
to their lack of built-in interoperability. While this work
focuses on Sionna and AODT, these challenges apply broadly
to other DTN combinations:

• Sharing 3D Urban Models: Despite similar Ray Tracing
capabilities, Sionna and AODT use different scene de-
scriptors (Mitsuba3 vs. OpenUSD). While both support
OpenStreetMap imports, high-resolution custom models
require manual conversion.

• Wireless Device Deployment Exchange: AODT lacks
procedural import/export functions for radio and user
equipment placement, relying on manual GUI configu-
ration. To bridge this gap, modifications were made to
enable JSON-based deployment imports from Sionna and
automate UE placement for specific areas in AODT.

• Ray Tracing Variability: Differences in stochastic Ray
Tracing implementations, unit systems, and antenna mod-
els make direct comparison difficult. Parameter adjust-
ments are necessary to align simulation outputs.

• Different Simulation Features: AODT supports only
fixed ground stations, limiting ABS deployment studies.
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Feature AODT 1.1.1 Sionna 0.19
Simulation target System-level Link-level
3D geometry format OpenUSD Mitsuba
PHY (L1) simulation ✓ ✓
MAC (L2) simulation ✓ -
5G waveform compliant ✓ ✓
Multi-device (BS/UE) simulation ✓ ✓
UE mobility engine ✓ -
Coverage Maps - ✓
Differentiable - ✓

Ray Tracing simulation engine
- Reflection ✓ ✓
- Scattering / Diffusion ✓ ✓
- Diffraction ✓ ✓
- Surface material properties (ITU) ✓ ✓
- Customizable antenna panels ✓ ✓

Simulation Param. (max value)
Num. of rays emitted at every RU 1, 000, 000 †
Num. of reflection/diffusion events 5 †
Num. of diffraction events 1× path* 1× path**
Num. of UE 10, 000 †
Num.of antenna elements per RU 64 §
Num. of antenna elements per UE 8 §

TABLE II: Simulation features and EM propagation effects
capabilities of Aerial Omniverse Digital Twin (AODT) and
Sionna. †= set by user (w/ GPU memory constraints); §= set
by user (shared by all RUs/UEs in the simulation); * = for
any interaction of the ray along its path; ** = only for LoS
wedge interaction with transmitter. Note: Sionna quantities
specifically relate to its Coverage Map function.

To overcome this, a custom BS mobility system was
implemented, allowing pre-computed ABS trajectories
during simulations.

Such challenges highlight the need for tailored solutions
when integrating multiple DTNs for wireless network simu-
lations and the main roadblocks addressed by our Multi-DT
implementation.

A. Shared Data Layer Components and Functions

In order to address these challenges, we have implemented
a dedicated Shared Data Layer that allows exchange of 3D
models and deployment configurations and to easily validate
complex wireless deployments via proposed Multi-DT plat-
form. The Shared Data Layer architecture provides several
critical advantages, which are rooted in the following design
principles:

1) Platform Independence: Each DT operates in its native
environment while sharing standardized data representa-
tions;

2) Standardized Interoperability: JSON-based protocols
can accommodate different numbers of ABSs, AOIs, and
UE configurations;

3) Multi-DT Deployment Adaptation: Bidirectional com-
munication enables dynamic scenario updates based on
performance feedback from each DT;

4) Validation Integrity: Cross-platform consistency
checks ensure optimization results translate effectively
between environments;

5) Extensibility: Modular design allows integration of ad-
ditional DT platforms and applications with minimal
architectural changes.

The Shared Data Layer implements a multi-faceted ap-
proach to handle the fundamental incompatibilities between
Sionna and AODT platforms. It consists of four main func-
tional components:

1) 3D Scene Data Harmonization: Sionna uses Mitsuba3
scene descriptors while AODT employs OpenUSD for-
mat, creating incompatibility for high-resolution 3D
urban models. This component includes:

• Custom Blender Script: Automated conver-
sion pipeline that reads OpenUSD scenes from
AODT and exports Mitsuba3-compatible formats
for Sionna;

• Geometry Preservation: Ensures building coordi-
nates, surface materials properties, and structural
details remain consistent across both platforms;

• Coordinate System Alignment: Maintains spatial
consistency for Tokyo PLATEAU dataset across
both environments by addressing possible unit mea-
sure differences (e.g., metric vs. imperial system)
and coordinate system conventions (e.g. Global vs.
Local, Right-handed vs. Left-handed Coordinate
Systems).

2) Device Deployment Configuration Exchange: AODT
lacks procedural import/export functions for radio equip-
ment placement, relying on manual GUI configuration.
Standardized data structures have been defined to ex-
change the following information via a JSON-based
protocol:

• AOIs Parameters: Center coordinates (zk, wk) and
radius rk for each k-th AOI;

• ABSs Parameters: Coordinates (xi, yi), orienta-
tions (ϕi, θi), and transmission powers P tx

i for each
i-th ABS;

• ABSs Trajectories: A list of (xi, yi) coordinates for
each i-th ABS at a given simulation time-step;

• UEs Trajectories: A list of coordinates (xu, yu) for
each u-th UE simulated in experiments with mobile
terminals.

3) Simulation Parameter Synchronization: Different ray
tracing implementations, unit systems, and antenna mod-
els make direct comparison difficult. Hence, several
parameters need to be consistently tracked across Multi-
DT platforms:

• RF Parameter Alignment: Center frequency (fc =
3.5 GHz), sampling frequency and antenna patterns
(TR 38.901 for ABS, half-wave dipole for UE);

• Ray Tracing Harmonization: Consistent material
properties, types of ray interactions (e.g., specular
reflections, diffusion, diffraction) and number of
interactions limit per Ray;

• Power Scale Matching: Transmission power nor-
malization (43.0 dBm baseline) and SIR computa-
tion standardization;
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Parameter Description Equation
/ Section Value

Loss Function Components
Lp Total loss function to minimize (1) -
α Scaling factor for coverage term (1) 0.01
β Scaling factor for attraction penalty (1) 1.0
γ Scaling factor for repulsion penalty (1) 0.8
η Scaling factor for collision penalty (1) 1.0
K Coverage factor for spatial distribution (2) -
Pu Repulsion penalty between ABSs (3) -
Pa Attraction penalty toward AOIs (4) -
Pb Collision avoidance penalty (6) -

Spatial and Geometric Parameters
N Total number of ABSs (2,3) 10
M Total number of Areas of Interest (AOIs) (4) 5
pi Position coordinates (xi, yi) of i-th ABS (2,3) -
ck Center coordinates (zk, wk) of k-th AOI (4) Table III
rk Radius of k-th AOI (4) 250-300m
G Set of evenly spaced 2D grid coordinates (2) 5× 5 grid
g Individual grid point coordinate (2) -
me Margin distance from map edges (2) 150m
dmin Minimum distance between ABSs (3) 400m

Building and Collision Parameters
B Number of buildings in the map (6) *
h ABSs’ elevation V-A 70m
cb Minimum allowed distance from buildings (6) 15m
dib Distance from ABS i to building b (6,7) -

(px, py) ABS XY coordinates (7) -
(mx,my) Min. XY coords. of building bounding box (7) -
(Mx,My) Max. XY coords. of building bounding box (7) -
dx, dy X,Y components of distance to building (7) -

Steepness and Weight Parameters
κa Steepness factor for attraction exponential (4) 0.02
κb Steepness factor for collision penalty (6) 0.5
κi Steepness factor for sigmoid function (5) 0.25
ωk Weight factor for k-th AOI (4,5) -

σ(z, t, κ) Modified sigmoid: 1
1+e−κ(z−t) (5) -

Coverage Map and Ray Tracing
C Coverage map tensor RN×Cx×Cy (8) -

Ci,x,y Coverage map cell for ABS i at (x, y) (8) -
ĝ(i, x, y) Estimated path gain for ABS i at cell (x, y) (8) -
NR Number of valid rays hitting cell (x, y) (8) *
NC Total coverage map cells: Cx · Cy (8) *

|h(s(ψn))|2 Squared amplitude of path coefficients (8) -
r(ψn) Length of n-th path with direction ψn (8) -
α(ψn) Angle between map normal and arrival direction (8) -
s(ψn) Intersection point of n-th path with map (8) -

Signal Strength and Interference
P tx
i Initial transmission power of i-th ABS (dBm) (8,9) 43.0 dBm

RSSi,x,y Received Signal Strength at cell (x, y) - -
Ri,x,y Signal-to-Interference Ratio at cell (x, y) (9) -
ϵ Noise floor (fixed) (9) 1× 10−20

Mi,x,y Coverage mask for ABS i at cell (x, y) (10) 0 or 1
r̂i Effective average SIR for i-th ABS (dB) (11) -

Optimization Loss Functions
Lsmoothmin Smooth minimum approximation loss (12) -
LavgSIR Average SIR maximization loss (14) -

Lo Total orientation optimization loss (15) -
Lu Unweighted AOI SIR optimization loss (18) -
Lw Weighted AOI SIR optimization loss (19) -

NLSE(r, βL) Negative Log-Sum-Exp function (13) -
LSE(r∗m, βL) Log-Sum-Exp for m-th AOI (17) -

Algorithm and Optimization Parameters
βL Temperature for NLSE/LSE functions (12,13) 1.0
ξ Scaling factor for average SIR term (15) 0.25
wm Softmin weight for m-th AOI (20) -
T Temperature parameter for softmin (20) 25
ϕi Mechanical azimuth of i-th ABS (degrees) V-B [−2π, 2π]
θi Mechanical tilt of i-th ABS (degrees) V-B [π/7, 6π/7]

TABLE III: Complete Parameter Reference for ABS Deploy-
ment Optimization Framework. * = Map-dependent.

Fig. 2 depicts the flow of data exchanged between the
chosen DTs via implemented Shared Data Layer.

V. GRADIENT-BASED ABSS DEPLOYMENT OPTIMIZATION

This section presents a case study using the proposed Multi-
DT framework to develop an autonomous ABS deployment
algorithm for enhancing network capacity or restoring cover-
age in disaster-affected areas. The key requirements for this
algorithm are as follows:

• ABSs need to be deployed rapidly and autonomously;
• These deployments are temporary and adaptive, with

possibility of quick change of objectives and targets;

• The deployment algorithm has to be general enough
to adapt to different urban scenarios and be aware of
obstacles in 3D space during navigation;

• The deployment algorithm has to be aware of wireless
propagation properties of the environment to avoid incur-
ring in undesirable interference once hovering locations
are identified.

By exploiting the rich information available within the
DTs, we employ gradient-based optimization to first generate
ABS navigation routes from random initial positions, targeting
multiple coverage areas, and then optimize orientation and
transmission power to minimize interference, using Sionna’s
differentiable Ray Tracer. This approach enables a flexible
method that can easily be adapted to different urban scenarios
and coverage requirements, without the costly data generation
and training required for learning-based methods. To validate
our approach, we use Tokyo’s high-resolution 3D map from
PLATEAU [35] dataset provided by AODT. The geometry is
converted from OpenUSD to Mitsuba3 format for compatibil-
ity with Sionna, where the optimization is implemented via
TensorFlow.

A. Location Optimization

We assume ABSs hover at a fixed elevation of h = 70m,
which is considered a hyper-parameter, and we focus on
optimizing ABSs’ locations only in the XY-plane. This el-
evation was selected to ensure ABSs operate above most
urban obstacles in the targeted map while maintaining practical
deployment constraints. The deployment optimization aims
to find optimal locations (xi, yi) for N ABSs to cover M
Areas of Interest (AOIs), each defined by (zm, wm) and radius
rm. Initially, ABSs are placed semi-randomly3, as they may
be deployed from aerial vehicles, storage hubs, or accessible
zones near disaster-affected areas. Optimal paths are computed
to navigate from initial positions to target locations while
avoiding obstacles and collisions. No limit is imposed on the
number of ABSs per AOI, allowing flexibility in coverage.
Once AOIs are served, remaining ABSs redistribute in their
surroundings to enhance coverage or act as relays. Simul-
taneously computing optimal routes and locations requires
tight coordination among ABSs. To achieve this, we model
location optimization using a Particle Swarm Optimization-
inspired gradient-descent approach [36]. By embedding ABS
interactions with the environment into the loss function, the al-
gorithm directly samples navigation waypoints, guiding ABSs
through the optimization landscape.

Specifically, we define our loss function to be minimized
as a composition of multiple loss terms summed together,
with each individual loss addressing one of our optimization
criteria. The devised ABS deployment optimization function
is determined as follows:

Lp = −αK + βPa + γPu + ηPb (1)

3For initial deployment, we randomly samples initial positions for each
ABSs while ensuring they are not generated within buildings/obstacles and
do not cluster too closely.
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where K corresponds to a coverage factor, Pu is the
repulsion penalty, Pa is the attraction penalty and Pb is a
collision avoidance penalty. α, β, γ and η correspond to
scaling factors for each of the loss terms and are considered
as hyper-parameters.
K and Pu together encourage even distribution of particles

across maps. Specifically, K is defined as follows:

K =
∑
g∈G

min
1≤i≤N

∥g − pi∥ (2)

and Pu is defined as:

Pu =

N∑
j

N∑
i

max
(
0, dmin −

∥∥pi − pj

∥∥) (3)

where G is a set of g evenly spaced 2D grid coordinates
across the XY-plane of the 3D map and pi = (xi, yi) is
the coordinates of the i-th ABS. The coordinates and size of
the grid points is computed by taking in input the number of
reference points along the X and Y-axis and evenly distributing
them across the map, leaving a margin of me meters from the
edges of the ground plane. These two terms together aims
to maximize the sum of minimum distances from each grid
points to all ABSs location while keeping the distance among
each ABS at a minimum of dmin, which is also considered a
hyper-parameter.

The attraction penalty Pa aims to pull ABSs in the map
towards AOIs and is defined as follows:

Pa =

M∑
k=1

N∑
i=1

[ωk · ∥pi − ck∥ − (1− ωk) ·

exp (−κa · ∥pi − ck∥ − rk)]

(4)

where ck and rk corresponds to the center coordinates
and radius values of the k-th AOI, κa is a hyper-parameter
steepness factor for the exponential function and

ωk = exp

[
−

N∑
i=1

σ

(
∥pi − ck∥ ,

2rk
3
,−κi

)]
(5)

is a weight factor that decreases as more ABSs end up within
a given AOI. To avoid harsh discontinuity in the loss function,
we use σ(z, t, κ) = 1

1+e−κ(z−t) as a modified sigmoid function
to smoothly approximate the condition ∥pi − ck∥ < 2rk

3 and
κi is a steepness factor. The idea is that, for each AOI, all
ABSs are linearly attracted by it and as soon as one or more
ABS are within 2/3 of the AOI radius, the attraction switches
to exponential to increase the pull of those ABSs toward the
center of the AOI, while all the other particles pulls will be
“switched off” for that particular AOI.

Finally, the collision avoidance penalty Pb is defined as
follows:

Pb =

N∑
i

B∑
b

exp (κb · (−dib + cb)) (6)

where B is the number of buildings in the map, κb is a
steepness factor, cb is the minimum allowed distance in meters

Fig. 4: Visualization of loss function terms γPa+ηPb projected
over the 2D ground-plane of a 3D map of Tokyo for a sample
AOI (delimited by the yellow circle) and considering ABSs’
elevation of h = 70m. In this visualization, only one ABS is
considered and loss values are clipped in the range [0, 2000].

from a building, dib is the distance function from any given
ABS i to any given building b’s closest edge, defined as

dib =
√
d2x + d2y,

dx = max (max (mx − px, px −Mx) , 0) ,
dy = max (max (my − py, py −My) , 0)

(7)

given (px, py) as the ABS’s XY coordinates, (mx,my) and
(Mx,My) as the minimum and maximum XY coordinate of a
building’s binding box, respectively. As the ABS elevation is
assumed constant, buildings that have heights below the hover-
ing elevation (plus a tolerance of 15m to avoid blockages from
rooftops) are excluded from the penalty term computation. In
order to provide a better understanding of how the proposed
loss function works, Fig. 4 offers a visual representation of
the environment-dependent loss terms γPa + ηPb. From this
figure, it is possible to note how the loss values progressively
become smaller for locations closer to the center of AOI, while
higher values are present in proximity of buildings that have
height higher than defined ABS’ hovering height.

The optimization procedure considers the (xi, yi) coordi-
nates for all the N ABSs as a set of parameters Θl, and aims to
perform gradient-descent optimization by following the inverse
direction provided by the gradients of the loss function w.r.t.
the location parameters, i.e. δLp

δΘl
.

B. Orientation and Power Optimization

Once the routes and final locations of ABS have been
identified by the previous optimization step, their orientations
also need to be adjusted. For this optimization step, we initially
assume that the ABS antenna panels face directly the ground
plane, with a mechanical tilt equal to θi = 90◦ for each i-
th ABS. As their location in the 3D space will also affect
the wireless propagation features of the serviced area, their
deployment needs to be optimized so that their transmissions
will not interfere with each other, hence by minimizing their
mutual interference by jointly adjusting their location and
transmission power.
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To do so, we utilize the differentiable Ray Tacer pro-
vided by Sionna to compute a differentiable Coverage Map
C ∈ RN×Cx×Cy , which consists of the average path gain
experienced at each (x, y) location of a discretized version
of the ground plane made of NC = Cx · Cy surface cells
of equal size. Each cell reports a value equal to the sum of
contributions of reflected/diffused paths and diffracted paths,
for each of the N ABS. For a given ABS i, the value of
each cell Ci,x,y = ĝ(i, x, y) is computed via Monte Carlo
simulation as follows:

ĝ(i, x, y) =
4π

NRNC

NR∑
n=1

|h (s (ψn))|2
r (ψn)

2

|cosα (ψn)|
1{s (ψn) ∈ Ci,x,y}

(8)
where NR is the number of valid rays hitting Ci,x,y cell,
|h (s (ψn))|2 is the squared amplitude of the path coefficients
at position s(ψn) (i.e., the point where the n-th path with
direction of departure ψn intersects the Coverage Map), r(ψn)
is the lenght of the n-th path with direction of departure ψn,
α(ψn) is the angle between the coverage map normal and the
direction of arrival of the path with direction of departure ψn,
and 1 {s (ψn) ∈ Ci,x,y} is the function that sets a value of
1 if the intersection point with the Coverage Map is within
the current (x, y) cell, or zero otherwise. If we consider a
transmission power P tx

i expressed in Watts for each i-th ABS,
we can obtain the Received Signal Strength (RSS) at each
receiver location in the map as RSSi,x,y = P tx

i · ĝ(i, x, y).
We propose two separate optimization strategies based on

gradient-descent in order to (i) improve the mutual interference
of the ABSs over the whole map and (ii) improve the mutual
interference over a set of specific AOIs.

1) ABSs’ mutual interference optimization (Method 1):
From proposed location optimization approach, we observe
that the ABSs tend to group around the AOIs in a clustered
formation, assuming AOIs are sufficiently close to each other.
Intuitively, the ABSs will have lower Signal-to-Interference-
Ratio (SIR) when located within the cluster and higher SIR
when located on its borders. Although it might seem reason-
able to optimize orientations by maximizing the average SIR
for all devices in the map, it is important to note that this
approach might not necessarily produce a better configuration,
as the gradients might favor devices with excessively high SIR
while neglecting the ones in the lowest SIR regions, creating
areas in the map with a wider disparity of Quality-of-Service
(QoS). Hence, we formulate a loss function based on a Max-
Min approach that prioritizes improving the SIR of ABSs that
experience the highest interference (i.e., those within the ABS
cluster) while making sure not to excessively disrupt those in
higher SIR regions (i.e., the ones on the cluster border). By
targeting the worst-case SIR, the Max-Min approach ensures
fairness by uplifting the least-performing areas while avoiding
over-optimization of ABSs with dominant SIR conditions.
Specifically, for each i-th ABS we compute its SIR map in
linear scale Ri ∈ RCx×Cy from the RSS perceived at each
cell location by combining the coverage map C ∈ RN×Cx×Cy

path gains produced by Sionna and the transmission power of

each ABS as follows:

Ri,x,y =
P tx
i Ci,x,y∑

j ̸=i P
tx
j Cj,x,y + ϵ

(9)

where Ci ∈ RCx×Cy is the i-th ABS’s coverage map and
ϵ = 1e−20 is a small value used as a proxy for thermal noise
term and for numerical stability. Then, we compute a coverage
mask M i ∈ RCx×Cy :

M i,x,y =

{
1, if Ci,x,y > 0

0, otherwise
(10)

that we use to compute the average effective SIR r̂i ∈ R
expressed in dB as follows:

r̂i =

∑
y

∑
x R

dB
i,x,y ·M i,x,y∑

y

∑
x M i,x,y

(11)

where RdB
i = 10·log10 (Ri) correspond to the SIR map Ri in

logarithmic scale. It is important to note that the effective SIR,
rather than the SIR over the whole map, has to be computed
in order to avoid diluting the average SIR computation over
the cells that have no coverage.

Once all the r = {r̂1, ..., r̂N} are obtained for all N ABSs,
we formulate the first term of our loss function as follows:

Lsmoothmin = −NLSE (r, βL) (12)

where the Negative Log-Sum-Exp (NLSE) is used a smooth
approximation of the minimum function. NLSE is defined as:

NLSE(r, βL) = − 1

βL
log

(
M∑

m=1

e−βLrm

)
(13)

and for small values of βL > 0 it progressively includes more
values of the input vector in the computation of approximate
minimum, avoiding steep discontinuities in the loss output
as it maximizes its minimums. Moreover, in order to avoid
degrading too much the SIR of the other ABS, we add a second
term to our loss function defined as follows:

LavgSIR = −
∑M

m rm
M

(14)

that aim to maximize the overall average SIR for all ABSs
and that is intended to be scaled using a factor 0 < ξ < 1 to
avoid over-optimization of ABS with high SIR as explained
before.

Finally, we obtain the total loss function for orientation
optimization by putting together the two loss terms defined
above as follows:

Lo = Lsmoothmin + ξLavgSIR (15)

The optimization procedure considers the set of (ϕi, θi, P
tx
i )

mechanical azimuth, mechanical tilt and transmission power
for all the N ABSs as a set of parameters Θop, and aims to
perform gradient-descent optimization by following the inverse
direction provided by the gradients of the loss function w.r.t.
the location parameters, i.e. δLo

δΘop
.
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2) AOIs’ SIR optimization (Method 2): The second ap-
proach we propose focuses on improving the mutual interfer-
ence of ABSs specifically for a set of AOIs considered in the
targeted urban scenario: while the previous approach considers
the entirety of covered cells in the map, this approach focuses
on maximizing the effective SIR of cells associated with the
AOIs identified by the network operator by maximizing the
SIR of each AOI’s serving ABS, in order to improve the signal
strength of the UEs located in those areas.

To formulate the loss function for this strategy, we refer
to the effective average SIR for each i-th ABS from Eq. 11.
In this case, instead of considering the entire coverage map
to compute r̂i, we only consider the square area described
by the center (zm, wm) of the m-th AOI and defined within
±rm range of its radius on both X and Y-axis. To do so, we
first obtain the cell’s x and y indexes of AOI’s center, x∗m
and y∗m. Then, we compute the length in cells associated with
AOI’s radius, r∗m, assuming equal cell size along the X and
Y-axis. Finally, we extract the coverage map’s area of m-th
AOI, Ai ∈ R2r∗m×2r∗m for each i-th ABS:

Ai = Ri,x∗
m±r∗m,y∗

m±r∗m (16)

Once Ai is obtained, we compute the effective SIR for all
ABS r∗m = {r̃1, ..., r̃N} using Eq. 11 and by substituting Ri

with Ai. We then obtain its smooth maximum using Log-Sum-
Exp (LSE) function, defined as:

LSE(r∗m, βL) = −NLSE(r∗m, βL) (17)

The goal is to optimize the orientations and transmission
powers of all ABSs in order to maximize the effective SIR for
the ABS serving a given AOI (i.e., the one that has highest SIR
for the cells corresponding to a given AOI), for all M AOIs.
Combining these terms for all AOIs, we obtain the following
unweighted loss term:

Lu = −
M∑

m=1

LSE(r∗m, βL) (18)

Similarly to the approach discussed in V-B1, we want to
prioritize optimization of AOIs that suffer from the highest
SIR compared to all others, while still aiming to improve
collectively the SIR experienced in all AOIs. To do so, we
use a weighted version of Eq. 18 that uses softmin with tem-
perature function to assign priorities to each SIR maximization
objective. Specifically, the weighted loss function will look as
follows:

Lw = −
M∑

m=1

wm · LSE(r∗m, βL) (19)

where the weights wm sum up to 1.0 and are defined using
the softmin function:

wm =
exp

(
−xm

T

)∑M
j=1 exp

(
−xj

T

) (20)

where xm = LSE(r∗m, βL) and T is the temperature hyper-
parameter to control the sharpness of the weight distribution:
a lower temperature makes the softmin more sensitive to
differences, giving much higher weights to smaller values,

Parameter AOI 0 AOI 1 AOI 2 AOI 3 AOI 4
zm 450.0 -247.0 -423.0 353.0 -852.0
wm 168.0 145.0 -416.0 -622.0 133.0
rm 300.0 250.0 250.0 250.0 250.0

TABLE IV: Configuration of Areas of Interest (AOIs) for
experimental evaluation of gradient-based ABS deployment.
Coordinates (zm, wm) and radius rm of the m-th AOI are
expressed in meters.

while a higher temperature smooths the weights, distributing
attention more evenly across all values. In order to promote
fairness while still prioritizing the AOI with lowest perceived
SIR, we choose a high temperature temperature approach.

In this case, we aim to optimize the same set of parameters
Θop introduced in the previous section, but this time optimizing
w.r.t. Lw loss function, i.e. δLw

δΘop
.

C. Performance Evaluation

1) Hyperparameter Selection Methodology: Our hyperpa-
rameter values were determined through systematic explo-
ration guided by the following principles:

• Loss Function Scaling Factors: Values selected to bal-
ance competing optimization objectives while ensuring
numerical stability. α = 0.01 provides lower weight for
coverage to prevent overshadowing obstacle avoidance,
while β = 1.0 ensures standard weight for AOI attraction.
γ = 0.8 allows necessary clustering near AOIs, and
η = 1.0 maintains full weight for safety-critical collision
avoidance.

• Steepness Factors: κa = 0.02 provides smooth attraction
gradients avoiding optimization instability, κb = 0.5
creates sharp building penalties while maintaining dif-
ferentiability, and κi = 0.25 ensures smooth sigmoid
transitions.

• Optimization Parameters: βL = 1.0 provides appropri-
ate smoothness for minimum approximation, ξ = 0.25
prevents over-optimization of high-SIR ABSs, and T =
25 ensures fair attention distribution across AOIs.

These values were validated by achieving over 97% AOI sat-
isfaction rates and effective obstacle avoidance across 1,800+
test runs.

2) Results for ABS Positioning: In order to evaluate the
performance of proposed gradient-descent based route finding
and positioning algorithm described in Sec. V-A, we define a
fixed set of M = 5 non-overlapping AOIs in the area of Tokyo
3D map described above. Table IV reports the configuration
chosen for this experiments. We define an AOI satisfaction
rate, defined as:

SAOI =

∑M
m=1 min

(
1,
∑N

n=1 1
{
dn ≤ 2rm

3

})
M

(21)

which determines the ratio of correctly served AOIs by check-
ing that distance dn = ||pn − cm|| from the ABS coordinate
pn = (xn, yn) obtained at the end of the optimization to
any given AOI center cm = (zm, wn) coordinate is within
2/3 of its radius rm, while allowing for one or more ABS
to hover within the same AOI. Moreover, in order to test the
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Fig. 5: AOI satisfaction metric for all combinations of M AOIs
taken in groups of m = {1, 2, 3, 4, 5}. Each combination is
averaged over 50 runs with semi-random initial ABS deploy-
ment, for a total of {250, 500, 500, 250, 50} runs each.

performance of proposed algorithm under different conditions,
we evaluate this approach for different number of AOIs con-
sidered at once in the map. We perform multiple experiments
with m = {1, 2, 3, 4, 5} and for each of these configuration
we test all the

(
M
m

)
possible combinations of AOIs. Finally,

for each AOI configuration, we perform 50 tests with initial
semi-random deployment of ABSs. For each experiment, we
consider a number of ABS N = 10 and use Adam optimizer
with a learning rate lr = 2.0, a limit of 2500 optimization
iterations and early stopping criterion with a patience of 20
training epochs. We use hyper-parameter exploration to define
our loss parameters: we choose loss term scaling factors
α = 0.01, β = 1.0, γ = 0.8 and η = 1.0; for steepness factors,
we select κa = 0.02, κb = 0.5, κi = 0.25; finally, we define
cb = 15m and dmin = 400m as minimum distances of ABSs
from buildings and among ABSs themselves, respectively, and
configure a set of 5 × 5 grid points equally distributed along
the X and Y-axis of the map with a margin me = 150m from
its edges, used for the coverage term K.

Fig. 5 shows the average satisfaction rate for all AOI com-
binations. The results indicate that our approach successfully
configures ABS deployments, achieving an AOI satisfaction
rate of over 97% across all runs and configurations. This
demonstrates its effectiveness in navigating obstacles and
landing in designated service areas.

To better illustrate the optimization performance, Fig. 6
presents a sample run considering all AOIs. The proposed
method efficiently leverages the 3D city-scale map to opti-
mize multiple ABS positions simultaneously while generating
obstacle-avoiding routes (Fig. 6b) for real-world deployment.
Finally, Fig. 6c shows that, while all AOIs are covered, the
remaining ABSs distribute in a lattice-like formation, useful
for serving as relay nodes or providing additional coverage.

3) Results for Orient. and Pow. Optimization (Method 1):
Starting from the location configuration obtained in the ex-
periment illustrated in Fig. 6c, we now apply the orientation
optimization strategy described in Sec. V-B1 to showcase the
performance of proposed optimization approach for improving
ABSs’ mutual interference when considering the whole urban

site map. For this experiment, we consider ABS mounting di-
rectional antennas specified in the 5G NR standard TR 38.901
[37] and UE mounting half-wave dipole antennas, both with
dual polarization (i.e., vertical and horizontal) and operating
at a center frequency fc = 3.5 GHz. For every coverage
map computation, we consider map cells size of 10m× 10m
and downlink transmissions by setting the initial transmission
power P tx

i in Watts for each ABS to 43.0 dBm. We consider
Line-of-Sight (LOS), specular reflection, and diffuse scattering
as possible rays interactions when generating the coverage
maps during optimization and for coverage map plots. For
each map, we consider 5M rays equally distributed across
the ABSs and up to 3 ray interactions before reaching the
destinations. For simplicity, we assign all objects and surfaces
in the map with concrete material scattering properties, as
defined by ITU-R P.2040 [38]. For these experiments, we use
the RMSProp optimizer with learning rate lr = 0.1 and 150
training epochs, with early stopping criterion using lr decay
of 0.5 and patience of 5 training epochs. For the loss hyper-
parameters, we choose βL = 1.0 for the smooth minimum
computation and ξ = 0.25 as a scaling factor for the global
average SIR loss term.

To evaluate the benefits of the proposed approach, Table V
compares the initial effective SIR per ABS with the results
from (i) the Max-Min approach (Lo), (ii) a naı̈ve average SIR
maximization (LavgSIR), and (iii) uniform random parameter
selection. While approach (ii) achieves the highest average
SIR (5.76 dB), it creates significant performance inequality
with a fairness index4 of only 0.115 and degrades worst-case
performance (minimum SIR of -12.96 dB). This approach
over-optimizes ABSs with already high SIR while severely
penalizing those with lower values (e.g., ABS 1 and 4 at
the cluster center). In contrast, the Max-Min approach (i)
achieves superior fairness (fairness index of 0.306) and dra-
matically improves worst-case performance (minimum SIR of
-1.35 dB vs -12.96 dB), demonstrating effective interference
management by boosting lower-SIR ABSs (ABS 1, 2, 3,
4, and 6) by up to 8.24 dB while maintaining reasonable
average performance. Random parameter selection, averaged
over 50 samples, shows the poorest overall performance with
negative average SIR (-0.65 dB) and very low fairness (0.178),
validating the necessity of intelligent optimization. Table VIII
details the final orientations and transmit power settings for
the Max-Min approach.

4) Results for Orient. and Pow. Optimization (Method 2):
While the previous strategy optimizes mutual interference
across the map, we now evaluate the approach from Sec.
V-B2 to enhance SIR in specific AOIs. This method reuses the
Sionna coverage map and optimization parameters, adjusting
only the initial learning rate (lr = 0.05) and setting the smooth
minimum weighting temperature to T = 25.

To evaluate the benefits of the proposed approach, we
analyze the cell-to-ABS association patterns before and after
optimization with Lw method. Figure 7 presents association

4Jain’s Fairness Index: FI =
(
∑n

i=1 xi)
2

n
∑n

i=1 x2
i

, where xi are linear power
values converted from dB, and 0 ≤ FI ≤ 1 with higher values indicating
more equitable distribution.
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(a) Initial random deployment (b) Generated routes (c) Final deployment

Fig. 6: Sample run from gradient-based ABS deployment optimization with M = 5 AOIs and N = 10 ABSs. Each ABS
trajectory is marked with a different color and each circle represents a given AOI.

SIR Initial After - Lo After - LavgSIR Random
ABS 1 -9.595 -1.352 -12.963 -12.773
ABS 2 -0.189 1.421 7.941 -3.246
ABS 3 -1.537 1.214 -3.302 -3.636
ABS 4 -4.213 -0.542 -10.621 -10.530
ABS 5 4.625 0.471 8.950 -2.795
ABS 6 -1.165 -0.439 4.660 -7.507
ABS 7 19.760 11.057 19.729 14.660
ABS 8 25.527 12.728 32.018 18.893
ABS 9 5.666 0.454 6.422 0.981
ABS 10 3.248 0.192 4.793 -0.519
Average 4.213 2.520 5.763 -0.647
Std. Dev. 10.209 4.765 12.662 9.648
Minimum -9.595 -1.352 -12.963 -12.773
Jain’s Fairness 0.157 0.306 0.115 0.178

TABLE V: Effective SIR (dB) experienced by each ABS
before and after optimization. The Lo approach achieves
superior worst-case performance (Min SIR) and fairness (Std.
Dev., Jain’s Fairness) compared to naı̈ve average SIR maxi-
mization, demonstrating its effectiveness in improving poorly-
performing ABSs while maintaining overall system balance.

maps where each cell is colored according to the ABS that
provides the highest SIR (i.e., serving ABS) at that location.
The association maps reveal several key improvements after
optimization: (i) coverage regions become more homogeneous
within each AOI, ensuring UEs in critical areas experience
consistent service from their designated serving ABS; (ii)
boundaries between different ABS coverage zones become
more clearly defined, reducing potential handover instabili-
ties; and (iii) ABSs outside AOIs appropriately adjust their
radiation patterns to minimize interference within AOIs.

Table VI quantifies the SIR improvements achieved by the
weighted AOI optimization (Lw) for the sample scenario,
showing substantial gains for serving ABSs in most AOIs (e.g.,
+11.51 dB for ABS 1 in AOI 1, +9.57 dB for ABS 9 in AOI
2, and +5.17 dB for ABS 5 in AOI 4) and degradation of
less than 0.5 dB for AOI 0 and AOI 3. Notably, the random
baseline consistently degrades performance on average across
all AOIs, with serving ABSs experiencing SIR losses ranging
from -6.14 dB to -10.56 dB. This stark contrast demonstrates
improvements of 8.18-17.65 dB achieved by our optimization

over random parameter selection, with particularly strong
gains in AOIs 1 and 2 (+17.65 dB and +15.73 dB respec-
tively). Table VII extends this analysis across 50 different
ABS deployments, confirming the robustness of the proposed
approach. The average results show consistent positive gains
for most AOIs (+12.98 dB, +10.01 dB, and +1.08 dB for
AOIs 1, 2, and 4 respectively), with only modest reductions
in AOIs 0 and 3 (-1.21 dB and -1.70 dB). Note that in some
configurations the SIR gains might be lower due to multiple
ABSs positioned within the same AOI, although the average
values confirm that proposed approach is effective in keeping
intra-AOI interference at minimal levels. These results validate
that accurate power and orientation control are essential for
efficient SIR management in autonomous ABS deployment, as
random parameter selection leads to systematic performance
degradation. The final configurations for the sample scenario
are detailed in Table VIII for reproducibility, highlighting how
serving ABSs are assigned higher power levels and fine-tuned
orientations to enhance effective SIR in their respective AOIs.

D. Computational Performance Evaluation For Practical De-
ployment

We note that real-time operation analysis is beyond the
scope of this paper, which focuses on demonstrating the
feasibility and effectiveness of multi-digital twin optimization
frameworks for ABS deployment. Our empirical measure-
ments reveal distinct performance characteristics for the two
optimization phases:

• Location Optimization: Achieves 0.0371s per iteration
using only TensorFlow compiled operations and geomet-
ric calculations (without differentiable ray tracing). For
the experimental scenario with 5 AOIs and 10 ABSs,
complete optimization converges in approximately 92.75s
with a maximum of 2500 iterations, though early stopping
significantly reduces this in practice. The computational
efficiency stems from our gradient-based approach using
only geometric loss functions.

• Orientation and Power Optimization: Gradient opti-
mization via differentiable ray tracing (SionnaRT) incurs
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substantially higher computational costs. Each training
iteration requires approximately 15s in our experimental
settings, even with GPU acceleration. The computational
complexity scales with map size, number of ABSs,
polygon count, ray count, and ray interaction limits.
Nevertheless, this performance profile is well-suited for
practical ABS deployment scenarios where:

1) Mission planning phase: Combined optimization
time (typically 2-5 minutes) is acceptable for pre-
mission deployment planning;

2) Adaptive repositioning: The algorithm can provide
updated configurations during flight operations, as
typical ABS battery life is 20-100 minutes [6];

3) Hierarchical deployment: Fast location optimiza-
tion provides initial positioning and initial coverage,
with orientation refinement performed as needed
during real world operations using the Digital
Twins;

4) Scalability: Optimization time scales with scenario
complexity, enabling faster solutions for smaller
deployments.

Future performance improvements could be achieved
through careful hyperparameter tuning and leveraging im-
proved SionnaRT implementations, built solely on Mit-
suba3/Dr.Jit instead of the current5 Mitsuba+TensorFlow ar-
chitecture and that allows sampling techniques such as Russian
Roulette (RR) for more efficient Ray Tracing differentiation
[39]. While real-time optimization presents interesting chal-
lenges for future work, the current framework demonstrates the
foundational capability of multi-DT systems for autonomous
ABS deployment optimization.

1) Profiling Analysis: Profiling analysis using NVIDIA
Nsight Systems revealed that the computational pipeline ex-
hibits a nearly balanced distribution between GPU kernel
execution (51.6%) and memory operations (48.4%), indicat-
ing that the application operates in a memory-bound regime
where data movement overhead significantly impacts overall
performance. This memory-to-computation ratio suggests that
while the GPU cores are effectively utilized for mathematical
operations, substantial execution time is consumed by host-
device data transfers and GPU memory management opera-
tions. The predominance of memory operations presents both
a performance bottleneck and an optimization opportunity,
as memory transfer patterns are often more amenable to al-
gorithmic improvements than pure computational limitations.
Such a profile typically indicates potential for performance
gains through strategies that minimize data movement, such
as maintaining GPU-resident data structures across multiple
computational phases, implementing asynchronous memory
transfers overlapped with kernel execution, and consolidating
operations to reduce the frequency of host-device communi-
cation. The near-equal distribution between computation and
memory operations underscores the importance of considering
data locality and transfer efficiency as primary factors in the
optimization strategy, rather than focusing solely on computa-
tional algorithm improvements.

5Tested with Sionna 0.19.2 and Mitsuba 3.6.4

Average AOI Effective SIR (dB) difference
Weighted AOI SIR optimization - Lw (sample scenario)

AOI 0 AOI 1 AOI 2 AOI 3 AOI 4
ABS 1 +0.99 +11.51 -0.99 +0.05 +0.23
ABS 2 -0.02 -4.51 -2.27 -0.09 -0.25
ABS 3 -0.79 -4.94 -6.22 -0.77 -0.26
ABS 4 0.01 -10.37 -8.67 +2.48 -0.48
ABS 5 +0.01 -1.40 -4.89 +0.07 +5.17
ABS 6 +0.08 -5.45 -1.70 -0.004 -0.93
ABS 7 -0.51 -2.33 -5.08 -0.25 +0.02
ABS 8 -0.49 +0.28 -1.12 -0.62 +0.01
ABS 9 +0.03 +0.11 +9.57 +1.94 -1.90
ABS 10 +0.01 -5.64 -2.90 +0.0003 -5.79
Serving ABS only - Random Baseline (sample scenario, 50 runs mean)

AOI 0 AOI 1 AOI 2 AOI 3 AOI 4
ABS (serving) -8.92 -6.14 -8.43 -10.17 -10.56

TABLE VI: Difference of average SIR (dB) for each AOI after
orientation and power optimization. ABSs serving a given AOI
(i.e., the one with highest SIR) are indicated in bold. Results
are reported for sample scenario in Fig. 6c.

Average AOI Effective SIR (dB) difference
Serving ABS only - Lw (50 scenarios/deployments mean)

AOI 0 AOI 1 AOI 2 AOI 3 AOI 4
ABS (serving) -1.21 +12.98 +10.01 -1.70 +1.08

TABLE VII: Average SIR difference for each AOI under 50
different ABSs deployments.

2) Gradient-Based vs. Learning-Based Approach Ratio-
nale: Our gradient-based optimization approach is specifically
designed for systems with complete environmental informa-
tion obtained via Digital Twin simulations. As mentioned in
Sec. II, unlike RL approaches that require extensive explo-
ration and training, our method leverages the differentiable
nature of the targeted Multi-DT system for direct optimization
of wireless system parameters. RL-based approaches would
introduce unnecessary computational overhead including data
collection phases, model architecture exploration and training,
and deployment complexity. Since our proposed Multi-DT
framework provides complete environmental knowledge with
differentiable propagation models, direct gradient optimization
offers superior efficiency with immediate applicability to new
scenarios without retraining requirements.

The 0.0371s per iteration performance for location opti-
mization and deterministic convergence properties demonstrate
the practical advantages of leveraging complete environmental
information over trial-and-error learning approaches.

VI. CROSS-VALIDATION OF ABS DEPLOYMENT IN AODT

In this section, we validate ABS deployments obtained
via Sionna optmization by measuring UE-perceived signal
strength over time using AODT-generated Channel Impulse
Responses (CIRs) for point-to-point communications. Each
simulation runs for 60s at a granularity of 1s time steps,
leveraging AODT’s procedural UE generation. We focus on
validating the Lw optimization approach for the scenario in
Sec. V-C4 (see Table VIII for full parameters) by mapping
each AOI to a spawn zone in AODT. Due to AODT 1.1.1
constraints, we define square spawn zones centered on each
AOI with edge lengths 2rm and collect measurements for a
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Fig. 7: Cell-to-ABS association showing SIR-based coverage dominance before (left) and after (right) orientation and power
optimization using the Lw approach for sample scenario in Fig. 6c. Each cell on the ground surface is colored according to the
ABS experiencing the highest SIR at that location, demonstrating improved coverage allocation within AOIs and more defined
service boundaries. Quantitative SIR improvements are detailed in Table VI (up to +12.98 dB gains) and validated through
AODT time-series average measurements in Figure 9 (3-20 dB improvements). Highlighted regions show AOIs with the most
significant optimization impact.

ABS Coordinates Orient. & Power - Lo Orient. & Power - Lw

X (m) Y (m) ϕ θ P tx ϕ θ P tx

1 -246.60 144.50 17.72 154.29 42.96 -30.07 88.96 43.00
2 223.43 334.20 -7.48 25.71 40.78 37.09 63.33 37.11
3 245.27 -174.25 -25.37 25.71 39.51 -4.80 77.19 35.23
4 -148.59 -243.15 2.54 120.73 41.88 -42.43 25.71 35.30
5 -735.17 56.92 81.42 104.03 38.91 -28.43 138.64 39.49
6 -68.51 503.55 11.42 25.71 39.75 38.94 74.68 35.08
7 225.58 -574.39 -60.03 25.71 32.10 -41.10 56.94 39.03
8 450.19 168.14 -0.84 39.74 26.89 -1.79 81.77 40.42
9 -535.52 -343.17 -68.07 134.79 34.60 114.99 133.16 42.26
10 -545.98 409.48 -99.82 154.29 37.14 -70.22 126.54 38.13

TABLE VIII: Configurations obtained with proposed optimiza-
tion frameworks for sample scenario (Fig. 6c). ϕ is the azimuth
angle of rotation in degrees, θ is the mechanical tilt in degree,
P tx is the transmission power in dBm.

single AOI at a time. Each simulation deploys U = 50 UEs
moving within their AOI. We configure AODT with simulation
parameters matching Sionna (where applicable), i.e. fc = 3.5
GHz, ITU concrete material for surfaces, TR 38.9016 antenna
pattern for ABSs, halfwave dipole for UEs, and 500K rays
per ABS. To optimize efficiency, we assume only vertical
polarization for ABS and UE antennas. ABS parameters (lo-
cation, orientation, power) are exported from Sionna in JSON
format, then imported into our modified AODT code, which
also deploys spawn zones per AOI. UEs are initialized with
fixed mechanical azimuth and tilt ϕ = θ = 0.0. We conduct
multi-UE simulations for each AOI, separately collecting CIR
for downlink transmissions and location data for all ABSs and
UEs at each simulation step, stored in an AODT database. Fig.
8 shows a screenshot of the imported configuration during a
live simulation.

We compute the signal strength perceived between the u-th
UE and i-th ABS at time step t as the sum the channel gains
for every valid path7 multiplied by the ABS’s transmission
power computed during Sionna optimization phase: P rx

t,i,u =

6Imported into AODT via custom CSV descriptor.
7As of AODT 1.1.1, CIR data stored for each antenna pair is limited to the

strongest 500 channel taps.

Fig. 8: Live capture of ABS configuration imported from
Sionna to AODT. UEs placed in AOI 1 and rays shown for
all ABSs and a sample UE.

P tx
i

∑Nr

r=1 |hr|2, where hr ∈ C is the complex channel gain for
the r-th channel tap (or ray path) and Nr is the total number
of valid paths. In order to compute the SIR based on the power
perceived from all other ABSs in the map, we compute the
total signal power P tot

t,u =
∑N

j=1,j ̸=i P
rx
t,j,u and then compute

the SIR for each u-th UE given an ABS i and simulation time
t as SIRt,u =

P rx
t,i,u

P tot
t,u

.
Fig. 9 presents SIR measurements for each AOI and mobile

user in AODT. The SIR values, averaged over 50 UEs per AOI,
are computed using the serving ABS’s reference signal power,
both before and after orientation and power optimization
obtained via Sionna. The optimized parameters improve SIR
in AOIs 1, 2, and 4, with gains between 3 and 20 dB.
Conversely, AOIs 0 and 3, which already had high SIR, experi-
ence slight reductions, due to adjustments favoring AOIs with
poorer SIR. However, their SIR remains sufficient for reliable
communication, demonstrating how the framework’s provides
solutions generalizable across multiple DTs considering real-
world scenarios. Finally, Fig. 10 compares UEs’ channel gains
from both DTs using identical simulation parameters (where
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Fig. 9: SIR measured with AODT, averaged over 50 UEs
moving within a given AOI, using ABSs’ parameters ob-
tained before and after orientation and power optimization via
Sionna.

applicable) for the first simulation frame, showing consistency
between the tools and further validating the feasibility of the
proposed approach.

VII. ABS DEPLOYMENT ADAPTATION FOR
MISSION-CRITICAL SCENARIOS

We have seen how Sionna can be used to perform deploy-
ment optimizations for wireless devices to produce config-
urations validated via AODT. In this section, we explore a

Fig. 10: Comparison between receiver power measured at each
UE in AODT and Sionna at Simulation Frame 0, using TR
38.901 antenna pattern at Transmitter (ABS) and halfwave
dipole at Receiver (UE).

use case that reverse the data flow between the two DTNs
to address mission-critical UEs’ severe coverage loss due
to shadowing. We propose a threshold-based algorithm to
detect signal drops in AODT simulations and adapt trajectory
optimization methods via Sionna to adjust ABS parameters,
improving UE signal power. Once critical UE paths are
identified, they can be used to predict future issues, enabling
DTNs to provide pre-computed recovery solutions or serve as
training data for learning-based models.
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A. Signal Drop Detection

Assuming a single critical UE u and its associated ABS
i, we compute the receive power P rx

t,i,u expressed in Watts
(see Sec. VI) for every t-th simulation step, obtaining a power
measurements array pi,u =

[
P rx
1,i,u, ..., P

rx
Nt,i,u

]
, where Nt is

the number of simulated steps. Using this information, we
want to identify one or more sudden drops in signal coverage
for any UE u that span several consecutive simulation steps,
indicating its passage in shadowed areas such as narrow streets
between tall buildings or other blocking entities. To this extent,
we propose a threshold-based detection algorithm that works
as follows:

1) Detection: Scans pi,u for received power drops below
a threshold Tmin.

2) Confirmation: A drop is confirmed only if cmin con-
secutive measurements remain below Tmin.

3) Spurious Peak Tolerance: Allows up to sp temporary
peaks above Tmin before ending detection.

4) Finalization: If peaks exceed sp, records start (ts) and
end (te) frames of the drop, computing its duration Td =
te − ts.

5) Repeat: Continues scanning pi,u to detect further drops.
By adjusting parameters Tmin, cmin and sp, we can define

different levels of tolerance for the power threshold and
granularity of the detection algorithm, depending on the level
of reliability required.

B. ABS Recovery Trajectory and Configuration

Once the power drops have been identified, for each drop
interval we want to find a new configuration of the serving
ABS that allows to improve the coverage conditions of critical
UEs and provide more reliable communication. Once (ts, te)
drop start and end frames are obtained, we extract from AODT
the relative critical UE consecutive Td route positions in the
map, indicated as Dc = {dts ,dts+1, ...,dte} where each dt

corresponds to the 2D (x, y) coordinate of UE at time t. The
proposed recovery approach aims to (i) find a trajectory via
gradient-based optimization from the deployment location of
the ABS toward the critical UE experiencing the power drop
and (ii) compute the new ABS coordinates to be applied during
simulation for the recovery operation.

For the first goal, we first extract the UE’s route coordinate
corresponding to the middle point of the drop interval, indi-
cated as dm at time tm, assuming ts < tm < te. We then use
dm as destination point for the trajectory computation, based
on the technique explained in Sec. V-A and optimized via the
following simplified criteria:

Ld = ∥pi − ck∥+ Pb (22)

which aims to minimize the distance between the current
ABS location and dm while avoiding collisions with buildings
through the computation of Pb penalty term. Once the desti-
nation is reached, we can employ the Sionna differentiable
Ray Tacer to further refine the final recovery configuration,
by optimizing its orientation and transmission power through
one of the methods proposed in Sec. V-B.

Fig. 11: Trajectory (blue) of ABS computed via gradient-
descent for signal recovery of critical UE, projected over
Sionna’s coverage map of initial ABS position (marked with
a red cross). In the cutout: Trajectory of critical UE simulated
in AODT (moving right to left).

Once the optimization converges towards the destination
point and the trajectory point for each optimization iteration
are obtained, we then compute the adjusted simulation coor-
dinates by dividing the recovery operation in three distinct
phases:

• Reaction phase: We extract ⌊Td/2⌋ equally distanced
points from the trajectory obtained via the optimizer,
corresponding to the locations that the ABS will have
to follow while reacting to the signal drop detection in
the (ts, tm) simulation interval;

• Stationary phase: in this phase we consider the ABS
hovering over the critical UE route during the signal drop
in the (tm, te) simulation steps, in order to improve the
signal coverage for the remainder of the drop interval;

• Return phase: Once the drop interval is concluded, the
ABS is instructed to fly back to its original deployment
location, until the next coverage loss is detected. To do
so, it follows the same ⌊Td/2⌋ coordinates from Reaction
phase in reverse order.

Fig. 12 offers a visual overview of the recovery phases
discussed above.
C. Experimental evaluation

To evaluate the proposed coverage drop detection and re-
covery mechanism, we consider a single ABS and one critical
UE. Fig. 11 illustrates the targeted sample scenario, having
an UE’s passing through buildings that cause signal blockages
and an ABS positioned ∼320m away and hovering behind a
tall obstacle. Over 60 time steps, the UE moves along this path
while collecting power measurements. For this experiment, we
set Tmin = 10−14 W, cmin = 3, and sp = 5, using Adam
optimizer with lr = 6.0, early stopping (0.5 decay, patience =
3). A signal drop is detected between ts = 22 and te = 44,
triggering the recovery trajectory optimizer. After assigning
trajectory points for recovery, accounting for obstacles, we
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Fig. 12: Signal drop recovery mechanism overview for
mission-critical UE. The bar plots show the receive power
computed via AODT perceived by the UE experiencing a
signal drop before (above) and after (below) the recovery
mechanism is activated.

re-run the same UE simulation including provided ABS mo-
bility pattern8 and collect new power measurements. Fig. 12
visualizes the coverage throughout the simulation, indicating
signal drop and recovery phases. The plots confirm up to ∼ 6
orders of magnitude power improvement post-optimization via
the second DTN, proving the proposed approach effective in
dynamically enhancing signal converage for that specific UE.

VIII. CONCLUSION AND FUTURE WORK

This work demonstrates the potential of using multiple
Digital Twins (DTs) to perform complex cyber-physical sim-
ulations in the context of wireless communications. It focuses
on optimizing and validating the deployment of Airborne
Base Stations in urban settings, evaluating multiple goals and
varying system conditions. Proposed solutions aim to highlight
the flexibility of gradient-based optimization combined with
Ray Tracing and detailed 3D geometries that can be potentially
transferred to real-world environments. This paves the way
for new kinds of studies for large-scale wireless systems,
enabling innovative applications and solutions that combine
the powerful simulation capabilities of modern DTNs and
generate data fueling novel research.

The gradient-based Multi-DT approach demonstrates clear
advantages over alternative methods by leveraging complete
environmental information and differentiable system com-
ponents, avoiding the computational overhead and training

8Using AODT customized source code to support Radio Units (RU)
mobility.

requirements of learning-based approaches while achieving
superior performance metrics. Future research directions fo-
cus on addressing computational efficiency and enhancing
deployment intelligence. The orientation and power opti-
mization overhead could be significantly reduced through
improved SionnaRT implementations built solely on Mit-
suba3/Dr.Jit [39], enabling advanced sampling techniques such
as Russian roulette and reducing the current 15-second per
iteration time to real-time levels. Integration with Channel
Knowledge Map (CKM) techniques [40], [41] represents an-
other promising avenue, where CKM-derived channel pre-
dictions could provide intelligent initialization for gradient-
based optimization, reducing convergence time from minutes
to seconds while enabling hybrid approaches that use CKM
for coarse positioning and high-fidelity ray tracing for critical
parameters. The convergence of enhanced ray tracing per-
formance and intelligent prior knowledge integration through
bi-directional CKM-Multi-DT information flow could create
self-improving systems that continuously refine environmental
knowledge while adapting to real-time changes.
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