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Abstract—This paper presents COPILOT, a ML-based ap-
proach that allows vehicles requiring ubiquitous high bandwidth
connectivity to identify the most suitable road side units (RSUs)
through proactive handoffs. By cooperatively exchanging the
data obtained from local 3D Lidar point clouds within adjacent
vehicles and with coarse knowledge of their relative positions,
COPILOT identifies transient blockages to all candidate RSUs
along the path under study. Such cooperative perception is
critical for choosing RSUs with highly directional links required
for mmWave bands, which majorly degrade in the absence of
LOS. COPILOT proposes three modules that operate in an
inter-connected manner: (i) As an alternative to sending raw
Lidar point clouds, it extracts and transmits low-dimensional
intermediate features to lower the overhead of inter-vehicle
messaging; (ii) It utilizes an attention-mechanism to place greater
emphasis on data collected from specific vehicles, as opposed to
nearest neighbor and distance-based selection schemes, and (iii)
it experimentally validates the outcomes using an outdoor testbed
composed of an autonomous car and Talon AD7200 60GHz
routers emulating the RSUs, accompanied by the public release
of the datasets. Results reveal COPILOT yields upto 69.8% and
20.42% improvement in latency and throughput compared to
traditional reactive handoffs for mmWave networks, respectively.

Index Terms—AP association, mmWave, road side units, co-
operative perception.

I. INTRODUCTION

Autonomous vehicles equipped with a multitude of sensors
may need to continuously relay large volumes of data to a
central cloud for a number of tasks like cooperative path
planning, situational awareness, and safety-related actions for
itself along with neighboring vehicles and pedestrians [1].
Additionally, as augmented and virtual reality technologies
start to become commonplace [2], [3], there will be an in-
creased demand from passengers for real-time access to high-
definition content. To address these requirements, 3GPP has
prioritized vehicle-to-everything (V2X) communication in its
next-generation (nextG) RAN Technical Specification Groups.
One promising recommendation of this group is to leverage the
millimeter-wave (mmWave) band within the frequency range
of 57-72 GHz for V2X connectivity [4], enabling high data
rate communication.

• Problem of blockage prediction for mmWave V2X links.
To realize the full promise of V2X mmWave communication,
the road side units (RSUs) that provide the connectivity to the
vehicles are strategically situated in close proximity to one
another. As the vehicle moves, handoffs between these RSUs

Fig. 1: The V2X mmWave scenario of interest and COPILOT
framework. The ego vehicle requires to perform a proactive handoff
from RSU2 to RSU1 leveraging the relevant contextual information
from neighboring CAVs (CAV2-CAV4). The COPILOT framework
selectively uses CAV2 and CAV3 for predicting that decision, rather
than relying on the nearest neighboring vehicles CAV3 and CAV4.

at opportune times help to establish robust and uninterrupted
mmWave band connectivity [1].

Currently, handoff events are triggered when an impeding
blockage is anticipated, based on evaluating metrics such as
received power, throughput, or channel state information (CSI)
associated with the mmWave link. Firstly, since these metrics
need to be collected and averaged over time, there is an
inevitable latency that impacts scenarios involving mobility.
As shown in Fig. 1, a fast-moving connected and autonomous
vehicle CAV1 must switch from RSU2 to RSU1, which
needs to be done in a proactive manner to maintain a stable
communication link. Furthermore, to establish new directional
links upon breakage, probe packets are sent in different sectors,
which further increases association time.

• Co-operative perception for blockage prediction. Re-
cently, there has been a surge of works using vision and
location based sensor data to predict blockage for improv-
ing mmWave link performance [5], [6] as well as perform
proactive handoffs [7], [8]. However, these works focus on
observing the environment from a single point of view, which
limits their utility since highly discriminative features may
remain undetected just beyond the sensor coverage region.
As opposed to this, co-operative perception [9] merges mean-



ingful information obtained from spatially distributed nodes
(see vehicles CAV2 and CAV3 in Fig. 1) to obtain a richer
representation of the environment within the given node, here
CAV1. In the domain of wireless communication, co-operative
sensing using multi-camera systems have identified blockages
to initiate handoffs [1]. Different from these approaches, our
proposed COPILOT uses Lidar data collected at multiple
vehicles and then fuses them together to provide precise
location and obstacle information. We opt for Lidar because
RGB camera images cannot provide depth cues, whereas depth
camera images require additional processing to obtain a 3D
map of the environment [10]. An example showing the benefit
of co-operative perception using Lidar is presented in Fig. 2.

• Problem setting and challenges. Our vehicular setting is
composed of two types of communication links: (a) vehicle
to vehicle (V2V), which follows the 5G NR based C-V2X
standard operating at 5.9GHz band [11], and (b) vehicle to
infrastructure (V2I) operating in the mmWave band. As shown
in Fig. 1, autonomous vehicles CAV1-CAV3 each collect Lidar
data locally. Considering one such vehicle CAV1, which we
refer to as the ego vehicle [12][13], the problem we address in
this paper is: which RSU from the set {RSU1, RSU2} must the
ego vehicle associate with? To solve this problem, we solve
three challenges given below:
(C1) Compressing Lidar data: Since the Lidar fusion occurs
at each vehicle, transmitting raw Lidar data for spatial fusion
will saturate the bandwidth, given a single capture is 3.076
MB. There is also a need to study the performance-bandwidth
trade-off of any compression method.
(C2) Lowering V2V overhead: Since each vehicle contributes
to the control overhead due to V2V messaging, how can
we select the appropriate subset of vehicles? Including more
vehicles may not only increase traffic overhead but may also
lower performance of RSU selection due to noise in the data
or require larger inference models.
(C3) RSU selection methodology: How to perform the RSU
selection using the co-operative perception while adhering to
the standard defined association procedure.

A. Proposed solution & contributions

We propose a machine learning (ML) based approach called
COPILOT, which addresses challenges C1-C3 above through
context-aware spatial fusion. In Fig. 1, COPILOT chooses
vehicles CAV2 and CAV3, but not CAV4, for participation in
the data fusion process at the ego vehicle. This is non-intuitive
since CAV4 is closer to the ego vehicle than CAV2, but CAV
2 can provide better supplementary information for enabling
the optimal RSU prediction, making our supporting CAV
selection different from distance based metrics. COPILOT
locally quantizes the Lidar point clouds in a given vehicle,
extracts semantic information using local feature extractor
to reduce the overhead and identifies the suitable supporting
CAVs that should participate in data sharing. Finally, the given
ego vehicle CAV1 fuses the perception from these selected
CAVs using a deep learning architecture with an attention
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Fig. 2: A Lidar point cloud example showing the invisible regions in
one frame when ego vehicle is 30m distant from a reference point
(shown in left). At the same time, that invisible region is visible to
CAV2 which is 70m distance from the same reference point (shown
in right). Co-operative perception is useful for such cases as blind
regions for one vehicle is in the visible regions for another one.

mechanism to focus on the most relevant portions of the fused
data for RSU selection.

• Summary of contributions.

1) We study the performance tradeoffs along the accuracy-
bandwidth axes for DL based RSU selection by varying
the dimensionality of latent embeddings from our feature
extractor. Using these results, we propose a bandwidth-
adaptive feature sharing strategy to transmit the features
based on available resource constraints. Solution to (C1)

2) We propose a method that allows distributed selection
of a subset of supporting CAVs for fusing the percep-
tion data and compare it with traditional distance-based
selection in terms of model performance. We introduce
an attention mechanism that assigns weights to focus on
vehicles that provide more discriminative inputs to the
overall inference process. Solution to (C2)

3) We propose a deep learning model that predicts the
best RSU for association by leveraging the fused Lidar
sensor data from multiple viewpoints. We show that the
spatial fusion approach results in 14.11% performance
improvement over using local perception.

4) Using an experimental testbed of an autonomous car
and four 802.11ad-enabled mmWave Talon routers as
RSUs, we rigorously analyze the end-to-end latency
in COPILOT. We also compare COPILOT with the
standard association procedure for an example mmWave
link and show 20.42% increase in the throughput with
69.8% of latency improvement. Solution to (C3)

5) We publish the first (to the best of our knowl-
edge) dataset for RSU selection in urban environ-
ments collected via an actual autonomous vehicle. This
dataset [14] is of 164 GB can be used for vehicular
channel estimation, power control of RSUs, link quality
prediction, and thus, it has longevity beyond the scope
of this paper.



II. RELATED WORK

• Handoff in mmWave links. Palacio et al. present a location
based access point (AP) selection with predictive handoff [15].
The authors measure the CSI that is used to estimate the
relative positioning of APs and presence of blockages. Polese
et al. implement a dual connectivity protocol providing cellular
users 4G and 5G connectivity simultaneously, enabling them
to instantly switch to the other standard in case of failure
in any one link [16]. The authors monitor the UE channel
quality and uplink control signals to detect link failures and
perform the handoffs using a local co-ordinator. Mezzavilla
et al. design a markov decision process-based framework
that jointly considers channel conditions and dynamic load
for providing handoff decisions [17]. Sun et al. propose a
reinforcement learning-based approach by taking into account
both mmWave channel characteristics and QoS requirements
of users to reduce the number of handoffs [18].
• Leveraging sensor modalities for proactive handoff. Non-
RF sensors are being increasingly used to gain contextual
information about the environment and allows for proac-
tive handover. Charan et al. utilize both RGB images and
beamforming vectors and leverage deep learning models like
Convolutional Neural Networks (CNNs) to perform proac-
tive blockage prediction and user handoff [19]. Nishio et
al. demonstrate that future received power can be predicted
by leveraging spatio-temporal visual information obtained by
depth-cameras and advanced ConvLSTM models, which in
turn is used for performing proactive handoffs [7] . On similar
lines, Koda et al. use camera images to predict the data rate
degradation and apply a deep reinforcement learning model
to decide the handover timing [8]. In another work, Koda
et al. introduce co-operative sensing for enabling proactive
handovers for mmWave links through multiple cameras [1] .
They learn an optimal mapping of spatial location to handoff
region using a deep reinforcement learning algorithm for
identifying blockages and finally controlling the actions of the
selected base station.
• Innovation opportunity. Prior works narrowly focus on
demonstrating handoff outcomes with synthetic data, indoor
setups and/or human blockages. To accurately model the
challenging V2X environment, there is a need to perform real-
world experiments involving data collected from an actual
autonomous car that operates in a typical urban space with
pedestrians, other vehicles and building-generated reflections.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Problem formulation

We denote the vehicle of interest as the ‘ego’ vehicle νe,
which is surrounded by V other connected and autonomous ve-
hicles (CAVs) V = {νi}Vi=1. We consider V2V links between
them given by sub-6GHz C-V2X standard [11]. Furthermore,
we assume directional mmWave V2I links to multiple RSUs
{τj}Rj=1 placed alongside the roadside to allow transferring
high bandwidth sensor data. Both the ego vehicle and CAVs
are equipped with Lidar sensors. The ego vehicle νe receives
multiple perceptions of the environment from the surrounding
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Fig. 3: An instance of COPILOT running at the ‘ego’ vehicle.
Among the candidate options CAV 2 and CAV 3, the latter is actually
chosen by the ego vehicle based on the similarity scores (details in
Sec. III-C).

CAVs in form of Lidar feature maps through V2V links.
Following this, it locally performs data fusion and analysis
to select the optimal RSU for association. Similar to prior
works [20], while the above procedure involves decentralized
execution, COPILOT uses centralized training for the RSU
selection model. We formulate our objective as:

τ∗ = argmax
1≤m≤R

yνe
τm , (1)

with yνe
τm being the observed received signal strength at the

ego vehicle νe when the mmWave radio is associated with the
mth RSU, i.e., τm.
Notations: We denote the ith CAV as νi, and jth RSU as
τj . We define the data matrices for the Lidar data at ego
vehicle and CAV νi as: Xνe

L ∈ Rdνe
0 ×dνe

1 ×dνe
2 and Xνi

L ∈
RN

νi
t ×d

νi
0 ×d

νi
1 ×d

νi
2 , respectively, where (dνe

0 × dνe
1 × dνe

2 ) and
(dνi

0 ×dνi
1 ×dνi

2 ) are the dimensionality of Lidar data at the ego
vehicle νe and CAV vehicle νi, respectively. Note that such
Lidar data is generated for all the CAVs.

The set of output labels are the RSUs within the environ-
ment: L = {τ1, · · · , τR}, where R is the total number of
RSUs in the environment. The label matrix Yτ ∈ {0, 1}R rep-
resents the one-hot encoding of R RSUs, where the optimum
RSU is set to 1, and rest are set to 0 as per Eq. (1).

B. Offline centralized training of COPILOT

Training dataset: We collect a custom dataset (presented
in Sec. V) from a real Lidar sensor equipped autonomous
car with multiple mmWave RSUs in a typical urban road
environment. Existing datasets for autonomous driving [21],
[22] provide Lidar sensor data but do not include wireless sig-
nal measurements. Wireless-focused datasets like DeepSense



6G [23] and FLASH [24] include Lidar sensor data and
mmWave signal measurements but are limited to the use case
of beam prediction and also do not include multiple RSUs in
the testbed.
Training objective: Training the model in COPILOT
requires labeled data from Lidar sensors installed in multiple
CAVs and the ego vehicle, where the ground truth indicates
the best RSU for each sample data point. In COPILOT, the
model pLθνe within the ego vehicle νe is parameterized by θνe ,
i.e., a neural network with weights θνe . The empirical loss of
the model parameters θνe on dataset is defined as L(θνe) :=
1
nl

∑nl

j=1[ℓ(p
L
θνe (X

νe
L (j), Xν1

L (j), · · · , XνV
L (j)), Yτ (j))],

where nl is the total training samples, ℓ is a loss function
measuring the discrepancy between predicted and true labels.
The deep learning training approach finds a model that
minimizes the loss across all of the training samples by
solving: min

θνe
L(θνe) over multiple training epochs.

C. Decentralized execution of COPILOT

COPILOT consists of seven main modules as follows (see
Fig. 3):
• Data acquisition and preprocessing (at ego vehicle and
CAVs): The vehicles record Lidar sensor data. For Lidar
preprocessing, we employ a quantization technique that marks
RSU and vehicle positions in the point clouds and the remain-
ing detected objects as obstacles; see Sec. IV-A.
• Local feature extraction (at ego vehicle and CAVs) :
The ego vehicle and CAVs perform high level Lidar feature
extraction; see Sec. IV-B.
• Broadcasting ego feature map (from ego vehicle to CAVs):
The ego vehicle broadcasts its extracted feature map to all the
CAVs; see Sec. IV-C.
• Similarity score computation (at the CAVs): The CAVs
calculate similarity scores between the ego feature map and
their own feature map. The similarity scores are transmitted
to the ego vehicle using V2V links; see Sec. IV-D.
• Neighbor selection and requesting the feature maps
(at the ego vehicle): Based on the received similarity scores
the ego vehicle selects the supporting CAVs and requests
corresponding feature maps; see Sec. IV-E.
• Spatial fusion (at ego vehicle only): The ego vehicle
performs the spatial fusion combining its own feature map
with those from the supporting CAVs; see Sec. IV-F.
• RSU prediction (at ego vehicle only): The ego vehicle
performs the RSU prediction from the fused features in real-
time; see Sec. IV-G.

IV. COPILOT FRAMEWORK

A. Data acquisition and preprocessing

In this section we describe how the Lidar point clouds are
quantized locally by each CAV and then combined together.

1) Co-ordinate system: We project the Lidar point clouds to
the ego vehicle’s co-ordinate system. While GPS data provides
latitude and longitude coordinates in degrees, the Lidar data
and subsequent distance-based processing are more efficient
when locations are transformed into a Cartesian coordinate

Fig. 4: The proposed Lidar point cloud acquisition and preprocessing
method in COPILOT. We only show the quantization involving 2
RSUs for simplicity. The details are in Sec. IV-A2.

system. We then establish a fixed origin point that serves as
the reference for all the subsequent collaboration among the
CAVs.

2) Preprocessing and quantizing Lidar data: The Lidar
point clouds consist of an unstructured set of points in 3-D
space. However, the permutation invariance of these points
poses a challenge in leveraging popular CNN architectures.
Unlike CNNs, which process ordered grid structures like im-
age pixels, rearranging the order of Lidar points does not alter
the represented scene. Therefore, we need to convert Lidar
point clouds into a structured, ordered grid representation of
the 3-D space through a 3-D quantized cuboid structure (see
Fig. 4). Each unit within this structure is called a voxel, which
stores the occupancy information of point clouds. Voxel values
are set to 1 if they contain at least one point, indicating
the presence of obstacles in that specific region. Conversely,
unoccupied voxels are assigned a value of 0, while the ego
vehicle’s voxel is labeled −4. Similarly, voxels containing
RSUs 1 − 3, are labeled as −1, −2, and −3, respectively.
All CAVs project their data onto a common coordinate system
centered at the ego vehicle νe, with the only variation being the
position encoding of −4 to identify the receiver’s location (at
νe), relative to surrounding RSUs. Hence, Xνe

L , Xν1
L , · · · , XνV

L

are generated at the ego vehicle νe and V CAVs as quantized
Lidar data.

B. Local feature extraction

Existing studies have proven aggregating intermediate fea-
tures instead of raw data as an effective strategy [25], [26].
Therefore, after preprocessing we extract feature maps locally
on the vehicles. We denote the dimension of the extracted
feature as dνe and dνi for ego vehicle νe and ith CAV
νi, respectively. The feature extractors fL

θνe and fL
θνi , which

are pre-trained through centralized training, map each sample
input to dimension dνe and dνi , for the ego vehicle and ith
CAV, respectively. We refer to the output of these feature
extractors as the latent embeddings of the Lidar data. Formally,

zνe
L = fL

θνe (X
νe
L ), fL

θνe : RNνe
t ×dνe

0 ×dνe
1 ×dνe

2 7→ Rdνe
(2a)

zνi
L = fL

θνi (X
νi
L ), fL

θνi : RN
νi
t ×d

νi
0 ×d

νi
1 ×d

νi
2 7→ Rdνi (2b)

where zνe
L and zνi

L show the extracted latent embeddings for
the quantized Lidar data Xνe

L and Xνi
L for ego νe vehicle and
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Fig. 5: Proposed attention based spatial fusion approach. The feature
map from ego vehicle is broadcasted to all the CAVs for similarity
score computation. The ego vehicle selects η CAVs as ‘supporting
CAVs’ (for simplicity we show it selected only ν1, hence, η = 1),
to concatenate an extra component to its own feature map.

CAV νi, respectively. It is to be noted that at this stage, the
latent embeddings from all the V CAVs are extracted, which
is denoted as: ZV

L = {zνi
L }Vi=1.

C. Broadcasting ego feature map

In order to establish connections between the ego vehicle
and CAVs, the simplest approach is to select the nearest
neighbors or utilize pre-defined distance based approaches.
However, these methods are not scalable when it comes to
widespread deployment [20]. As opposed to this, COPILOT
chooses the CAVs that ego vehicle should connect with for co-
operative perception by computing a similarity metric between
the sensed features of the ego vehicle and other CAVs. We
note that broadcasting features from all the CAVs will likely
saturate the V2V channel between the vehicles. Therefore, we
follow the multi-stage handshaking method proposed in [20],
followed by our distributed method of selecting the best CAVs
using an attention mechanism. The handshaking is initiated
once all the CAVs and ego vehicle extract their feature maps
locally in the vehicle, i.e., after the ego vehicle νe broadcasts
its own extracted feature map zνe

L to all the V CAVs.

D. Similarity score computation at the CAVs

Each CAV calculates a similarity score between the received
ego feature map and its own feature map, and sends this
score back to the ego vehicle using the V2V link. The
similarity score µi is calculated at the CAV νi from the
received ego feature map zνe

L and it’s own feature map zνi
L

as: µi = ζ(zνe
L , zνi

L ), ∀νi ∈ {ν1, ν2, · · · , νV}, where
ζ(.) is the similarity function which uses general attention
mechanism [27]. The similarity function ζ(.) is represented as:
ζ(zνe

L , zνi
L ) = zνe

L ·W · zνi
L . Here, W is a learnable parameter

that allows zνe
L and zνi

L to be of different sizes. Once the
similarity score µi is calculated at the CAV νi, it is sent to
the ego vehicle νe using the V2V link. All the V CAVs follow
the same process.

E. Neighbor selection and requesting the feature maps

The ego vehicle νe receives V similarity scores from the
neighboring CAVs, where µi is a representative similarity

score from CAV νi. We calculate a probability vector Θ for
the similarity scores received from V CAVs using Softmax
operation, denoted as: Θ = σ([µ1; · · · ;µV ]) σ : R 7→ {0, 1}V .
Formally, Θ is represented as: {θi}Vi=1 ∈ R(0,1). COPILOT
performs a threshold based selection of suitable neighbours,
with the resulting subset referred to as supporting CAVs for
that ego vehicle νe. If θi is greater than a pre-defined threshold
ϕ, we select νi as a supporting CAV for fusion with the
ego vehicle νe. We define the set of supporting CAVs as
Vη = {νsi }

η
i=1, where Vη is a subset of of the set of all CAVs

V and |Vη| = η with similarity scores [µs
1; · · · ;µs

η]. Formally,

Vη = argmax
V ′⊂V,|V ′|=η

∑
i∈V ′

(θi − ϕ). (3)

Finally, the ego vehicle νe requests for the feature maps
from the selected Vη supporting CAVs.

F. Spatial fusion
The ego vehicle νe receives the feature maps from the η

supporting CAVs Vη = {νsi }
η
i=1, which are represented as

Z
Vη

L = {zν
s
i

L }ηi=1. The proposed fusion approach has two
components, (i) a weighted aggregation of the feature maps
Z

Vη

L from the supporting CAVs Vη , and (ii) the feature map
zνe
L from the ego vehicle νe. The steps for fusing these two

components are:
• The weighted aggregation is performed through element-

wise multiplication between the θi and corresponding z
νs
i

L

from supporting CAV νsi . The aggregated vector ZA
L is

derived by: ZA
L =

∑η
i=1(θi ∗ z

νs
i

L ).
• To achieve cooperative perception, we combine the ego

feature map zνe
L and aggregated feature map ZA

L from the
ego vehicle νe and supporting η CAVs Vη given by zνe

L ∈
Rdνe

L and ZA
L ∈ Rdνs

1+···+d
νs
η , respectively. The final

spatially fused feature zL representing the co-operative
perception is generated by concatenation of the zνe

L and
ZA
L . Formally, zL = [zνe

L ;ZA
L ] ∈ Rdνe+dνs

1+···+d
νs
η .

G. RSU prediction at the ego vehicle
The final step within COPILOT is the real time prediction

of the RSUs at each location of the ego vehicle νe. The
model trained in COPILOT pLθνe (see Sec. III-B) predicts the
probability of each class using the fused features zL. The
neural network transformation of pLθνe is represented as:

Ŷ τ = σ(pLθνe (zL)) pLθνe : Rdνe+dνs
1+···+d

νs
η 7→ {0, 1}R,

(4)
where σ is Softmax activation and Ŷ τ is the generated prob-
ability vector. Eq. (4) can also be represented in terms of the
original input data and the trained model pLθνe as:

Ŷ τ = σ(pLθνe (X
νe
L , Xν1

L , · · · , XνV
L )). (5)

The predicted RSU τ̂∗ from the generated probability
vector, Ŷ τ is defined as:

τ̂∗ = argmax
0≤τ≤len(I)

(Ŷ τ ) (6)

An example of the similarity score calculation, neighbor
selection, and spatial fusion is shown in Fig. 5.
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right figure shows individual Lidar perception that is susceptible to
blind regions. The top right figure shows the proposed method of
co-operative perception in the ego vehicle, which eliminates blind
regions through spatial fusion.

V. EXPERIMENTAL SETUP FOR VALIDATING COPILOT

We validate COPILOT using a real-world dataset collected
in an autonomous car equipped with Lidar and GPS.

A. Scenario selection and sensors

The data collection campaign was conducted on days having
dry, low humid weather conditions in a two-way urban street
surrounded by a multi-storied brick parking garage and an
office building with a mixed facade of glass, brick and metal,
as shown in Fig. 6. Both the buildings are located at least 4ft
(1.2m) from either side of the road with small trees and bushes
on the sidewalk along with parked vehicles by the roadside. We
leverage these features to create varying scenarios observed
in a typical V2X network. We use a Lincoln Mkz Hybrid
autonomous car equipped with a GPS system and a state-of-
the-art Ouster OS1-64 channel Lidar that captures a panoramic
360-degree field of view. These sensors are integrated with an
on-board computer running robot operating system (ROS) for
logging location, data storage and synchronization.

B. Configuring radios

We utilize Talon TP-Link AD7200 tri-band routers,
equipped with Qualcomm QCA 9500 Wi-Fi chips, to establish
connectivity in the 60 GHz mmWave frequency band. One of
these routers is mounted on the roof of our autonomous vehicle
to serve as a receiver, while the remaining three function as
RSUs, separated by 20m along a straight line. We leverage
the open-source Linux Embedded Development Environment
(LEDE) along with Nexmon firmware patches [28], [29] to
extract physical layer information. We configure the radio at-
tached to the vehicle’s roof in the managed (client) mode and
set the RSUs to access point mode following the IEEE
802.11ad standard. We record time-synchronized RF ground
truth data, including data transmission rates and received

TABLE I: Summary of different categories in COPILOT dataset. The
total number of samples in the dataset is 11068.

Category Blockage Scenario # Episodes # Samples

1 No obstacle LOS 10 3066

2 Pedestrian Static 10 2826

3 Vehicle Static 10 2384

4 Static vehicle Left to right 5 1425
and pedestrian Right to left 5 1367

signal strength indication (RSSI), to establish associations with
the RSUs. We record all corresponding RSSI values from
candidate RSUs but select the RSU with the highest RSSI
as the associated RSU.

C. Data collection and pre-processing

1) Categorization: We collect the COPILOT dataset repli-
cating the real-world vehicular network scenarios, categorized
in: (a) Line of Sight (LOS), (b) Non-Line of Sight (NLOS)
with a pedestrian in front of the RSU, (c) NLOS surrounded
by vehicles around the RSU, (d) NLOS surrounded by vehicles
and a pedestrian walking around the RSU. For each category,
we collect 10 episodes, or trials, with episode duration of
approximately 10 seconds. We limit the vehicle’s speed to 15
mph, which is typical for inner-city roads. Additional details
about the datasets in given in Table I.

2) Synchronization: The GPS and Lidar sensors have dif-
ferent sampling rates of 0.5 Hz and 20 Hz, respectively.
Therefore, we prepare a synchronized dataset along with the
optimal RSU associated at that time as the ground truth label.
We consider Lidar frequency as our reference sampling rate
and up-sample the GPS and RF data accordingly.

VI. PERFORMANCE EVALUATION

In this section, we rigorously analyze four key features of
COPILOT, as given below:

1) Co-operative perception: We evaluate the
performance of COPILOT by fusing multiple viewpoints
(Xνe

L , Xν1
L , · · · , XνV

L ) under a variety of scenarios and
compare each case with a single perception (only Xνe

L ) RSU
prediction (notations from Sec. IV-A).

2) Communication aware feature sharing: We analyze the
impact of using different dimensions of the ego and CAV
feature maps (zνe

L and ZV
L respectively) to observe the effect

on RSU prediction performance (notations from Sec. IV-B).
3) Neighbor Selection: The strategy to select the supporting

CAVs (Vη) for co-operative perception proposed in COPILOT
is compared with a pre-defined distance selection by observing
model performance (notations from Sec. IV-E).

4) Spatial fusion strategies: We compare the aggregation
method (details in Sec. IV-F) proposed in COPILOT with
concatenation [30] and averaging [31].

A. Experiment settings
We partition our dataset into 72% training, 18% validation

and 10% test dataset for hyper-parameter tuning. The overall
dataset contains around 8275 and 1660 local training and
validation and 1104 test samples, respectively. For the Lidar
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Fig. 7: Proposed neural network architectures for (a) Lidar feature
extractor (at CAVs ν1 and ν2 and ego vehicle νe) and (b) the spatial
fusion network with specialized attention on the extracted features
(at ego vehicle νe).

quantization module, we select a 20m radius around each
CAV and quantize each axis to a (20, 20, 4) grid, with each
voxel set to size (2, 2, 1). We use NVIDIA DGX A100
computing clusters to train our models with CUDA based
GPU acceleration. The details of the neural network models
are presented in Fig. 7. We use categorical cross-entropy loss
for training with learning rate of 0.0001, batch size of 8 for
50 epochs, and optimize using Adam optimizer with the first
and second moment terms set as β = (0.9, 0.999).

We evaluate the proposed models based on the validation
and top − 1 testing accuracy for predicting the optimal RSU
at any location of the ego vehicle νe. We analyze the latency
in terms of computational delay of the neural network mod-
ules which execute on ego vehicle and CAVs independently
and also account for the communication delay due to V2V
transmissions considering 5G NR based C-V2X standard [11],
operating at 5.9GHz band. We compute the throughput gain
for our deep learning based approach with respect to the
reactive handoff [19] as a representative classical method.

B. Results and observations

1) Co-operative perception: We first verify the benefit of
co-operative perception as compared to the decision made by
individual perception only at the ego vehicle νe. We adopt a
curriculum learning [32] strategy to ensure robust training of
our model, wherein we expose the model easier LOS samples
at the start and gradually increase the difficulty by introducing
categories 1-4 as shown in Table I, in that order.
Observation 1. Fusing multiple perceptions outperforms sin-
gle perception view by 14.11% at the ego vehicle, in terms of
testing accuracy (see Fig. 8, validates Contribution 3).

2) Communication aware feature sharing: In COPILOT,
the z-axis, denoted as dνe

2 for ego vehicle νe and dνi
2 for ith

CAV (notation details in Sec. III-A and Sec. IV-B) of the

Fig. 8: Comparison of achieved test accuracy of COPILOT vs.
single perception for RSU prediction (details in Sec. VI-B1, validates
Contribution 3).

Fig. 9: Performance of communication aware feature sharing in
COPILOT (details in Sec. VI-B2, validates Contribution 1).

pre-processed Lidar is denoted as channels. These channels
capture semantic information such as the heights of the
RSUs, receiver location and obstacles in the vicinity. In our
experiment, at the end of the feature extraction process, the
feature maps of both ego vehicle and CAVs have 32 channels.
However, the semantic information contained within these
32 channels can be redundant (like buildings not obstructing
the LOS), repetitive, or may not contribute significantly to
neighbor selection and final prediction. Therefore, we explore
transmitting a subset of channels both from the ego vehicle
for similarity score computation as well as feature maps from
supporting CAVs to reduce control traffic overhead.

Since COPILOT permits CAV feature maps of different
sizes (see Sec. IV-D), divide the 32 channel intermediate
feature map into 3 subsets: initial (0− 16), mid (8− 24) and
final (17 − 32) to selectively utilize these channels. Fig. 9
highlights the test accuracy with respect to these selective
channels transmitted and processed in subsequent layers. We
observe that test accuracy only drops by 1−3% when using any
of these 3 subsets (the last three bars in Fig. 9) as opposed to
using ‘All’ channels (the first bar in Fig. 9), with 50% decrease
in communication overhead.
Observation 2. Using subset of channels from the extracted
Lidar feature maps yields to similar performance as compared
to using all the channels while decreasing the communication
overhead significantly (see Fig. 9, validates Contribution 1).

Observation 2 suggests an exciting area of further research
involving adaptive Lidar feature sharing depending on the
available network resources. How to optimize this sharing level
for a particular scenario is left for future work.



TABLE II: Performance of COPILOT based attention mechanism
compared to nearest neighbor baseline and prior knowledge bench-
mark. The COPILOT provides optimal performance without any
required prior knowledge (validates Contribution 2).

Neighbor Selection Approach Test Accuracy (%) Prior knowledge?

Nearest neighbor baseline 84.01% No
Spatial fusion of COPILOT 88.28% No

Expert knowledge benchmark 90.09% Yes

Fig. 10: Comparing the performance of proposed spatial fusion in
COPILOT with concatenation [30] and averaging [31], for different
number of supporting CAVs (η) (validates Contribution 2).

3) Neighbor selection: In this set of experiments, we
demonstrate the performance of the attention based neighbor
selection approach in COPILOT by comparing it with two
competing methods: (a) nearest neighbor and (b) prior
knowledge-based. The nearest neighbor serves as the base-
line that involves selecting the nearest neighbors for perform-
ing the fusion. Here, we consider a triplet composed of the ego
vehicle along with two co-operative CAVs in front and back
of the former, separated by 7m distance. This distance takes
into consideration the dimension of the vehicle itself along
with the a buffer safety distance between two vehicles. We
show that selecting the nearest neighbors as supporting CAVs
may not provide new information. For the prior knowledge-
based benchmark, we assume that we know the position of
each vehicle in the environment by fusing the relevant feature
maps from the CAVs. Here, we consider a triplet of the ego
vehicle along with the two supporting CAVs separated by a
fixed distance. We select 20m distance for our experiments
by analyzing the spatial extent of our test environment, such
that all the RSUs are observable, which is an idealized
decision. However, in a practical scenario we will require a
central entity having prior knowledge of optimal distance of
vehicle separation, which is intractable in a dynamic vehicular
environment. In Table. II, the testing accuracy of COPILOT
is compared with these competing methods.
Observation 3. The distributed selection proposed in
COPILOT outperforms the nearest neighbor baseline by im-
proved test accuracy and shows comparable test accuracy
to the prior knowledge benchmark, without intervention of a
central entity (see Table. II, validates Contribution 2).

4) Spatial fusion strategies: We next compare the
COPILOT with two widely used fusion strategies: (a) con-

catenation based fusion [30] and (b) averaging based fu-
sion [31]. In concatenation based fusion, the ego and co-
operative feature maps are concatenated at the cost of high
computational and communication overhead. On the other
hand, averaging based fusion keeps a fixed-size feature vector
and averages all the feature maps for further processing. This
will result in modifying the primary perception from the
ego vehicle. Thus, we keep the ego feature map intact and
concatenate the other supporting features after performing a
weighted average from supporting CAVs. Additionally, we use
this experiment setup to gain insights on the selection of η (the
number of supporting CAVs), which will be ideal for obtaining
suitable predictions. We vary η from 1 to 4 and observe the
performance in terms of overhead and spatial fusion schemes.
Observation 4. COPILOT outperforms concatenation and
averaging fusion in testing accuracy, for larger values of η.
It shows maximum accuracy of 90.91% when 3 supporting
CAVs are involved, i.e., η = 3. Beyond a certain threshold
number of supporting vehicles, there is no significant increase
in performance. (see Fig. 10, validates Contribution 2)

C. End-to-end latency analysis of COPILOT

In 5G NR that is used for the V2V links in COPILOT ,
the sub-carrier spacing (SCS) varies based on the selected
numerology (µ = {0, 1, 2, 3, 4}) [4]. We consider µ = 1 which
corresponds to the sub-6 GHz band, where each Resource
Block (RB) includes 12 sub-carriers, each with 30 KHz SCS,
resulting in a 360 KHz RB. Considering 11 data symbols in
a 0.5 ms slot and 256 QAM modulation, we calculate the
total number of bits transmitted as 977. Assuming 100 MHz
bandwidth for each user, a total of 273 RBs are available
for data transmission. Overall, the throughput for the sub-6
GHz control channel is estimated as 977 bits × 273 RB ×
2000 slots ≈ 63.59 MBps.

1) End to end latency calculation: COPILOT performs
RSU selection by following the steps discussed in Sec. III-C
and IV. We pass the test dataset of 1100 samples to the model
and calculate average execution time as follows:
(i) Data acquisition and quantization: We assume that
the time to acquire the sensor data and perform the Lidar
quantization step described in Sec. IV-A incurs negligible
latency, hence Ti ≈ 0.
(ii) Local feature extraction: It takes 1.995ms to perform the
convolutional operations and extract the spatial correlations in
the quantized Lidar grid, hence Tii = 1.995ms.
(iii) Broadcasting the ego feature map: The ego feature
map consists of 128 tensor elements of 4 bytes each with
32 channels, which amounts to a total of 512 bytes. Using
the 63.59MBps C-V2X channel for V2V communication, the
time required to broadcast the ego feature map to all the CAVs
is 0.00805ms, hence Tiii = 0.00805ms.
(iv) Similarity score computation: This steps involves a
matrix multiplication operation of the feature map from ego
vehicle and CAV which takes around 2.14ms. Next, all the
CAVs send their respective scores which is one tensor element
of 4 bytes, which takes 0.06µs. We consider the worst case



scenario with all the CAVs sending the scores sequentially.
Following the traffic data on an urban road of length 100
meter [33][34], we consider 17 such CAVs on the road. Hence,
Tiv = 2.14ms+ 17× 0.06µs = 2.14102ms.
(v) Neighbor selection: Here, we compute the Softmax of the
vector containing the received scores from CAVs to obtain a
probabilistic range of scores and select the appropriate subset
of supporting CAVs, which takes 2.18ms, hence Tv = 2.18ms.
(vi) Spatial fusion: Next, we send feature maps from 3
supporting CAVs (which is sufficient for obtaining prediction
accuracy around 91% from Fig. 10), each of size 512 bytes
which takes 0.012075ms. Computing the weighted average
and spatial fusion in COPILOT takes 0.14ms, hence Tvi =
3× 0.012075ms+ 0.14ms = 0.176225ms.
(vii) RSU prediction: The computation in the final layers to
select the RSU takes about 0.38ms, hence Tvii = 0.38ms.
The end to end latency is calculated as: TC = Ti+Tii+Tiii+
Tiv + Tv + Tvi + Tviii ≈ 6.88ms.
Observation 5. The end-to-end latency of COPILOT frame-
work is 6.88ms which can be further accelerated with high
performance GPUs integrated within the future CAVs (vali-
dates Contribution 4).

2) Comparison with state-of-the-art: We compare the end-
to-end latency of COPILOT with the state-of-the-art proactive
handoff approach proposed by Charan et al. [19] in Table III.
We limit our comparison to this particular work because other
techniques use different evaluation metrics or do not provide
an end-to-end latency analysis [1], [15]. Charan et al. [19]
propose proactive blockage prediction followed by contention-
free random access that takes around 11.4ms. After identifying
a beam failure, the reactive approach takes 22.8ms, which
includes: (a) beam failure recovery [35], and (b) contention
free random access [35]. Comparatively, COPILOT directly
predicts the optimal RSU within 6.88ms with 90.91% accu-
racy, as mentioned in Observation 4.
TABLE III: Comparison of end-to-end latency of COPILOT with the
state-of-the-art (validates Contribution 4).

Papers Strategies Handoff Evaluation Latency Prediction
Approaches Type (ms) Accuracy

[36], [35] Traditional Reactive Simulation 22.8 -
[19] Deep learning Proactive Synthetic 11.4 86%

COPILOT Deep learning Proactive Real world 6.88 90.91%

Observation 6. COPILOT improves the latency for handoff
mechanism by 69.8% and 39.64% than the state-of-the-art re-
active and proactive approaches [19] (see Table. III, validates
Contribution 4).

D. Throughput Analysis

To highlight the effectiveness of our framework in terms of
assured connectivity, we compare COPILOT framework to the
conventional reactive handoff strategy similar to the state-of-
the-art [19]. We design our experiments such that a handoff
is triggered when the throughput drops below a threshold of
1Gbps. The results for one episode are shown in Fig. 11 where
there are two handoffs triggered along the path. In COPILOT,
when the throughput is less than 1Gbps, it is assigned to

Fig. 11: Comparison of throughput variations for COPILOT based
proactive handoff with the traditional reactive handoff for one episode
of the COPILOT dataset. We observe the average throughput of first
is 20.42% higher than the average throughput of the latter.

the predicted optimal RSU in 6.88 ms, whereas the reactive
approach takes 22.8 ms for beam recovery and random access
association [35]. We calculate the mean throughput for both
these approaches in the sections where the performance differs
and compute the performance improvement in COPILOT. We
perform this experiment for all the samples in the selected
subset of examples to obtain an empirical average of the
throughput gain.
Observation 7. COPILOT shows a throughput gain of 20.42%
on an average compared to the reactive hand off approach.
The performance gain of one such episode with two hand-offs
is illustrated in Fig. 11 (validates Contribution 4)

VII. CONCLUSIONS

In this paper, we propose COPILOT, which uses Lidar
sensing data from multiple perceptions and leverages V2X
communication to select the best RSU for mmWave com-
munication with autonomous cars. COPILOT improves on
single perception in an ego vehicle in the presence of transient
blockages as well as performs RSU selection providing about
20.42% improved throughput than legacy handoffs within typ-
ical inner-city mobility conditions. The real-world dataset that
we release and insights from experimental testing performed
will enable new research on real autonomous cars, mmWave
radios and RSUs in a urban settings. Our evaluations show that
COPILOT outperforms the solutions with single perception
by 14.11% accuracy. Moreover, COPILOT yields upto 69.8%
and 39.64% improvement in latency compared to traditional
reactive handoff in mmWave networks and state-of-the-art
proactive handoff mechanisms, respectively. As a part of future
work, more diverse channel scenarios can be evaluated to
understand the impact of congested environments. The authors
have provided public access to their code and data at [14].
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