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Abstract—Adaptive receiver beamforming processors typically
require expert design and can be limited by their convergence
rate in data-starved applications. In this paper, we present a
new type of machine learning beamformer using classification-
based transfer learning (CBTL) to alleviate these limitations. The
architecture consists of a pre-trained signal classifier, in our case
a convolutional neural network, prepended by a beamforming
layer. Narrowband beamforming weights are optimized by min-
imizing the classification loss, in turn nulling interference and
amplifying a signal of interest (SOI). There are no requirements
for calibration of the array, synchronization to the SOI, or
training data modulated by the SOI. We describe the CBTL
beamformer and demonstrate its effectiveness using several
modulated signals. Simulated performance was compared to two
well-established methods for blind source separation, and we
achieved average signal-to-interference-plus-noise ratio gains of
3 to 9 dB when fewer than 100 samples were available from a
4-element array. The technique shows promise for applications
where there is limited prior knowledge and few samples are
available for beamformer estimation.

Index Terms—Array processing, adaptive beamforming, blind
beamforming, transfer learning, signal classification

I. INTRODUCTION

The advent of miniature and affordable radio frequency
(RF) transceivers has led to a continually growing number of
wireless devices and crowded spectral environments. Receivers
must be capable of mitigating interference from uncooperative
transmitters, and one approach has been to utilize an antenna
array and blind adaptive beamforming (ABF) processor to null
interference and amplify a signal of interest (SOI). However,
the initial convergence of typical techniques, such as those
based on blind source separation (BSS), can require thousands
of waveform samples [1]. This presents a challenge when such
data cannot be acquired, for example, due to a rapidly chang-
ing channel. Further, ABF processors typically require expert-
level algorithm design and considerable time spent tuning the
performance. In this paper, we propose classification-based
transfer learning (CBTL) to overcome these limitations and
improve the performance of narrowband blind ABF.
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and was accomplished under Cooperative Agreement Number FA8750-19-2-
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Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation
herein.
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Fig. 1. Block diagram of the proposed system using CBTL for blind ABF. The
beamformer is optimized by minimizing the classification loss for the SOI,
which nulls interference and provides gain prior to downstream processing.

Interest has been growing in machine learning (ML) tech-
niques for RF physical layer processing, including interference
suppression [2], [3]. Motivating factors include their versa-
tility and ability to generalize and learn imperfections not
captured by simple models. ML techniques excel at pattern
recognition and have demonstrated highly accurate RF signal
classification using short observations [4]. Soft decisions from
such a classifier can be useful feedback for the processing
necessary to extract a SOI from co-channel interference. For
example, confidence in the presence of an SOI can be used to
adapt a beamformer to preserve features that the classifier has
been trained to recognize. We explore this concept of using
a pre-trained ML signal classifier and transfer learning for
narrowband blind ABF. Simulated performance is compared to
two well-established methods for BSS, and we achieve higher
average signal-to-interference-plus-noise ratios (SINRs) when
limited data is available.

As shown in Fig. 1, the proposed blind ABF system consists
of an N-element antenna array, IV receivers that convert RF to
baseband, and a beamformer that operates on raw in-phase and
quadrature (IQ) samples at the Nyquist rate. The beamformer’s
output is fed into a pre-trained ML signal classifier, and the
beamforming weights are optimized by asserting the received
data contains the SOI and minimizing the classification loss
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without changing any of the parameters within the classifier
(i.e., they are frozen). This procedure can achieve good beam-
forming performance if the SOI has a learnable structure, and
if the classifier can differentiate between the SOI and any
interference or noise. The technique is blind since it does
not require calibration of the array, synchronization to the
SOI, or training data modulated by the SOI. We discuss the
adaptation of an existing ML signal classification structure and
optimization procedure for the CBTL beamformer.

Existing blind ABF techniques typically lack the array
manifold but assume some level of knowledge for the SOI or
interference waveforms. For example, the widely used constant
modulus algorithm assumes a constant envelope modulation.
We desire a more general method, and therefore consider
BSS since it does not rely on prior waveform knowledge.
Well-established techniques include joint approximation di-
agonalization of eigen-matrices (JADE) and complex fast
independent component analysis (cFastICA) [5], [6]. However,
these typically assume non-Gaussian signals, which hinders
their application to multi-carrier modulations. Further, they
generally require detecting the number of signals and later
determining which is the SOI. We propose a stand-alone
solution by using ML to exploit differences between the
observable structures of the SOI and interference, even when
both are highly Gaussian.

ML-based beamformers have gained significant attention
in recent years [7]. Like traditional ABF algorithms, neural
network-based beamformers and their blind variants often
learn from an estimate of the spatial covariance matrix of
the input data [8]-[10]. Instead, we propose to guide learning
based on the structure of the beamformer’s output. While
transfer learning has been shown to improve the generality
of beamforming networks [11], the concept proposed herein,
where the underlying network has been trained for a task other
than beamforming, does not appear to have been studied in the
literature. A related approach was used to optimize temporal
filters for improved classification accuracy in [12]. Our work
appears to be the first to consider the application to spatial
filtering and interference suppression.

The main contributions of this paper are the development
and demonstration of the CBTL beamformer, a novel tech-
nique for narrowband blind ABF that does not require expert
design and can achieve good performance with limited data.
Four SOIs were considered to demonstrate its versatility:
quadrature phase shift keying (QPSK), 16-quadrature ampli-
tude modulation (16-QAM), and orthogonal frequency division
multiplexing (OFDM) communications signals, and frequency
modulated continuous wave (FMCW) radar signals. Simulated
performance was compared to JADE and cFastICA, and we
observed average SINR gains between 3 and 9 dB when fewer
than 100 samples are available from a 4-element array.

II. RECEIVED SIGNAL MODEL

Consider the baseband equivalent model for two signals
arriving at an N-element antenna array at time instant ¢

z(t) = viyi(t) + vaya(t) + n (1)

where y(t) is the SOI with steering vector vy, ya(t) is
the interference with steering vector vy, and n is the noise
from the N receivers. The steering vectors are modeled for a
uniform linear array (ULA) with half-wavelength spacing

V; = exp (jﬂ(n - )cos(9¢)> for ie{l,2} (2

where n = [0,1,...,N — 1] and the angles of arrival are
separated by a scalar i of the null-to-null beamwidth

2
0y = 01 + 2nsin? (N> 3)

As is typically assumed without synchronization between
the transmitter and receiver, the SOI arrives with unknown
channel gain «;, timing offset 7, phase offset ¢;, and
frequency offset fi,

y1(t) = aqa (t — Tl>ej(27rf1t+¢1) 4)

where 1 (t) is the SOI transmitted by the source. As such, this
is a narrowband flat fading model. The interference is assumed
to be independent and identically distributed (i.i.d.) complex
additive white Gaussian noise (AWGN) CN(0, ¢3). Similarly,
the receiver noises are modeled by N i.i.d. complex AWGN
processes CA(0, 02). The signal power level is o = E[|y1|?],
and the signal-to-noise ratio (SNR) = ¢ /02 and interference-
to-noise ratio (INR) = 03 /o2 for the data received by a single
element of the array.

A snapshot of the received data consists of a matrix of
N x L Nyquist samples from the array. To study the initial
convergence of the beamformer, the channel gain and offsets
on the SOI are assumed to be static over a snapshot. The
value of «; is therefore arbitrary since it is captured by the
SNR. The phase offset ¢y is modeled as U(—m, ) radians.
The frequency offset f; = e x 1076 f., where f. is the SOI's
nominal RF carrier frequency in Hz and ¢ ~ U(—€max; €max)
in parts-per-million (ppm). The time delays are modeled by
nn = D/Fs + U(0,1/F;), where D is specified in Sec.
IV-A for each SOI, and F is the nominal sample rate for
the SOI in Hz. The receiver samples at the actual rate of
F, = F,(1 + ¢ x 1075) Hz due to the frequency offset.

III. BEAMFORMING ARCHITECTURE

The proposed CBTL beamforming architecture is shown in
Fig. 2 and consists of two main components: (1) a beamformer,
which includes a whitening preprocessor, and (2) a pre-trained
ML signal classifier, which is a convolutional neural network
(CNN) in this work. Both components operate on raw IQ
samples to avoid the need for feature development or selection.
Transfer learning is applied to adapt the beamforming weights
and maximize the output SINR by minimizing the classifica-
tion loss. The following subsections discuss these components
and the training procedure used for CBTL beamforming.

Authorized licensed use limited to: Northeastern University. Downloaded on April 18,2024 at 03:32:40 UTC from IEEE Xplore. Restrictions apply.

60



2024 |IEEE 21st Consumer Communications & Networking Conference (CCNC)

‘mer Beamformer Training

via Transfer Learning

Antenna |
L 1Q Samples —

i

Optimization Classification
]

Minimize Loss Loss
whi ( )
Antenna 2 Refy -
L 1Q Samples — Whitening . e{y} Pre-?'ramed
5 Normalize Binary D1
Z—7 and Format Classification D2
Im{y} CNN

Antenna N

L 1Q Samples —| Beamformed Output

+
<

Fig. 2. Block diagram of the CBTL architecture for blind ABF. A pre-trained
binary classification CNN is used to optimize the beamforming weights.

TABLE I
BINARY CLASSIFIER CNN LAYOUT

Layer Output Dimensions
Input 2x L
Conv2d 16 x L/2
BatchNorm2d 16 x L/2
ReLU 16 x L/2
MaxPool2d 16 x L/2
Conv2d 24 x L/4
BatchNorm2d 24 x L/4
ReLU 24 x L/4
MaxPool2d 24 x L/4
Conv2d 32x L/8
BatchNorm2d 32x L/8
ReLU 32 x L/8
AvgPool2d 32x1
Flatten 32 x1
Linear 2x1
LogSoftmax 2x1

A. ML Signal Classifier

An example CNN structure from MATLAB’s Deep Learn-
ing Toolbox [13] was leveraged for our work. We adapted
the structure for binary classification, removed hidden layers
for computational efficiency, and performed a calibration of
the output layer to facilitate beamformer optimization. Our
CNN layout is shown in Table I, where the layer names
correspond to those from the PyTorch library in which the
CBTL beamforming architecture was implemented. We note
that the input layer takes two channels, the real and imaginary
components of the received waveform samples.

The use of binary classification is motivated by the re-
ceived signal model (1). The CNN is trained to recognize
the presence versus absence of the SOI, with i.i.d. complex
AWGN observations in the latter case. This can easily extend
to more complicated models using One-vs-Rest classification:
binary classifiers can be trained to recognize a specific SOI
among other SOIs, interference, and noise. To be useful for
beamforming, the classifier must have a low confusion at the
operating SNR. It is also desirable for the SOI classification
confidences to have a small variance and monotonically in-
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Fig. 3. Mean (solid) and standard deviation (bars) of the classification

confidence for RRC filtered QPSK versus the SNR and temperature scaling
T'. The number of Nyquist samples per frame was L = 16.

crease with the SNR. Classifiers that exhibit a threshold effect
wherein the confidence steps from 0O to 1 with a small change
in SNR are problematic, since the beamformer may produce
the minimum SNR required for confident classification well
before achieving the full potential of the array.

To ensure the appropriate classifier sensitivity to SNR, we
introduced calibration by using temperature scaling [14] on the
inputs to the LogSoftmax layer of the CNN. The temperature
allows us to control the entropy of the output probability
distribution, and the LogSoftmax outputs become

exp(l;/T)
exp(l1/T) + exp(l2/T)

where T is the temperature hyperparameter, l;,lo are the
outputs of the Linear layer, and p; is the confidence of class @
for i € {1,2}. An example of the effect of temperature scaling
is shown in Fig. 3, where the CNNs were trained for root-
raised cosine (RRC) filtered QPSK as the SOI (class 1) and
1.i.d. complex AWGN as the noise (class 2). We observed that
increasing 7" reduced the standard deviation of the confidence
and prevented the classifier from being overly confident at
higher SNRs, as desired. However, large values of T caused
the classifier to be under confident regardless of the SNR.
Using T' = 15 was found to work well for this CNN and the
beamformer optimization described in Sec. III-C, regardless
of the type of SOI or number of Nyquist samples L.

For this example, single element training datasets were
generated with 10,000 frames per class and L = 16 IQ samples
per frame. The noise dataset consisted of i.i.d. samples from
CN(0,02). The model for the SOI dataset followed Sec. I
with N =1, v, =0, f. = 915 MHz, F; = 200 kHz, €;yox = 5
ppm and SNR = 40 dB. Each frame consisted of a random
sequence of QPSK symbols, and the RRC filter used a roll-off
of 0.3, span of 10 symbols, and 2 samples per symbol. A delay
of D = 20 was used to remove the filter’s transient response.

Pi = &)
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All frames of both datasets were normalized for unit power to
ensure that the classifier could not use a feature as simple as
amplitude or power level for discrimination.

The Conv2d layers of the CNN were configured with a
kernel size of 1 x 2, based on 2 samples per symbol for the
SOI, and the inputs to the LogSoftmax layer were scaled by
T~1. Optimization used the negative log-likelihood (NLL) loss
function, stochastic gradient descent (SGD) with a learning
rate of 0.02, momentum of 0.9, and a learning rate decay factor
of 0.1 every 9 epochs. We trained for 30 epochs using a batch
size of 256 frames. Separate CNNs were trained for each value
of T'. Then, the performance of each CNN was evaluated using
independently generated test datasets for a range of SNRs.

In this example, T' = 15 showed our desired behavior and
was selected for use in the CBTL beamforming architecture.
The LogSoftmax layer was configured with 7" = 15, and new
CNNs were trained using the same procedure for different
values of L. The results of testing over a range of SNRs are
shown in Fig. 4. We observed that the mean confidences were
relatively insensitive to L and were constrained such that they
do not reach 1 (or drive the loss to 0) while the accuracies
still approached 100%. These are desirable characteristics for
the CBTL beamforming architecture and offer the potential
for good performance with small sample support.

B. Beamformer

The beamformer consists of spatial whitening followed by
multiplication with the weights w# = [wy,wa,...,wy]H.
Whitening is a common preprocessing step in BSS [1], [5],

[6], and is implemented as
Z=WZ (6)
- A 2UH7Z (7

where Z is the input N x L data matrix, W is the N x N
whitening matrix, and UAU = ZZ¥ is the eigendecompo-
sition of the sample covariance matrix with U unitary and A
diagonal. The L sample output of the beamformer y = w 7
is normalized for unit power and formatted for processing
by the pre-trained CNN. We implemented whitening in a
custom layer and beamforming using a complex-valued Linear
layer with N input features, 1 output feature, and zero bias.
The beamformer has N learnable parameters, the conjugated

weights wt .

C. Beamformer Training via Transfer Learning

We now discuss the procedure for using the pre-trained
classifier to learn the beamforming weights. A new network
was defined to take a single IV x L input Z and perform whiten-
ing, beamforming, normalization/formatting, and classifica-
tion. The normalization and formatting were necessary since
the beamformer has no constraints on its weights. Therefore,
its output must be normalized for unit power y = v/Ly/||y||
before splitting into a frame of real and imaginary components
Re{y},Im{y} for the CNN. Since the CNN is pre-trained,
i.e., its parameters are frozen, the only learnable parameters

in the new network are w.
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Fig. 4. Mean classification confidence (top) and accuracy (bottom) for RRC
filtered QPSK versus the number of Nyquist samples per frame L and SNR.
The temperature scaling was 1" = 15.

When training the new network, the input Z is asserted to
contain the SOI and assigned a class label of 1. The weights
wi are initialized to random values, and optimization uses
the NLL loss function and SGD with a learning rate of 0.02,
momentum of 0.9, and a learning rate decay factor of 0.1
every 250 epochs. Training proceeds until the classification
confidence for the SOI has converged or a maximum number

of epochs k has been reached. Convergence is declared if

1
M

M
Zpl[z‘]pl[z‘l}‘ﬂ ®)
=2

where p; is a vector of the classification confidences for the
SOI from the last M epochs and v is a small value. Setting
k = 1,000, M = 500, and v = 10~8 was found to work
well.

IV. SIMULATION EXPERIMENTS

Monte Carlo simulations were used to evaluate the CBTL
beamformer and compare its output SINR to the theoretically
optimal and that of the JADE and cFastICA algorithms for
four types of SOIs. The following subsections describe the
dataset generation, beamformer configuration, and results.
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A. Dataset Generation

Datasets for training CNNs and testing beamformers were
generated via simulation with 10,000 frames per SOl and L =
4096 Nyquist samples per frame. A carrier frequency of f.
915 MHz and maximum frequency offset of €pnax = 5 ppm
was used. The SOI-specific parameters were as follows:

e QPSK and 16-QAM: RRC filter with a roll-off of 0.3,
span of 10 symbols, and 2 samples per symbol. F; = 200
kHz and D = 20 to remove the filter’s transient response.
OFDM: Symbols of 1024 QPSK modulated subcarriers
and a cyclic prefix of 72 samples. Symbol rate of 100
Hz, F, = 137 kHz, and D = round(L{(O, 1370)) for a
random receive time within a symbol.

FMCW: Repeating linear frequency modulated chirps
swept from -50 to 50 kHz relative to f. in 10 ms.
F, =125 kHz and D = round(¢(0,1250)) for a random
receive time within a chirp.

For QPSK, 16-QAM, and OFDM, each frame was created
using a random sequence of data symbols. Single element
datasets for training the CNNs were generated using N = 1,
ve = 0, and SNR = 40 dB. Multi-element datasets for testing
the beamformers were generated using N = 4, n = 0.5, SNR
=10 dB, and INR = 30 dB.

B. Beamformer Configuration

CBTL beamformers were implemented by truncating each
dataset to L = 2¢ samples per frame for i = [3,4,...,12]
and training for each SOI (a total of 40 CNNs). We used
T = 15 for all CNNs, and the Conv2d layers were configured
with kernel sizes of 1 x 2 for QPSK and 16-QAM, 1 x 8
for OFDM, and 1 x 4 for FMCW. These hyperparameters
were chosen based on preliminary experiments to calibrate
the classification confidences and maximize the beamformed
SINR. After training the CNNs, their parameters were frozen
and used to learn the beamforming weights as in Sec. III-C.

The implementations of JADE and cFastICA followed [15]
and [16]. The number of signals was assumed unknown, so
both algorithms estimated beamformers for all N independent
components. Further, because it was unknown which indepen-
dent component was the SOI due to the inherent permutation
ambiguity in these algorithms, beamformed SINRs were com-
puted for all N possibilities and the maximum was saved.
This can be a disadvantage in practice compared to the CBTL
beamformer, which returns only the weights for the SOL.

C. Results

The datasets were processed by each beamformer and the
resulting SINRs were computed using

wHR, W
SINR = ———— 9
wHRyw ®
where
R; = o?vyvi (10)
Ry = o2vovl + 621 (11)
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Fig. 5. Example of the output SINR while training the CBTL beamformer
for the QPSK SOI in AWGN interference. N = 4 element ULA, SNR = 10
dB, INR = 30 dB, and angle of arrivals separated by n = 0.5 beamwidths.

are the covariance matrices for the SOI and interference plus
noise, I is the N x IV identity matrix, and w = WHw are the
unwhitened beamforming weights. An example of the CBTL
beamformer’s convergence for a single frame of the QPSK SOI
with L = 128 is shown in Fig. 5, where the optimal SINR was
computed using the minimum variance distortionless response
beamforming weights wo, = SR vy [17], which assumes
perfect knowledge of v; and R, and

N
B V{{ R; 1V1 (12)
in our implementation. We observed that the CBTL beam-
former achieved an output SINR within 1 dB of optimal after
training for 111 epochs and achieved SINR gains of 1.4 and
2.5 dB over cFastICA and JADE, respectfully. The CBTL
beamformer continued to improve the SINR by another 0.1
dB until it declared convergence after 939 epochs.

Average SINRs achieved by each beamformer for all
datasets are shown versus L in Fig. 6. We observed that
the CBTL beamformer consistently outperformed JADE and
cFastICA when there was limited sample support, and the
performance was just as good for larger values of L. However,
we note that this benefit came at the cost of comparatively
long compute times, making the current implementation of
the CBTL beamformer most applicable to offline processing.

Except for the OFDM case, all beamformers approached
optimal performance as L increased. Neither JADE nor cFas-
tICA were expected to perform well for OFDM, since both
the SOI and interference were effectively Gaussian distributed
and will fail to be separated [5], [6]. Similarly, 16-QAM
is more Gaussian-like than QPSK, and the performance of
JADE and cFastICA suffer as expected. The results show that
CBTL beamformers can achieve good performance if there is
structure that can be recognized by the CNN, even when the
distribution of the SOI resembles a Gaussian.
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Average SINR (dB)

Fig. 6. Average beamformed SINRs versus the number of Nyquist samples per frame L over 10,000 trials for the FMCW, QPSK, 16-QAM, and OFDM (left
to right) SOIs in AWGN interference using a N = 4 element ULA, SNR = 10 dB, INR = 30 dB, and angle of arrivals separated by 17 = 0.5 beamwidths.

The ability for these results to apply to real-world scenarios
depends on how closely the real data matches the received
signal model from Sec. II. Although the model captures
significant aspects of the wireless channel, differences in real
data may arise for several reasons. Since both the model and
beamformer are narrowband, strong multipath reflections that
cause frequency selectivity will result in a performance loss.
Any distortions introduced by RF components, such as an
amplifier in saturation, will alter the structure of an SOI and
should be included in the training dataset. While this paper
considers only a single i.i.d. AWGN interferer, the proposed
CBTL beamforming architecture does not preclude other types
of interference waveforms or multiple interferers; however, the
classifier should be pre-trained to discriminate between any
interference and the SOI. As part of our future work, we plan
to study the performance of training on synthetic data and
testing on real over-the-air data.

V. CONCLUSIONS

This paper has introduced a novel architecture for narrow-
band blind ABF based on transfer learning. The technique
leverages the recent success of CNNs for RF signal classi-
fication and uses a simple procedure to learn beamforming
weights for extracting an SOI from interference. Simulations
were used to evaluate the performance for a variety of SOls,
and the proposed technique demonstrated average SINR gains
of 3 to 9 dB over well-established methods for BSS when the
sample support was small. The CBTL beamformer developed
herein easily extends to other SOIs and models without expert
feature extraction or algorithm development. Future work will
include evaluation using over-the-air datasets and improving
the optimization procedure to enable real-time operation.
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