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Abstract—Automated warehouses involve robots that move across the floor, avoiding obstacles while remaining connected via an
access point (AP) to a central controller that instructs the robots. The complex propagation environment and presence of metallic
surfaces results in spotty coverage, which changes over time as the location of stored products and machinery changes. Thus,
maintaining an assured connectivity to APs while performing navigation is a challenge, although it is needed to relay local sensor data
from the robots to the controller and receive directions from the latter. DARWIN, involves creating a digital twin of the warehouse for
training the robots by jointly optimizing the navigation and avoiding wireless dead-spots. DARWIN has three key capabilities: First, it
captures the features of both physical and RF environments in the digital world. Second, it allows real-time updating of the digital twin if
significant disparity is detected compared to the physical environment. Finally, it includes a reinforcement learning algorithm that jointly
optimizes navigation and network resource management, while accounting for handover and outage. We validate DARWIN on an
emulation environment consisting of Robot Operating System and Gazebo platforms along with real-world RF measurements. Results
reveal that DARWIN reduces the number of steps by 43% compared to choosing the closest AP, while detecting environmental
changes with maximum 96% accuracy to maintain a high-fidelity digital twin.

Index Terms—Deep reinforcement learning, digital twin, network resource management, robot navigation.

1 INTRODUCTION

The ready access to data, enhanced communications tech-
nology and networked robotics are poised to usher in a
transformation of the manufacturing sector. For example, an
automated warehouse uses robotic systems to lower opera-
tion costs, improve warehouse productivity, and eliminate
safety risks [1]. In many instances, such robots utilize Ar-
tificial Intelligence (AI) algorithms to navigate through the
warehouse floor, while safely avoiding obstacles [2]. In this
work, we assume robots are passive and are instructed by
a central controller [3], which we refer to as an autonomous
edge. The latter receives sensor information from the robots
using an uplink channel, which is then provided as input
to the Al algorithm to generate movement instructions,
linear and angular velocity in our case. As a result, the
performance of a network of robots depends on the ability
of the wireless links to deliver the sensor data in uplink
and return instruction to the robots in downlink [4] by
associating with the appropriate Access Points (AP).

In this paper, we address these challenges by construct-
ing a digital twin of the physical warehouse environment
and training Al models to obtain a path planning policy
that minimizes the number of robot steps towards its target,
while maintaining connectivity with the autonomous edge.
A digital twin is a true-to-reality emulation of the real
world [5], [6]. This is especially useful when trial-and-error
methods are infeasible due to possible adverse impact to
life or property, such as in the case of Autonomous Robot
Navigation (ARN) systems [7], [8]. Different from digital
replicas (i.e., simulation only), our approach to using digital
twin considers the impact of (a) near real-time response and
(b) bidirectional interaction with the physical world.
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Fig. 1: Overview of the computation and communication in
DARWIN. The robots transmit local sensor information to the
autonomous edge in the uplink and receive instructions in the
downlink. DARWIN adapts to the changes in the environment,
handles AP handover and outage, and jointly optimizes navi-
gation and network management.

1.1 Challenges in Connected Robot Navigation

Fig. 1 shows our scenario of interest where multiple robots
navigate to their targets with minimum number of steps,
while safely avoiding obstacles and maintaining the con-
nection with the autonomous edge. Several key challenges
remain to be addressed to realize this vision.

¢ C1. Dynamic Environments: One approach to path plan-
ning involves training a Reinforcement Learning (RL) agent
that explores the environment over multiple trials. To avoid
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human or material loss, a digital replica of the real world
can be utilized to generate training scenarios. However, this
digital replica must be continuously updated to mimic the
dynamic nature of the real world. For example, in Fig. 1, an
unanticipated obstacle in the form of a machine suddenly
blocks the path of Robot 1. In this case, the autonomous
edge must respond to the changes in the environment and
update the path planning policy to avoid collision. Formally,
a collision occurs when there is physical contact between the
robot and another object in its environment.

Moreover, while some of the state-of-the-art techniques
such as Integrated Sensing and Communication (ISAC) [9]
systems offer valuable capabilities in certain scenarios, our
digital twin approach provides a more versatile and com-
prehensive solution for complex factory environments with
challenging propagation characteristics, integrating diverse
sensor data and network conditions to enable robust naviga-
tion across various frequency bands and dynamic settings.
o C2. Real-time Generation of the Digital Twin: Creating
a digital twin is time consuming. For example, state-of-the-
art Simultaneous Localization And Mapping (SLAM) [10]
algorithm requires many closed loop trials of exploring
the real world and also high quality sensors, which are
not always available in robots. Ideally, digital twins should
utilize instantaneous sensor data to create or update digital
instances in near real-time.

e C3. Cost of Re-training the Policy: In a dynamic ware-
house environments, the path planning policy must be
updated to avoid the collision with the obstacles. However,
updating path planning policy at the autonomous edge is
computationally expensive. As a result, triggering such an
update must be avoided as long as no severe performance
degradation is observed.

e C4. Modeling Handover and Outage: Since there are
typically multiple APs in the environment, there could be
overlapping coverage areas for the robot (see Robot 2 in
Fig. 1). Thus, the AP allocation policy must be designed
to enable the best handover strategy. During handover, the
robot loses connections with the APs (i.e., the autonomous
edges consequently) for a fraction of time, which might
affect the navigation performance. On the other hand, we
need to model the outage scenarios where the signal to noise
ratio (SNR) of the received signal is not enough to maintain
connectivity with the autonomous edge and try to avoid
them as much as possible.

e C5. Dependency of Navigation on Network Manage-
ment: In wireless dead-zones, the robots may not be able
to receive directives from the autonomous edge. This is
a problem since navigation and network management are
tightly coupled. For example, Robot 3 in Fig. 1 must maneu-
ver around the obstacle to reach to the designated target. It
may do so by turning around the obstacle in two possible
directions. However, following the right path traps the robot
in a wireless dead-zone, which results in connection loss
between the autonomous edge and the robot. As a result, the
robot should ideally select the left path, although it results
in a higher number of steps.

1.2 DARWIN: Digital Twin at Autonomous Edge

In this paper, we propose DARWIN to mitigate the chal-
lenges in robotic navigation using interaction between the
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real world and a digital twin that is deployed at the au-
tonomous edge. First, our proposed method, continuously
monitors the real world, generates the most updated twin,
and updates the path planning policy, if required, address-
ing (C1). Second, given the instantaneous local sensor data
from robots, we propose an algorithm to create the latest
digital twin of the real world in near real-time (C2). Third,
we compare consecutive digital twin instances and only
trigger the path planning update if a drastic change occurs
in the environment. This avoids unnecessary computation
cost at the autonomous edge (C3). Fourth, we model the
wireless propagation pattern to reflect the handover and
outage cost in the reinforcement learning algorithm (C4).
Finally, we introduce a path planning policy that jointly op-
timizes navigation and network management to minimize
the number of steps for the robot, while ensuring that the
robots are maintaining the connection with the autonomous
edge and not trapped in wireless dead-zones (C5).

1.3 Summary of Contributions

Formally, our contributions are as follows:

1) We propose a novel approach for constructing a
high-fidelity twin of the real world at the au-
tonomous edge. We use instantaneous laser and
camera sensor data acquired by robots to identify
the regions of obstacles and map them to the digital
twin. Our approach demonstrates up to 96% and
61% accuracy in the detection of new objects with
laser and camera sensors, respectively, and detec-
tion time of ~ 1ms.

2) Given the cost of retraining the RL policy, we design
a tolerance threshold to prevent unnecessarily pol-
icy updates. Our algorithm compares consecutive
instances of the digital twin, and only triggers policy
update when a drastic change in the environment is
detected.

3) We run a real world RF measurement campaign
using the Turtlebot and multiple software defined
radios as APs to generate a lab environment that
closely mimics the warehouse floor setup with mul-
tiple obstacles and reflecting materials.

4) We propose a RL algorithm that jointly optimizes
navigation and network management to account for
both presence of obstacles and quality of connection
with the autonomous edge. We use the state-of-the-
art Deep Deterministic Policy Gradient (DDPG) [11]
as the reinforcement learning algorithm. Moreover,
we validate our solution on the real world SNR
measurements with penalties associated with AP
handover and outage. Our observation indicates
that by carefully allocating the robots to the access
points, the average number of steps decreases by
43%, compared to always choosing the nearest AP.

5) In summary, we propose the first-of-its-kind frame-
work for creating an interactive digital twin in em-
ulation environment consisting of Robot Operating
System and Gazebo platforms along with real-world
RF measurements that maps a real world warehouse
floor setup with multiple robots participating in a
joint task through an autonomous edge.
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2 RELATED WORKS
2.1

Krell et al. [12] present a swarm intelligence method, namely
Particle Swarm Optimization (PSO), to navigate in an un-
known environment with static obstacles, while minimize
the robot traveling distance. Similarly, Chen et al. [13] use
a stochastic PSO with high exploration ability, that ensures
smooth path planning. Almanza et al. [14] present an algo-
rithm to continuously generate the occupancy map of the
environment using ultrasonic sensor. The path planning is
updated using potential field algorithm [15], accordingly.
Hu et al. [16] adapt the DDGP algorithm [11] for robotic
navigation and present a collision avoidance algorithm with
deep reinforcement learning to navigate the robot towards
the target. In the proposed approach, the instantaneous sen-
sor data are used to predict the linear and angular velocity
of the robots and a utility function is designed that takes
into account the path cost and the target distance.

Autonomous Robot Navigation

2.2 Network Resource Management

Elbamby et al. [17] discuss edge networking services as
key enablers to achieve low-latency and high-reliability net-
working in mission-critical applications such as Virtual Re-
ality (VR), Vehicle-to-Everything (V2X), and edge Artificial
Intelligence (AI). Ahmadi et al. [18] propose a method for
mobility management and handover at the edge network for
a seamless connection by predicting the future locations of
a moving receiver on a vehicle. Ho et al. [19] propose a deep
reinforcement learning algorithm for joint server selection,
cooperative off-loading, and handover in multi-access edge
wireless networks in dynamic environment. Regarding the
robotic systems, Mohanti et al. [20] exploit DDPG algorithm
for robot navigation in a static environment. The authors
then propose a strategy for network management given
the designated path to reach to the target. Eisen ef al. [21]
develop a communications-control co-design paradigm for
adapting the QoS and control inputs provided to robotic
agents controlled via a wireless edge.

Novelty of DARWIN: In summary, the state-of-the-art work
on navigation and network management has the following
shortcomings. First, they are only validated on static en-
vironments ( [12], [13], [16], [20], [21]) and fail to adapt
to the changes in the environment. Second, the wireless
aspect is ignored or glossed over ( [12], [13], [14], [16]).
Third, only one of the navigation ( [12], [13], [14], [16]) or
network management ( [17], [18], [19]) aspects are studied
or, when considered together, solved as disjoint task or for
static environments [20], [21]. Tab. 1 highlights the unique
features of DARWIN compared to the state-of-the-art for
navigation and network resource management.

3 SYSTEM MODEL

In this section, we first formally state the problem. We then
present the system architecture of DARWIN.

3.1

We consider {R;}/<; robots and {A;}}L, access points
in the environment with O obstacles. In our setting, the
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TABLE 1: Advantages of DARWIN over the state-of-the-art for
navigation and network resource management. The filled cell
denote that the target feature is not applicable.
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Fig. 2: Overview of the proposed system architecture. DARWIN
continuously monitors the environment. In Module 1, we use the
instantaneous sensor information to generate the digital twin.
If a significant change in environment is detected (Module 2),
we update the path planning policy by jointly optimizing the
navigation and network resource management (Module 3).

robots are equipped with Inertial Measurement Unit (IMU),
laser, and camera sensors. Moreover, they are passive and
communicate the sensor information in the uplink to the
autonomous edge using the APs. The autonomous edge
runs a decision algorithm and sends the instructions in the
downlink, linear and angular velocity, and corresponding
access point for each robot (see Fig. 1). Crucially, the selec-
tion of the corresponding access point for each robot at time
step t is not a separate, disjoint allocation task, but rather
an integral part of the reinforcement learning algorithm’s
action space, jointly optimized alongside the robot’s linear
and angular velocities. This ensures that network connec-
tivity considerations are inherently coupled with navigation
decisions, preventing any sub-optimal, disconnected plan-
ning. The path planning policy is targeting to minimize the
number of steps reaching to the targets, while avoiding the
obstacles and maintaining connection with the autonomous
edge.

3.2 System Architecture in DARWIN

An overall view of our framework is shown in Fig. 2 and
consists of three main modules as follows:

o Real-time Digital Twin Generation (Module 1): The
autonomous edge receives the instantaneous local
sensor data from the robots in the uplink. We present
a detection algorithm that exploits laser and camera
data to detect the obstacles in close and distant
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ranges, respectively. Our method generates the digi-
tal twin in near real-time, unlike SLAM that requires
offline exploration of the environment (details in
Sec. 4.1).

o Policy Update Trigger (Module 2): We design an
algorithm to compare the different instances of the
digital twins and update the path planning policy, if
a major change in the environment is observed. As a
result, we avoid unnecessary updates to ensure com-
putation efficiency at the autonomous edge (details
in Sec. 4.2).

e Joint Navigation and Network Management (Mod-
ule 3): We design a deep reinforcement learning al-
gorithm tailored to jointly optimize navigation and
network management. Apart for navigation, our re-
ward function takes into account the SNR of the
received signal and handover cost. Moreover, we
model wireless link outage, when the robots are
not able to send the sensor data in the uplink or
receive the actions in downlink, due to low link
quality (details in Sec. 4.3). Such wireless link out-
age is modeled by incorporating penalties associated
with outage events directly into the reinforcement
learning reward function, compelling the policy to
actively avoid scenarios leading to connection loss
and thereby ensuring robust connectivity as part of
the overall optimization.

[ Symbol [ Type | Description |

{R}E, T Set Set of all robots

K Integer Number of robots, K = |{R;}X ||

{4, ;Vi 1 | Set Set of all Access Points (APs)

M Integer Number of Access Points, M = [{A; };‘i1|

(@] Function | Big O Notation

o Integer Number of obstacles

S Space State space for the reinforcement learning
algorithm

St Vector State vector at time step ¢

at Vector Action vector at time step ¢

i Scalar Linear velocity of robot i at time ¢

t (e.g., vy € [0, vmaz])
i Angular velocity of robot 7 at time ¢

av} Scalar i '
(e~g~r avy € [amzna Oémaz})
Index of the associated Access Point

ol Integer for robot 7 at time ¢
(b} € {1,..., M})

%0 Function | Overall reward function

v () Function | Navigation reward component

() Function | Network management reward component

w Scalar Weighting factor for the network manage-
ment reward component

K Scalar Control parameter for handover manage-
ment

TABLE 2: List of important notations.

4 DETAILED DESCRIPTION OF DARWIN DESIGN

In this section, we present our design for three modules in
the DARWIN framework (see Fig. 2). The list of notations is
presented in Tab. 2.

4.1 Module 1: Real-Time Digital Twin Generation

Our proposed system architecture continuously monitors
the environment to detect the changes and update the path

4

planning policy, if required. As a result, it is important to
generate the latest digital twin in near real-time, in order
to provide rapid response from the autonomous edge. We
propose algorithms to exploit the laser (details in Sec. 4.1.1)
and camera (details in Sec. 4.1.2) sensors, acquired locally
by the robots, to generate the digital twin. We assume that
the general boundaries of the environment, such as walls
and static obstacles are known, pre-generated by SLAM, for
example. We use the instantaneous robot sensor information
to detect the dynamic obstacles and update the digital
twin, accordingly. For simplicity, in this section, we present
our method for rectangular obstacles only to establish a
baseline for our algorithm’s performance under controlled
conditions [22]. To that end, we focus on estimating the
width and length of the obstacles, as it has the main effect
on the performance. Nevertheless, our methodology can be
extended as a future study to estimate the more complex
shapes and the height of diverse obstacles in complex envi-
ronments.

4.1.1 Detection using Laser

The laser sensor scans the surrounding by emitting laser
light at different angles and computing the distance. In our
setting, we consider a Laser Distance Sensor (LDS), which is
a 2D laser capable of sensing 360degrees with the resolution
of one degree (see Fig. 3a). The laser recordings include the
scanning angles and associated distance of the objects from
the sensor, within the detection range (3.5 m in our setting).
We note that the laser data resembles a polar coordinates
system. Fig. 3b shows a laser sample for the scenario shown
in Fig. 3a with two symmetric rectangular obstacles. In order
to generate the digital twin, we convert the laser data to the
Cartesian coordinates system as:

x = rcos(9), y = rsin(6), (1)

where 7 denotes the distance from the detected obstacle at
angle 6. Fig. 3c shows the output of this transformation. The
detected objects by laser are computed based on the current
coordinates of the robot. Thus, we use the IMU sensor infor-
mation to obtain the location of the robot R; as (Xg,, Yr,).
Hence, for 360 degree scanning at robot R;, the generated
laser vector is defined as: £ = {(Xg, + ricos(61),Yr, +
rlsin(ﬂl)), ey (XRl +T’360005(9360), YRL' +T3608in(9360))}.
We then compute the shape (di,dz) and centroid (cg,cy)
of the detected objects by computing the difference and
average of the minimum and maximum along each axis,
respectively. Formally denoted as:

d; = max £' — min £°
dy = max £' — min £°
Y y
1 , ,
Cy = i(max £' + min £)
cy = i(méxx):i + myln):’)

The overall laser processing pipeline is presented in Fig. 4.

4.1.2 Detection using Camera

The accuracy of the laser data degrades in far distances,
where the laser light reflections cannot reach back to the
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Fig. 3: (a) Scanning range of laser; (b) laser data represented
in polar coordinates; (c) laser data represented in Cartesian
coordinates; (d) A camera image sample; (e) Camera image
sample after computing the maximum value of the pixels,
horizontally; (f) Proposed detection algorithm using camera
sensor, estimating dimension (left) and centroid (right).
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Fig. 4: Overview of the laser processing pipeline.

sensor. In this case, using the camera sensor is an alternative
solution to monitor the changes in the environment in the
state-of-the-art [23], [24] . However, the camera sensor does
not include the detection angles, which makes it challenging
to extract the precise location of the obstacles. Moreover,
the flattening feature of camera sensor affects the accuracy
of estimating the shape and centroid of the obstacles. To
address these challenges, we propose to incorporate the
Field of View (FoV) of the camera for our detection algo-
rithm. In our setting, we consider an Intel stereovision 3D
imaging RealSense R200 camera [25], with FoV of 1.3439
radian (~ 77°). The RealSense R200 is a depth camera,
capturing images with height (H) and width (W) of 1920
and 1080 pixels, respectively, and maximum scanning range
of 100m.

5

Consider C = [¢; ;] as the matrix representing a camera
sensor sample, where 1 <7 < H,1 < j < W. Each element
ci,; denotes the distance of the objects from the camera. In
the first step, we compute the maximum value of the pixels
over matrix C horizontally and generate array C defined as:
C = [mZaJ;(ci,j)]. Fig. 3d and Fig. 3e show an example of

image sensor data and array C after computing the max-
imum horizontally, respectively. This process is equivalent
to an upper view of the camera sample, where the height is
discarded. We then identify the number of pixels associated
to each of the edges (p; and p; for perpendicular edge in
Fig. 3e for example). We use the number of pixels and FoV
of the camera to estimate the dimensions (left in Fig. 3f) and
centriods (right in Fig. 3f) as follows.

Detecting Dimension: We use the number of pixels associ-
ated to each edge to compute the angles J and « as:

5:1%><Fov,a:p3w;plxmv. @)

We then compute the perpendicular dimension as:
a 0
dy=2mr [tan(a) - tan(i)] 3)

In order to estimate the oblique dimension (between

p2 and p3), we use the Pythagorean theorem. We use a
similar analysis as above to estimate the horizontal dis-
tance (h2). On the other hand, the vertical distance of the
second edge (v2) is given by the camera data and com-
puted by comparing the distance at pixel p; and py (see
Fig. 3e). As a result, we compute the second dimension as
do = +/ h% + ’U%.
Detecting Centroid: For detecting the centroids (c,, ¢,), we
compute the perpendicular distance of the object from the
origin (e; in Fig. 3f). In this regard, we first estimate the
angle 8 by using the number of pixels similar to Eq. 2. We
then compute e; as: e; = rg tan(f). On the other hand,
given the dimension estimation from above (di,d2) and
robot coordinates (Xg,,Yr,), the centroid along each axis
is computed as:

d d
717 Cy = T2 +YRi + ?27

¢z =e1 — Xpg, + 2

4
where r9 denotes the distance of the obstacles from the
camera sensor (see Fig. 3f).

4.1.3 Laser versus Camera and Detection Time

The camera sensor does not provide a 360° detection angle
and has a limited Field of View (FoV). As a result, the
obstacles are not captured with camera sensor, when the
robot is close to them or pointing to another direction.
However, it provides a higher detection range. The laser
sensor, on the other hand, has a 360° angle; however, it has
lower detection range.

Strategic Approach: Taken together, we propose to use the
laser and camera sensor data at close and distant ranges,
respectively. We provide quantitative values for detection
range of each sensor in Sec. 5.3.
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4.2 Module 2: Policy Update Trigger

The real-time digital twin generation module (presented in
Sec. 4.1), continuously monitors the environment and gener-
ates the digital twin. We denote the different instances of the
digital twin at each step as D;. Each twin instance includes
the centroids (¢, = (¢2,¢?)) and dimensions (d, = (d{, d3))

x) Y
of the detected objects for O obstacles in the environment,
Dy = {(co,do) 3:1- If there is no significant change in

the environment, DARWIN framework runs the inference
directly without updating the Module 3 policy. In particular,
the local sensor data of the robots (received in uplink) are
fed to the Module 3 RL model to obtain the linear and
angular velocity, which are shared with the robots in the
downlink. On the other hand, upon detection of a change in
the environment, the path planning Module 3 policy # must
be updated to avoid the collisions. We note that accuracy
of the proposed detection algorithm (see Sec. 4.1) degrades
in far distances and is prone to errors like any other de-
tection algorithm. On the other hand, minor changes in the
environment, caused by a slight change in the position of
the obstacles or errors with the detection algorithm, will
not significantly affect the Module 3 path planning policy.
The autonomous edges typically have multiple powerful
computation resources; however, updating the policy is still
expensive and must be triggered if it significantly improves
the performance. As a result, we define a level of toler-
ance to avoid unnecessary updates of the Module 3 path
planning policy. In particular, we compare the boundary
of the detected objects at different instances of the D; and
compute the similarity between two consecutive digital twin
instances as:

_ 130, Area{By_; N By}
0 Zoozl Area{B{_, U B} ’

©)

where By denotes the area of the object o at the digital twin
instance D;. The space complexity of storing multiple such
instance of digital twin D, depends on the complexity of
the environment, i.e., the number of obstacles in the envi-
ronment, which we derive as: O(D;) = O(O X |(¢co, do)|) =
00 x 2) = 0(0).

In DARWIN, we trigger the Module 3 policy update
when a significant change in similarity metric (Eq. 5) of the
twin instances is observed. In such cases, DARWIN updates
the Module 3 policy for one trial and runs the inference (see
Fig. 2). As result, instead of waiting for the model to con-
verge to final optimal, which results in interrupting the path
planning by the autonomous edge, DARWIN updates the
Module 3 policy as the robot explores the environment and
improves the realization of the digital twin. Nevertheless, to
ensure avoiding collisions, we consider a safety mechanism,
when the robot gets extremely close to the obstacles. In this
regard, we first compute the next location of the robot, given
the linear and angular velocity of the robot. If the next move-
ment results in a potential collision, the autonomous edge
instructs the robots to stop and trains the path planning
policy for a few more trials (see Fig. 2). We consider this
safety limit to be 25 ¢m in our experiments.

Environment

Combined Reward (7;)

—

DDPG Algorithm at
Autonomous Edge

St» @t Ty Sev1
Critic ]Q:(snaflea)

Replay St Actor
Buffer (C9) ©y |
1
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Se+1 Target Actor| %¢+1 (Target Critic)
' Q' '
[ @) D)y, = 1+ 10 Gern i (52121649109

Fig. 5: Overview of the DDPG algorithm with Actor-Critic
networks. We design the state and reward space to jointly
optimize navigation and network management.

4.3 Module 3: Joint Navigation and Network Manage-
ment

In this section, we present our proposed solution to
jointly optimize navigation and network management in
DARWIN. We propose a reinforcement learning algorithm
as a solution which will work as a global planner for robot
path at the autonomous edge. We discuss various compo-
nents of the proposed reinforcement learning algorithm in
the rest of the section.

4.3.1 State Space

We define the state s} of the robot R; at step t as: s} =
{RE,CE 2808 AL vl avi_1,py?}. To construct the state
array, we use the laser samples from [—8°,0] (%R!) and
[0, 8°] (£%). Moreover, for the image samples, we first com-
pute the maximum pixel value horizontally and upsample
it by factor 32, resulting in 60 elements for C; (details in
Sec. 4.12). The remaining elements ?; € R, A, € R, €
R,lvi—1 € R,av;_1 € R, and p;”’ € R denote the distance to
the target, angular difference with the target, linear velocity
and angular velocity at previous time step (¢ — 1), and
normalized SNR of the received signal from the access point
Aj, respectively. The overall state array has 81 elements,
encapsulating both navigation and network management
elements. The state array s; for all the robots at time step
tis: sp = {(mzzh ti’ 2%5 i’ iv lvg—lvavé—lﬁp?])}fil'

4.3.2 Action Space

Given the state array at the time ¢, the actor model (6*,
details in Sec. 4.3.4) predicts the next actions for all robots:
a; = 0"(s;). The action a; includes the linear (lv! € R)
and angular (av! € R) velocity, and associated access point
0! € N for all the robots {R;}[X, at step t, stated as:
a; = {(lv},avi, 1)} X ,. This unified action space directly
addresses the joint optimization objective, where the DDPG
algorithm learns to simultaneously determine the robot’s
movement and its optimal AP association, ensuring a holis-
tic navigation and network management strategy.

4.3.3 Reward Space

We define the overall reward as the combination of the
navigation and network management rewards as:

FR(sta) = flev (e a) +woflonr ({01120 (6)
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[ Symbol ] Reward Description [ Reward Value |
Navigation
r;’td, Relative distance to target (d —d) x 420
riL, Reaching target 100
200 (if u* <0.2)
;1:5 Distance to obstacle (u!)[m] -80 (if u* < 0.4)
0 (if put > 0.4)
ot Laser reward So{RE,CEL i) — [{ML,ChL 24}
it . . -2 (if lvy < 0.2)
1o Linear velocity [m/s] 0 (if ! > 0.2)
it . 0 (if 08<a1)t<08)
"] Angular velocity [rad/s] 1 (if av! < —0.8 or avi > 0.8)
Network Manag; t
Q{p " HL)) SNR Eq.8
e({py L)) Handover Eq. 9

TABLE 3: Robot reward details.

Here, s; and a; denote the state array and action for all
the robots {R;}X , at step t, respectively. The reward is
computed under policy 6, encapsulating both actor (6#) and
critic (#9) polices (see. Fig. 5). Moreover, p; denotes that
SNR of the received signal from access point j for all the
robots {R;}X | at step t. Finally, the control parameter w
adjusts the contribution of navigation and network manage-
ment rewards in the overall reward. The navigation reward
component, f%,(.), implicitly carries a weight of 1. This
formulation ensures that the primary objective of minimiz-
ing robot steps towards its target (navigation) serves as the
baseline for the overall reward. The weight w is specifically
applied to the network management component,f%,,(.),
allowing for a tunable balance between navigation efficiency
and maintaining robust wireless connectivity. By adjusting
w, we can control the relative importance of network man-
agement, ranging from solely prioritizing navigation (when
w = 0) to increasing the emphasis on optimizing AP associ-
ations and avoiding wireless dead-zones. This design choice
provides a clear mechanism to manage the inherent trade-
off between movement efficiency and network performance
requirements.

Navigation Reward: We define the navigation reward as:

K

:Z( dd,+r2fT+robg+rL +7’l LJrr ) (7)
i=1

Fiev (se,a0)

The individual reward descriptions for each robot R;
are given in Tab. 3. Intuitively, the relative distance re-
ward (r ,) for each robot R; is positive when the robot
gets closer to the target and negative when the distance is
increased over two consecutive steps. We set a high reward
of 420 for each meter it moves towards the target and a high
negative reward or penalty of 420 for each meter it moves
away from the target, to ensure faster convergence to the
target. The robot gets a high reward of 200 for reaching the
target (r Obs) On the other hand, the distance to obstacles
reward (r Obs) for each robot R; punishes the robot when
getting closer to the obstacles than a threshold. We give a
high penalty of 200 when it comes within 0.2 meter of an
obstacle, and relatively lower penalty of 80 when comes to
0.4 meter of an obstacle. The laser reward (rzt) for each
robot R; is the summation of the upsampled multimodal
sensor data {?,C}, £i} minus the number of elements in
this set. The hnear and angular velocity rewards (r,” ol and

aui) for each robot R; are designed such that to avoid
t

7

low linear speed (resulting in increased number of steps)
and high angular speed (sudden turning of the robot). We
provide relatively lower penalty of —1 when the robot has
a very low linear and angular velocity as well as very high
angular velocity. The specific thresholds employed in this
study were derived from empirical observations of robot
navigation in indoor scenarios. While these thresholds have
demonstrated validity across various indoor environments
for the same application [26], however, it may require ad-
justment for different applications or significantly different
environmental contexts.

Network Management Reward: The network manage-
ment reward includes the SNR (Q({p{}},)) and han-

dover (®({p!} M,)) rewards. The SNR reward is a function
of access point allocation strategy 2. We define two access
point allocation strategies as follows:

X {pi|arg max pi’} - if Best AP
Q{p VM ) = o155 N
({r = ) ; {py’?|]arg min d*7} if Closest AP
B 1<j<M

®)

where d%7 denotes the distance of the robot R; to the access

point j. On the other hand, when handover happens, the

robot loses connection for a fraction of time, resulting in the

SNR of the received signal to be lesser than a threshold. As

a result, in the case of handover, we punish the robots by a

function of the maximum SNR of the received signal over

all access point. Formally,
o K

, M

(I)({pg j= 52 maaz {pt] j= 1)] (9)

where k is a control scalar. Overall, the network manage-
ment rewards for is defined as:

Pl L)) = Qe ML) + (w1 (0)

The network management reward component, f%,,(.),
directly incorporates the costs associated with wireless link
quality, including penalties for outage and handover. By
penalizing outages (defined as insufficient SNR for reliable
communication), the reinforcement learning agent is incen-
tivized to choose navigation paths and and AP associations
that proactively maintain strong connectivity and avoid
dead-zones, thus ensuring the reliability of control and
sensor data exchange.

Optimization Problem: Finally, the path planning policy 6
is formulated as:

Maxignize: ItE [f%(sh at)] , (11a)
st a; =0(s¢), (11b)
o1 € {A;}5,, Vi (110)
K T
D> v = (11d)
i=1t=1

Here, s; and a; denote the state and action for all robots
{R;}X | at step t. The action space includes linear veloc-
ity, angular velocity, and associated access point of robot:
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ar = {(lv},avi, o)} ,. The f%(.) denotes a reward func-
tion, which is averaged over robots and time and is a
function of state, action, as well as the allocated access point.
Each robot R; chooses the access point o from access point
set {A;}}L, (as noted in Sec. 3.1) using allocation strategy 2.
Finally, ¢! is a Boolean predicate, with ¢! to be 1 if collision
happens, and 0 otherwise, that ensures avoiding collisions.

4.3.4 Actor-Critic Networks in DDPG Algorithm

We use the state-of-the-art Deep Deterministic Policy Gradi-
ent (DDPG) [11], [20] algorithm to solve Eq. 11 and identify
the optimum path planning policy. The DDPG algorithm
is a deep reinforcement algorithm inspired by Deep Q-
Learning [27] and is based on actor-critic neural networks
as shown in Fig. 5.

In our actor-critic model, the actor network learns the
optimal policy over time to generate the actions from the
state space. Therefore, the optimal policy is determined by
the parameters of the trained actor network. To develop the
training method for policy § which corresponds to solving
the problem stated in Eq. 11b, we parameterize the actor
network as 0* where # = 0*. The actor model (6*) takes as
input the state array (s¢) and outputs the action (a;). Next,
we formulate the actor network as, a; = 6*(s;), where the
s and a; are state and action (details in Secs. 4.3.1 and 4.3.2)
for all robots {R; } X, at time slot ¢.

On the other hand, the critic network takes the state
and action as input to estimate the expected reward
Q¢ (s¢,a:|09), while following the policy 6<. Unlike stan-
dard Q-Learning, the DDPG algorithm employs two sets of
actor-critic neural networks (see Fig. 5). The critic network
takes both the state and the generated action from the actor
as inputs and determines the quality of the generated action.
The critic model is formulated as, Q! = 6% (s;, a;), where Q*
is the @ value generated by the critic at time slot ¢ evaluating
the success of the generated action a¢, and critic network is
parameterized with §9. Here () is a function in the DDPG
algorithm, which generates the expected rewards for an
action taken in a given state. Q-learning finds an optimal
policy in the sense of maximizing the expected value of the
total reward over any and all successive steps, starting from
the current state [27].

Training: At the training phase, the agent interacts with the
environment by predicting an action given the current state
and stores the observations in a reply buffer. The observa-
tion includes the current state (s¢), action (a;), reward (r;), as
well as the next state (s¢41). The agent then samples a mini-
batch from the replay buffer and uses the data to update the
Actor-Critic network as follows. The critic model update is
designed to minimize the difference between the loss (mean
square error) of the original and target critic models. On
the other hand, the actor model update is policy gradient
based. Finally, the target Actor-Critic models are updated.
Instead of updating the target network weights by directly
copying them from the Actor-Critic network, the DDPG
algorithm slowly updates the target networks through a
process known as Soft Target [28] updates, which is shown
to improve the stability of learning. Upon convergence, at
the inference phase, the agents feed the state array to the
actor network (6*) and drive the actions. We use the state-
of-the-art DDPG algorithm described above. However, we

8

use state and reward functions that are tailored to jointly
optimize navigation and network management.

4.3.5 Modeling Outage in DARWIN

In case of outage, the wireless coverage is not enough to
deliver the sensor data in the uplink or receive the actions
in the downlink, which results in losing the connection with
the autonomous edge. We define the outage as SNR of the
received signal being lower than a threshold. Note that the
outage is a function of access point strategy (Eq. 8) as well.
Formally for each robot R;,

L ifQ(fp/ 1) = A

Outage = thresh(Q({p}’ }j\;)) = {0 otherwise

(12)
We model outage, i.e. Outage = 1, by instr_ucting the
robot to follow the previous action (a; = a; ;). As a

result, the robot follows the latest action instructed by the
autonomous edge until it reaches to a region, where the
SNR of the received signal is higher than threshold A and
the connection with the autonomous edge is retrieved.

5 EVALUATING DARWIN

In this section, we present the implementation and evalu-
ation of DARWIN, our proposed framework for joint op-
timization of navigation and network management. Our
approach leverages a digital twin environment mimicking
a warehouse floor environments to validate robotic naviga-
tion with network considerations. While the core principles
of DARWIN are platform-agnostic, our current implemen-
tation utilizes Robot Operating System (ROS), Gazebo, and
Python environments. Due to limitations in integrating ra-
dio modules within ROS, we conduct separate real-world
RF data collection campaign for network measurements,
which were then incorporated into our digital replica. This
methodology allows us to demonstrate the feasibility of
our joint optimization approach in a controlled, yet realistic
setting.

5.1 RF Data Collection Campaign

We validate DARWIN with experimental data collected
from a testbed that mimics a warehouse floor environments
with Turtlebot robots and two USRP X310 software defined
radios as access points.

5.1.1 Testbed Environment

We demonstrate DARWIN in a setting that resembles ware-
house floor environments. We setup our testbed in a lab
environment that covers a 5m by 3m area (see Fig. 6a).
We consider discrete points with spacing of 50cm in the
testbed area, resulting in 7 and 11 points along each axis.
The testbed includes multiple reflective surfaces, including
metal, glass and composite walls, that are typically present
in factory environments as well.
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Fig. 6: (a) Testbed setup with two X310 radios as access points, a Turtlebot with a X310 radio mounted on it, and rectangular
obstacles; (b) A diagram of the testbed representing the positioning of the access point, discrete points in the testbed, and location

of the obstacles in four data collection scenarios.

5.1.2 Software Defined Radios

We use USRP X310 radios as both access point and receiver.
In our setting, we consider two access points and one
receiver mounted on the Turtlebot (see Fig. 6a). The access
points are located at the boundary regions of the testbed
at the height of 220 cm and 250 cm (the exact placement
of the access points is shown in Fig. 6b). All the radios
are connected to a central control unit that runs GNU
Radio [29]. The access points emit frames generated via
MATLAB WLAN System toolbox. The frames are modu-
lated by Modulation and Coding Scheme (MCS) index of 5,
which corresponds to 64 QAM modulation with coding rate
of 2/3. The first access point (AP1 in Fig. 6a) is configured to
operate at 5G H z band, whereas the second access point is
set at the center frequency of 5.01G H z. We use these center
frequencies to avoid interference by commercial devices that
operate at ISM band (2.4 G'H z). Both access points have the
bandwidth of 10M H z. On the other hand, the receiver SDR
samples the incoming signals at 15.36 A/.S/s sampling rate
and scans the spectrum from 4.995 — 5.015 GH 2.

5.1.3 Data Collection Scenarios

In order to study the effect of different obstacle positioning,
we consider four different scenarios in our testbed. Fig. 6b
shows a diagram of our testbed, where the obstacle posi-
tioning are reported for each scenario. The obstacles are
rectangular with dimensions 77 cm x 56 cm x 88 cm. First, we
consider a simple scenario where there is no obstacle present
in the testbed (Scenario 1). The second scenario (Scenario 2),
describes a symmetric obstacle positioning in the testbed,
where the obstacles are located at (A) and (D) markers
in Fig. 6b. The third (Scenario 3) and fourth (Scenario 4)
scenarios correspond to having extreme blockage for AP1
and AP2, respectively, where the obstacles are located at (A,
B) and (C, D) markers.

5.1.4 Data Collection Strategy

We put the Turtlebot on each of the 77 discrete point in
the testbed and sweep the spectrum from 4.995 GHz —
5.01 GHz with 10 KHz step and record the SNR of the
received signals from both the access points. The primary
focus of this research is on wireless network management,

[[ Scenario | Mean | Standard Deviation [ Minimum |  Maximum ||
1 (11.47,12.02) {0.05,0.06) (5.32,6.18) | (19.94,18.33)
2 (11.52,11.90) (0.06,0.04) (4.66,4.74) | (23.16,21.38)
3 (10.86,11.59) {0.05,0.041) (4.52,6.20) | (24.15,21.61)
1 (11.12,11.97) (0.06,0.04) (5.52,5.17) | (19.78, 20.86)

TABLE 4: Statistics of the SNR of received signal (in dB) for
two access point in the testbed. The first and second number in
parenthesis are associated with AP1 and AP2, respectively.

specifically ensuring continuous connectivity for networked
robots. To this end, our experimental methodology con-
centrates on measuring the downlink SNR of the received
signals from both access points to the robot. Upon associa-
tion with a specific access point, uplink communication is
conducted in accordance with the corresponding protocol
standards, although this is not explicitly measured in our
current study. The plots in Fig. 6b show the spectrum over
two points in the testbed for Scenario 2 (symmetric obstacle
positioning). We observe that for the point close to AP1,
the SNR of the received signal from AP2 is much less than
AP1, due to presence of an obstacle at marker A. On the
other hand, the second point exhibits a better performance
for AP2 as a result of the line of sight path from this access
point. In order to account for the time-varying effect of wire-
less channel, we record the SNR for one minute (equivalent
to 120 rounds of scanning) at each point for both access
points. In Fig. 7, we demonstrate the average SNR for both
access points and four scenarios in our testbed. Moreover,
Tab. 4 summarizes the statistics of the SNR for both access
points with respect to mean, standard deviation, minimum,
and maximum over all discrete points in the testbed.

5.2 Implementation Details and Evaluation Metrics

Fig. 8 demonstrates our methodology for implement-
ing DARWIN that works with coordination between
Gazebo [30], Robotic Operating System [31], and Keras
2.3.1 with Tensorflow backend. Using Gazebo, we create the
digital twin for each of four scenarios described in Sec. 5.1.3.
On the other hand, we import Turtlebots in ROS with IMU,
laser, and camera sensors. The sensor information from
ROS and measurements from data collection campaign (see
Sec. 5.1) are fed to the DDPG algorithm to jointly optimize
navigation and network management. The output of DDPG
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Fig. 7: Average SNR of the received signal at each discrete point in our testbed for AP1 (a, b, ¢, d) and AP2 (e, f, g, h) at each of
the four data collection scenarios. The number in each square denotes the average SNR. The sold red squares show the position
of obstacles in each scenario. Selective regions with low and high received SNR are marked with red and green lines.

algorithm (next robot’s movement) are fed back to ROS and
Gazebo using a Gym Wrapper [32] to update the location of
the robot in the Gazebo (i.e. digital twin). The neural net-
works are trained using Adam optimizer [33] with learning
rate of 0.0001. We consider 100 and 5 trials for training and
testing, respectively, with maximum 2000 steps per trial.

We compare different methods and settings with respect
to the average number of steps to reach to the target and
average reward. Moreover, from network management as-
pect, we report the access point allocation ratio as well as
outage ratio. The access point allocation ratio denotes the
ratio of the times, where the robot is allocated to either of
AP1 and AP2 in our setting. On the other hand, outage
ratio characterizes the ratio of losing connection with the
autonomous edge due to low SNR of received signal, while
following the path to the target. Finally, for Module 1, we use
Intersection over Union (IOU) metric to assess the accuracy
of detection defined as:

Area{B, N By}
Area{B, U By}’

where By, and B, correspond to the ground-truth and
predicted areas by the proposed method in Sec. 4.1.

10U = (13)

5.3 Performance of Module 1 in DARWIN

In this module, the goal is to generate the digital twin using
the instantaneous sensor data, recorded locally at the robots.
Our proposed approach in Sec. 4.1 exploits the camera and
laser sensor information to detect the presence of the objects
in the environment. In Fig. 9, we report the IOU (Eq. 13)
for Scenario 2 (symmetric obstacle positioning), as the robot
moves in the environment. In this scenario, also shown in
Fig. 3a, the first obstacle is located at quadrant 2 and the
second one is placed at quadrant 4. In Fig. 9, the x-axis
denotes the distance of the robot from the origin (starting
point of Turtlebot). We report the IOU for using the laser
and image sensor data for both obstacles.

Keras

DDPG Algorithm for
Joint Opti i

Fig. 8: We implement DARWIN using Gazebo, Robotic Operat-
ing System (ROS), and Keras with Tensorflow backend.

Broader Observations: We detail the main findings below:
e Laser provides high (> 75%) detection accuracy in short
ranges (distance less than 3.75m), which gradually drops
as the robot gets far from the obstacles. The IOU with laser
exhibits fluctuation which are caused by the errors in the
data, specially around the edges of the obstacles.

o We observe a significant drop in IOU to 0.0192 for obstacle
2, when the distance is ~ 0.4315m. We note that around
this region, the robot is located perpendicular to the second
obstacle, at coordinates of (0.75,—1.25). As a result, only
one angle of the obstacle is captured in the laser data. In this
case, the output of detection algorithm is a slim rectangle,
where the visible angle is accurately estimated, while the
hidden angle is estimated to be smaller than the ground-
truth. We observe that the IOU increases after the robot
passes this region and both edges are captured in the laser
data again.

e The IOU with camera sensor data is zero when the dis-
tance from the origin is less then 0.6568m for both obstacles.
In this region, the obstacles are not captured in the images
due to limited FoV of 77° for the camera sensor. However,
we note as the robot gets far from the origin, the first and
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Fig. 9: Intersection over Union (Eq. 13) with laser and camera
sensors for scenario 2 (symmetric obstacle positioning), when
the robot starts from the origin and follows a trajectory (details
in Sec. 5.4, validates Contribution 1).

then the second obstacles gradually appear in the images.
Once the entire obstacle is captured in the images, the IOU
does not change, drastically.

e We note that the dimensions of obstacles are detected
with high accuracy using the camera sensor and pro-
posed method in Sec. 4.2. However, estimating the cen-
troids is affected by perspective distortion and flattening
effect. For example at the distance of 3.80m from the
origin, the dimensions of the obstacles are detected as
(0.5662m,0.6811m) and (0.5492m,0.6434 m) for two ob-
stacles. Comparing with the ground-truth dimensions of
the obstacle, i.e. (0.56m,0.77m), we observe that the di-
mension estimations are close. However, due to errors in
estimating the centroids, the IOU is calculated as 0.5822
and 0.4003 for first and second obstacles, respectively. As a
result, we conclude detecting the dimensions is more robust
than centroids with camera sensor.

o We estimate the detection time by computing the average
time to run the algorithms presented in Sec. 4.1 as ~ 1ms
on a Dell Alienware desktop. Considering the availability of
much more powerful computation resources at autonomous
edge, we conclude that our proposed detection algorithm in
Sec. 4.2 performs in near real-time.

Remark 1. DARWIN shows maximum detection accuracy of
61.27% and 96.93% (see Fig. 9) with camera and laser for far
and close ranges, respectively. The detection time of the proposed
method is ~ 1ms which suggests that DARWIN updates the
digital twin in near real-time, (see Fig. 9, validates Contribution
1).

5.4 Performance of Module 2 in DARWIN

In this set of experiments, we consider a scenario where
there is discrepancy between the digital twin at the au-
tonomous edge and real world placement of the obstacles.
The discrepancy might be caused by the low detection
accuracy of the sensors at far distances (see Sec. 4.2) or errors
in the sensor measurement itself due to usage of cheap LDS
laser sensor used in the Turtlebot 3.

5.4.1 Effect of Discrepancy in Centroid

We consider a scenario where the dimensions of the obsta-
cles match the ground-truth, i.e. (0.56m,0.77m). We then
move the centroids of obstacles along each axis with the
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factor e. Formally, ¢, = (1 + €)c, and C;J = (1 £ €)cy,
where c; and C;/ denote the mismatched centroids. We
consider a setting where the centroids of the both obstacles
are moved in the same direction. Thus, we consider four
settings overall, including moving to the right, left, up, and
down. In Fig. 10a, we report the average reward for four
moving directions and ¢ = {0.01,0.05,0.1,0.2}. The red
dotted bar in Fig. 10a denotes the reward at ground-truth
locations. From this figure, we observe that the average
reward decreases as the centroids are moved from the
ground-truth placement (i.e. increasing €). In particular, we
observe up to 16.63% drop in reward in the most extreme
case, equivalent of IOU being 0.5774. Moreover, we observe
that moving the robot to the right has slightly lower effect on
the reward. Interestingly, the detection algorithm in Sec. 4.2,
achieves minimum ~ 50% accuracy while the obstacles are
within the detection range. As a result, we can expect up
to 16.63% drop in the average reward, when the accuracy
of the detection algorithm with DARWIN is affected by the
robot being far from the obstacles.

5.4.2 Effect of Discrepancy in Dimensions

We scale the obstacles with factor p = {0.25,0.5,1,1.25,1.5}
and report the average reward in Fig. 10b. For example,
when p = 0.25, the length and width of the obstacles are set
as (0.28m,0.385m), and p = 1 is the ground-truth dimen-
sions of the obstacles. We observe that the average reward
stays within 25 — 35 limit. Interestingly, we observe that
scaling down the obstacles might also reduce the average
reward (p = 0.5 for example). On the other hand, scaling
up the dimensions also decreases the reward as expected.
Overall, we observe that errors in detecting the dimensions
will have a more intense effect on the average reward than
errors in estimating the centroids.

Remark 2. DARWIN handles slight discrepancies in detecting
the centroids and dimension of the obstacles that are caused by
errors in the data or affected by the detection accuracy at distant
ranges (see Fig. 10, validates Contribution 2).

5.5 Performance of Module 3 in DARWIN

In this section, we study the effect of each parameter in mod-
ule 3 (see Sec. 4.3), where the goal is to jointly optimize robot
navigation and network management. In Tab. 5, we compare
the performance over four scenarios, each having different
obstacle positioning (see Fig. 6b). In this experiment, we use
the best access point allocation strategy (Eq. 8), w = 1, and
t = 1in Eq. 9 equivalent to the handover reward of —20. We
observe that Scenario 2 (symmetric obstacle positioning) has
the highest number of steps. As a result, in the remaining
set of experiments, we consider Scenario 2, which is the most
challenging one, according to Tab. 5.

In Fig. 11a, we compare the average number of steps
and reward for different parameters, including, access point
allocation strategy (Eq. 8), RF reward weight (w in Eq. 6),
handover reward (Eq. 9) and outage limit (Eq. 12). Since
the navigation reward parameters are extensively studied in
the literature, we focus on the network management reward
only. In particular, we study the effect of below parameters.
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Fig. 10: Effect of discrepancy in centroid (a) and dimension (b)
detection in DARWIN on average reward. The dotted line
denotes the reward with the centroids and dimensions of the
obstacles matching the ground-truth (details in Sec. 5.4, validates
Contribution 2).

Scenario | Average Step | Average Reward AP1 AP2 Outage
1 656.96 36.86 0.3623 | 0.6377 | 0.0407
2 1099.88 34.18 0.5816 | 0.4183 | 0.0269
3 751.34 35.39 0.2999 0.7 0.0248
4 809.25 32.69 0.3601 | 0.6398 | 0.0246

TABLE 5: Comparing the performance of four scenarios with
different positioning of obstacles. We use the best access point
allocation strategy (Eq. 8), w = 1, and x = 1 in Eq. 9 equivalent
to the handover reward of —20.

5.5.1 Effect of AP Allocation Strategy

We set the access point allocation strategy as choosing the
closest versus the best access point as per Eq. 8. Recall that
in our design we consider a stochastic channel profile. As
a result, at each robot step, we randomly sample from one
of 120 SNR measurements at each location (see Sec. 5.1.4).
We then compare the SNR of received signal for both access
points. In best access point strategy, we select the AP with
the highest SNR of received signal, whereas with closest
access point, we compute the distance of the robot with two
access points and choose the closest one. In the first and
third bars in Fig. 11a, we compare these two AP allocation
strategies, while the rest of the parameters are fixed. We
observe that the average number of steps decreases by
43% with best access point allocation compared to choosing
the closest access point. This is intuitive as the wireless
propagation patterns are complex and might be affected by
the presence of obstacles (see Fig. 7). As a result, choosing
the closest access point might not result in the optimal
performance.
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5.5.2 Effect of RF Reward Weight

In third and fourth bars in Fig. 11a, we compare the effect
of the weight w in Eq. 6. We observe that, by setting w = 2,
the overall reward increases due to scaling of the network
management reward as expected; however, we observe an
increase in the number of steps by 12%. This is intuitive
as rewarding the robot to prioritize following the path
with better wireless coverage might result in an increased
number of steps. As a result, it is important to find a
harmonic combination of rewards to ensure that both goals
of minimizing the number of steps and maintaining the
connection with autonomous edge are achieved.

5.5.3 Effect of Handover Reward

According to Tab. 4, the maximum SNR of received signal of
access points over all scenarios is 21.6dB. We consider x =
{1,2} in Eq. 9, which is equivalent to the handover reward
being —10 and —20, respectively. We observe that by setting
the handover reward as —20, the number of steps is 11%
less. That is because by setting the handover punishment
as k£ = 1, the SNRs of received signal are modeled to be
close to zero that resembles a realistic handover scenario
where the robot loses the connection for a while. However,
punishing the robots less than that (i.e., x = 2) results in
the combination of the SNR of received signal (Eq. 9) and
handover (Eq. 9) rewards to be positive, which might result
in encouraging the robot to switch access point more often.

5.5.4 Targets Located at the Dead-Zones

Fig. 11b demonstrates the total reward (Eq. 7) over robot
steps at inference phase for the best performing setting in
Fig. 11a (third bar plot). In this figure, green star markers
correspond to arrival at the target and red markers show
the collisions. We note that the collision happens only when
the target of the robot is located at a wireless dead-zone. As
a result, while collisions are not frequent, they are inevitable
when the robot must enter a wireless dead-zone to reach
to its target. The solution here is to provide more access
points to provide better coverage and eliminate wireless
dead-zones.

Remark 3. DARWIN carefully assign access points which results
in 43% drop in the average number of steps compared to choosing
the closest access point (see Fig. 11a, validates Contribution 4).

5.6 Modeling Outage in DARWIN

In Tab. 6, we compare the performance when the outage
SNR limit in Eq. 12 is set as A = {5dB, 10dB, 15dB}. We
compare the performance with respect to the average steps
size and reward, as well as the access point allocation and
outage ratios. From this table, we observe that the number
of steps increases as the outage limit is uplifted, denoting
a more strict constraint on the acceptable SNR of received
signal. We note that the low outage limit (A = 5d B for exam-
ple) is an optimistic scenario where the majority of the SNRs
of received signal are higher that this threshold (see Tab. 4
for statistics of SNR of received signal in each scenario). This
is reflected in the outage ratio of 0 for A = 5dB, indicating
that the outage never happens in this case. On the other
hand, with A = 10dB, the robot experiences outage in 2.6%
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Outage Scenario 2, Allocation = Best AP, w=1, Handover =—20

SNR (A\) | Average Step [ Average Reward AP1 AP2 Outage
5 852.82 37.0180 0.39385 | 0.60615 0.0
10 1099.88 34.18 0.5816 0.4183 | 0.0269
15 6833 27.47 0.54795 | 0.45205 | 0.5992

TABLE 6: The effect of outage threshold (A in Eq. 12) on scenario
2. The outage ratio increase as A increases, depicting more
strict constraints on the communication link (details in Sec. 5.5,
validates Contribution 4).

of the time and this value increases to 59% in extreme case
of A = 15dB.

Remark 4. By incorporating outage in DARWIN, we have a
more realistic modeling of network management in warehouse
floor environments. DARWIN shows a 80% increase in the
number of steps where the outage limits is increased from A = 5
to A = 10 (see Tab. 6, validates Contribution 4).

5.7 Trade-off Analysis for Path Planning Accuracy vs
Overhead

We analyze the trade-off between path planning accuracy
and the associated overhead in retraining and communica-
tion. The total maximum end-to-end overhead is formulated
as the sum of four components: uplink communication time
from the robot, retraining time (triggered optionally for
executing Module 2), inference time, and downlink commu-
nication to the robot. As described in Sections 4.3.1 and 4.3.2,
the state array comprises 81 elements, while the action is
represented by 3 elements. Our analysis considers a 20MHz
channel with a 2.4 GHz WiFi link for both uplink and
downlink communications. Fig. 12 illustrates the trade-off
between path planning accuracy and end-to-end overhead
for the three outage thresholds presented in Tab. 6. In our
experiments, we define 100% accurate path planning as the
average number of steps outlined in Tab. 6. Our findings
demonstrate that for each threshold, higher accuracy cor-
responds to increased overhead, highlighting the inherent
trade-off between precision and computational resources in
robotic path planning systems.

5.8 Discussion: Computational Considerations and
Edge Deployment
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Fig. 12: The trade-off between path planning accuracy and end-
to-end overhead for the three outage thresholds () specified in
Tab. 6.

The deployment of DARWIN in real-world large-scale ware-
house environments necessitates a thorough consideration
of its computational complexity and scalability, particularly
given the crucial requirement for real-time updates. Our
approach is designed to explicitly manage these challenges.
While the process of updating the RL policy in Module 3 can
be computationally intensive, especially as the number of
robots and environmental dynamics increase, DARWIN sig-
nificantly mitigates this through its intelligent policy update
trigger (Module 2). By defining a tolerance threshold for
environmental changes and only initiating policy retraining
when a substantial disparity is detected (as quantified by the
similarity metric in Eq. 5), DARWIN drastically reduces the
frequency of these expensive computations. This selective
update mechanism ensures that unnecessary computational
load is avoided, thereby enhancing the overall system’s
scalability and responsiveness in highly dynamic and ex-
pansive settings. Furthermore, the rapid detection time of
approximately 1ms for digital twin generation (Module 1),
as observed on a standard desktop, underscores the effi-
ciency of the initial data processing, which is critical for
supporting real-time operations.

The architectural decision to deploy DARWIN'’s core
modules at an “autonomous edge” is fundamental to its
feasibility and efficiency in practical, resource-constrained
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environments. This edge computing paradigm positions
powerful computational resources closer to the data sources
(robots), enabling low-latency processing of sensor informa-
tion and swift decision-making. By centralizing the heavy
computational tasks of digital twin generation, policy up-
date triggering, and joint navigation/network management
at the edge, DARWIN effectively offloads these demands
from individual robots, which are typically constrained by
size, power, and processing capabilities. This distributed in-
telligence model not only ensures near real-time digital twin
updates but also provides a robust and efficient platform
for managing the complex interplay between robot naviga-
tion and wireless network conditions, even when deployed
across expansive and challenging warehouse floor layouts.
The autonomous edge thus serves as a critical enabler for
DARWIN's real-time performance and scalability.

6 CONCLUSIONS

In this paper, we present DARWIN, a digital twin based
approach for robotic systems in warehouse floor environ-
ments. The proposed method continuously monitors the
environment to detect the changes and generates the digital
twin in near real-time, and updates the path planning policy,
if a substantial change in the environment is observed. Our
proposed method detects the changes in the environment
with up to 96% accuracy. In DARWIN, we design a rein-
forcement learning algorithm to jointly optimize navigation
and network resource management while accounting for
SNR, access point allocation strategy, handover, and outage.
To validate DARWIN, we design a testbed with Turtlebot
robots and X310 radios. The results demonstrate that by
choosing the access point meticulously in DARWIN the
average number of steps decreases by 43%. Our future
attention is to integrate DARWIN for enabling joint sens-
ing and communication and integrating more sensors (e.g.,
radar and ultra wide band sensors) for next-generation
robotic and autonomous system. We will also pursue further
exploration of real-world testing to enhance the validation
and refinement of our algorithm.
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