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Abstract—Digital Twins (DTs) are powerful tools for deci-
sion making that mirror real-world systems and continuous
interactions between them. We study on the application and
capabilities of DTs in the realm of wireless communications,
using two leading wireless communication tools: Wireless InSite
and Sionna. Specifically, we compare the fidelity of the two
wireless communication tools by measuring several metrics with
a real-life dataset. Our comprehensive analysis aims to determine
the capabilities of Digital Twins in the context of wireless
communications, offering valuable insights for future researchers
in the field.

Index Terms—digital twin, automation, tool, performance

I. INTRODUCTION

A digital twin (DT) [1] is a replica of a physical system in
a virtual environment. DTs are employed in applications such
as modeling human-space-device interaction, the product life
cycle, and detecting abnormal activity, in areas such aviation
and healthcare [2]. Their popularity has led their way into the
wireless applications as well [3], including 5G automation [4],
beam selection [5], generative artificial intelligence (AI) [6],
and reflective intelligent surfaces (RIS) [7]. Despite this, the
analysis of DT tools for wireless applications is still in its
infancy. There are several wireless tools available to create
simulated replicas of the real world, but their capabilities
not only vary but are also largely unknown prior to testing,
requiring valuable time and effort.

We explore the capabilities of the two most recent and
prominent tools to create a DT in the wireless field, Wireless
InSite (WI) [8] and Sionna [9]. WI and Sionna are wireless
simulation tools to construct a DT of a wireless system
deployment, as they can imitate indoor and outdoor plans
of buildings, objects (e.g., vehicles and pedestrians), and
reflective material properties. As ray-tracing tools, they can
emulate a wireless DT precisely, because they simulate wire-
less channels, taking various variables into account, such as
electromagnetic wave propagation properties, communication
signal types, and antenna patterns. WI and Sionna also offer
different options: e.g., as shown in Table I, WI provides
different wireless communication standards (LTE, WiMAX,
802.11n/ac), while Sionna follows the 5G-NR standard.

The authors gratefully acknowledge support from the National Science
Foundation through grant 2112471.

Simulation parameters within the DTs need to be entered
and modified so that the DT simulates its real world counter-
part as close as possible. Therefore, the ability to realize
object sizes, material properties, environment features carry
utmost importance. Similarly, the ability to capture interactions
among entities (e.g., obstructions, object movements, etc.) is
important in ensuring DT fidelity [10]. Creating detailed maps
or other representations of the physical world in a DT is a
tedious and computationally intensive task, and the lack of
automation in virtual world creation limits DT scalability.

We explore these issues by creating multiple DTs (i.e.,
virtual representations of the real world with different fidelity
levels) and rigorously evaluating WI and Sionna. First, we
create virtual worlds, by importing maps that include buildings
and reflective material properties. We facilitate the virtual
world creation in Blender [11], assisting researchers in creating
DTs by entering the geographical coordinates of the area of
interest. This reduces tedious map creation efforts and allows
researchers to direct their focus to wireless experimentation
and development. Second, we set the wireless components,
such as antennas, signal waveforms, signal carrier frequency,
electromagnetic properties of the reflective materials, channel
characteristics, transmitter (Tx) and receiver (Rx) locations,
ray reflective properties, by mimicking their real-life values.
Third, we collect a large dataset using the available output
options in each simulation tool, such as received power,
ray tracing, and SNR. Finally, in the evaluation step, we
not only measure the performance of the DTs created by
the two simulators, but also test the DT results using the
FLASH dataset [12], a real life testbed that we followed to
create its DTs in WI and Sionna. This way, we demonstrate
the similarity between the wireless DT and its real-world
counterpart. Our contributions are as follows:

• We create multiple DTs in Sionna for wireless experi-
ments in order to allow researchers to bypass the tedious
virtual world creation by simply entering the map coor-
dinates of interest.

• We explore different levels of fidelity, establishing trade-
offs among map detail, accuracy and consistency in
wireless outputs, and required computation.

• We evaluate our results using the FLASH dataset [12]
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Fig. 1: We compare digital twins and how closely they perform to compared to the real world. Our approach to Digital Twins for Testing and
Optimizing Decisions (DITTO) involves taking a real-life deployment of wireless transmitters, embedding them onto a 3D representation of
the environment, using a raytracing framework, and simulating the transmissions.

Feature Wireless InSite Sionna
Reflections ✓ ✓
Diffractions ✓ ✓
Transmissions ✓ ✓
Custom antenna ✓ ✓
Material choices Concrete, asphalt, metal, glass Concrete, metal, glass
Available frequencies 0.1− 100× 109Hz No limit on frequency range
Available standards LTE, WiMAX, 802.11n, 802.11ac 5G-NR
Tx and Rx options Locations, alignment, Tx Power Locations, alignment
Map Terrain, coordinates Terrain, coordinates
Trainable coefficients ✓
Antenna options Antenna gain, MIMO, built-in, and

custom antennas
Antenna gain, dipole, HW dipole,
Custom patterns, Polarization
Models, Slant angles

TABLE I: Comparing features of Wireless InSite and Sionna.

and quantitatively evaluate the parallels between WI and
Sionna outputs.

• Our work provides guidelines as to which level of detail
and type of twin to select based on potential needs.

The remainder of the paper is organized as follows. In
Sec. II we provide a summary of prior works in DT. Sec. III
details the functionality of the DT tools, WI and Sionna.
Sec. IV delves further into how we developed our experiment
pipeline and evaluation metrics, which we rigorously test and
discuss in Sec. V. Sec. VI concludes the paper.

II. RELATED WORK

Digital Twins for Wireless Beamforming. Salehi et al. [5]
proposed the “Multiverse-at-the-Edge” paradigm to mirror
beam-forming via DTs with varying degrees of fidelity. Deep
learning (DL) and convolutional neural networks (CNNs) were
utilized to predict the most accurate beam in the communica-
tions between an autonomous vehicle and roadside basestation
(BS). The time to select the best beam at the BS was shortened
significantly compared to the preexisting exhaustive-sweep
approach in the IEEE 802.11ad and 5G-New Radio (NR).
In environments not previously encountered, the accuracy of
these models significantly decreases, leading to the need for
DTs to emulate radio frequency (RF) propagation patterns. The
novelty of these authors’ work is by offering DTs of varying
number of beam reflections to mitigate the loss of accuracy in
DL predictions while still maintaining a performance increase
over exhaustive sweeps. Li et al. [13] propose a DT-aided
learning framework that leverages the QUAsi Deterministic
RadIo channel GenerAtor (QuaDRiGa) platform and 5G NR
standards to simulate real-world frequency division duplex
(FDD) systems, generating significant data to training a deep
generative model. This approach addresses the challenge of

acquiring channel probability distribution information, espe-
cially in 5G NR FDD systems with limited feedback.
Optimization of Wireless Access Point Deployment. Ab-
dulwahid et al. [14] present an investigation and optimization
method for the deployment of wireless access points (APs) in
indoor networks. They aim to enhance coverage and network
performance by strategically placing APs using propagation
modeling and optimization algorithms. By simulating wire-
less signal behavior in indoor environments and considering
obstacles like walls and furniture, they identify optimal AP
locations to improve coverage and reduce interference. This
work resembles our research by highlighting the importance
of optimization in wireless network performance. While Ab-
dulwahid et al. focus on indoor environments, we leverage
digital twins to test and optimize wireless decisions in outdoor
environments, specifically for autonomous vehicle use cases.
Digital Twins for Vehicle-to-Cloud Communication. Liao
et al. [15] exhibit a practical application of DTs in wireless
communications is ramp merging in highways. The use of
vehicle-to-everything (V2X) communications allows vehicles,
and the drivers operating them, to efficiently plan their next
actions on the highway without endangering others. Liao et al.
propose an approach to map virtual copies of real vehicles to
merging lanes, helping connected vehicles adjust their position
and speed in advance. Their contributions were the implemen-
tation and real world experimentation of DTs in connected
and autonomous vehicle systems. The authors found that their
implementation improved on the safety and environmental
sustainability of current ramp merging systems. Wang et al.
propose a DT framework for connected vehicles, utilizing
V2C communication to synchronize real-world activities with
virtual counterparts. This framework operates within a two-
layer structure, with the physical layer representing the real-
world entities and interactions, and the cyber layer handling
computational tasks and data processing [16]. Using a case
study of a cooperative ramp merging scenario, the DT benefits
the transportation systems with sufficient performance.

III. IMPLEMENTATION

Our pipeline is shown in Figure 3. We enter the minimum
and maximum latitudes and longitudes of the real world
environments coordinates into OpenStreetMap (OSM). The 3D
map is then imported to Blender, where we add obstacles and
export the map as a Mitsuba XML file. We then read the
XML file using Wireless Insite (WI) and Sionna, and enter the
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(a) WI Antenna Pattern Example
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Fig. 2: Visualizations of one of the antenna patterns simulated by
WI (left) and Sionna (right). The patterns show which direction the
antenna’s gain increases and decreases.

coordinates of the transmitter (Tx) and receiver (Rx) as well
as their antenna gain patterns. We then simulate the Tx-Rx
communications and collect the simulated received powers.

A. Generation of Map & 3D Environment

A digital twin world creation starts with 3D representations
of the environment. To represent a given geographical location,
we use OpenStreetMaps [17] (OSM) to provide a detailed
and customizable map. We enter the minimum and maximum
latitude and longitude in a Geographic Information System
(GIS) of the desired geographic location (geo-location). OSM
returns 3D objects representing the buildings, streets, side-
walks, railways and parks in the specified geo-location. We
apply these 3D objects in Blender [11], a 3D computer
graphics software used for animations. We use Blender-OSM
[18], an extension of Blender, that integrates Blender with
OSM so that we can further manipulate the environment.
Blender offers the flexibility to modify existing structures and
add custom elements as needed. We alter the materials of the
buildings to be compatible with the wireless communication
simulators. We assign the building materials as concrete,
which more accurately represents the reflective and absorption
properties of the building materials. The material of an object
will determine its permittivity, conductivity, frequency range
and scattering coefficient during the simulation. Moreover
specific scenarios like non-line-of-sight (NLOS) conditions are
simulated by manually placing obstacles within the digital twin
environment. We then export Blender OSM’s virtual map to
Sionna as an XML file using Mitsuba 3, a rendering tool.

B. Sionna

1) Inputs: With the environment as an XML file, Sionna
is run in a Python or Jupyter Notebook program and use the
XML file as an input. Jupyter notebook allows the user to
preview the simulation environment. The XML file contains
the virtual environment’s material and location information.
The transmitter (Tx) and noise power differ from WI as they
are not directly set by the user, but calculated by the gains
of the Tx and receiver (Rx) antenna patterns for a range of
zenith and azimuth angles. Sionna has four predefined antenna
patterns: isotropic, dipole, half-wavelength, and a pattern based
on the 3GPP TR 38.901 channel model, a stochastic channel

model for designing 5G systems. We have implemented the
Talon legacy antenna patterns using the measurements saved
in Seemoo Lab’s repository [19]. The Tx and Rx locations and
orientations can be set by the user. For our purposes, we set
these parameters to match the FLASH environment.

2) Processing: Once the environment and Tx/Rx locations
are set, Sionna conducts a series of processing steps, primarily
utilizing ray tracing techniques. First, Sionna uses the antenna
patterns set by the user to calculate the possible rays between
the Rx and Tx. It calculates the propagations through the
environment, incorporating reflections, diffraction, and scat-
tering effects based on the environment materials and antenna
patterns. It then returns the path loss, which we add the noise
and Tx power to calculate the full received power.

3) Outputs: Sionna’s outputs are the ray propagation paths
and angles of arrival and departure. Sionna does not save the
reflection points of the rays. The power related outputs of
Sionna are the passband coefficient ai and the channel im-
pulse response. We use the passband coefficients and channel
impulse response to calculate the received power and the other
power related outputs. The time related outputs of Sionna is
solely the propagation delay of the ray. To compare with WI,
we calculate the Signal to Noise Ratio (SNR). We do this
by calculating the path loss of the beam from the passband
coefficient and channel impulse response. We then add the
path loss to the noise power of the environment and the Tx
power. The SNR is the sum of the three variables.

C. Wireless InSite

1) Inputs: WI has an extensive list of wireless properties
that gives users flexibility and freedom to conduct a wide
range of realistic and detailed wireless experiments. Efficient
wireless communication initiates from precise antenna pat-
terns, which WI provides through built-in and customizable
antenna options. Users are able to set antenna gain, directivity
(E and H-plane half powers) in single or MIMO antenna
configurations. High granularity of ray spacing, i.e. no limit on
how small the angle is between two adjacent emitted rays from
transmitters, allows for precise ray tracing results.Users are
free to choose any Transmitter (Tx) and Receiver (Rx) location
on the map, where they can realize any antenna alignment.

One of the distinguishing properties of WI is that the tool
provides the selection of wireless standards, which includes,
802.11ac, ax, WiMax and LTE as well as propagating signal
waveform, frequency, and phase. Setting the Tx power and
levels of interference and noise allows for imitating real life
power measurements. Lastly, electromagnetic (EM) features
of rays and reflective surfaces could be set for proper emu-
lation. These EM features include the number of allowed ray
reflection, diffraction, and transmission (penetration through
obstacles) before a ray reaches to Rx from Tx as well as
channel propagation characteristics, e.g. open air and canyon.

2) Processing: The computation power of the computer
on which WI is running does not affect the wireless related
outputs, e.g. received power, strongest rays, reflection points.

123

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 27,2024 at 08:13:43 UTC from IEEE Xplore.  Restrictions apply. 



Import 3D 
Environment 
 to Blender

OpenStreetMap extension of 
Blender

3D Environment
from OpenStreetMap

Export
Blender 

file as
Mitsuba
 XML file

Simulate
communication 

between
Transmitter &

Receiver

Sionna/WI tools

Received
Powers of
Receiver
Antennas

User-
added 

obstacles
Coordinates

Transmitter/
Receiver 

Coordinates
& Gain

Patterns

Fig. 3: Pipeline of our experiment process. We enter the minimum and maximum of the real-world environment’s coordinates into (OSM).
We import the map to Blender, and add obstacles in Blender. We export the map as a Mitsuba XML file. We read the XML file using WI
and Sionna, and enter the Tx and Rx and their antenna gain patterns. We then simulate the Tx-Rx communications and record the simulated
received powers.

The computation power only affects the time it takes to obtain
ray tracing results.

3) Outputs: WI has an extensive wireless output options,
which we group under three categories, namely ray, power,
and time related. All the outputs can be observed both in
the WI GUI and can be downloaded as .txt files. Ray related
outputs include ray propagation paths, angle of arrivals and
departures, and ray reflection points. Power related outputs in-
clude received power, rssi, bit-error-rate, throughput, pathloss,
and SNR, SIR, and SINR given that the user has an option
to select noise and interference levels. Time related outputs
include ray time of arrival, delay spread, power delay profile,
and experiment computation time.

IV. EXPERIMENT SETUP

We import a 3D map from the FLASH experiment area, and
generate DTs as in Section III. Following the environments
created in [5], we also generate an open field, to act as our
lowest fidelity DT. We use different metrics to evaluate the
accuracy of our simulations: Magnitude Difference, Cosine
Similarity, Concordance Index, Normalized Discounted Cu-
mulative Gain, and a unique metric developed by Salehi et
al. [5] (see Sec. IV-D). In this section, we elaborate on these
metrics and delve deeper into our DT generation.

A. Real World Dataset

The real world dataset, FLASH, is drawn from [12], [20],
which was collected in four experiment setups that the authors
call categories. Each category consists of 10 episodes, i.e.
experiments conducted, in which an autonomous car with
camera, LiDAR, and GPS sensors communicates with Tx
deployed at the edge of a road (i.e. the Rx is on the car)
using the 802.11ad standard, i.e. 60GHz signals (mmWave),
while it is passing by the Tx. The data is collected in an
urban environment of concrete buildings with a partial glass
exterior. Given that the system is a simple 802.11ad network,
the Rx at the autonomous car sweeps for the best beam
(antenna pattern) out of the 34 available beams so that the
optimal communication takes place between the car and the
Tx. The portion of the dataset we utilized is the ranking of the
candidate beams by the GPS location.

The categories in the FLASH dataset are grouped based
on the line-of-sight (LOS) availability and realistic obstacles
in between the Tx and the Rx on the autonomous car.

Accordingly, the data environment setup for the categories are
as follows: Category-1: LOS, Category-2: pedestrian standing
between the Tx and Rx, hence non-line-of-sight (NLOS),
Category-3: NLOS, with a stationary car obstacle between Tx
and Rx, and finally Category-4: NLOS, with a stationary car
obstacle between Tx and Rx. For all the experiments different
vehicle and obstacle speeds, ranging from 10 − 20mph, and
obstacle movement directions are used, totalling 210 episodes
with ∼32K sample points. Further details on the real dataset
could be found in [12]. In our DT evaluations we used 1
episode from the categories 1 and 3.

B. Synthetic Datasets

For our experiments, we generated synthetic datasets to
emulate real-world scenarios encountered in wireless commu-
nication environments, inspired by a similar dataset collected
in the study [5], which was created using WI. We replicated
these scenarios in Sionna, eventually creating the categories
1 and 3 in [12]. In the FLASH dataset, certain points in
the experiment do not have received power information for
every beam emitted by the transmitter. This could be due
to certain beams not reaching the receiver within a certain
timeframe, or not reaching the receiver at all. Because of this,
we adopt two conventions/approaches to address this issue
when comparing FLASH to simulated datasets. In our first
approach, which we call a restricted, we remove synthetic
beams that were missing in the real world dataset from the
simulated data. In the second, unrestricted approach, we fill
the missing beam patterns with the value 0. By doing this, we
simply are assuming the received power is the lowest possible
value in FLASH. When comparing FLASH to DTs, we report
metrics for both settings.

For the WI dataset, the same propagating signal types
(carrier frequency, 60GHz) as the FLASH dataset was used.
Also the same reflective surface materials are used, i.e. asphalt
on the road and concrete on the buildings. NLOS scenarios
in WI was created through a metallic box that represents
the car obstacle in category 3 in the FLASH dataset. In the
WI dataset, three twins are defined: Baseline, 1-Reflection,
and 3-Reflection. The wireless settings are the same between
scenarios, only the number of reflections change. The Baseline
twin was created in an open area, where the reflectors are
distanced far away in order to assess the twin performance
for the simplest case. In the Baseline twin, only 1 sample
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point used where the 34 beams were swept, parallel to the
FLASH dataset. 1-Reflection and 3-Reflection twins are in the
same urban canyon environment that simulates the FLASH
dataset environment, where the only difference is the number
of reflection allowed. In these twins there are 200 equidistant
sample points on the ∼ 40m trajectory of the simulated
autonomous car, where 34 beams were swept at each sample
point. In short, there are total of 6 scenarios (3 twins and
their LOS/NLOS cases). Each of these scenarios corresponds
to a single episode in the real world dataset. The purpose
of introducing multiple twins was to evaluate whether the
computation burden worth the accuracy of beam selection.

To have an unbiased assessment, we replicated the scenarios
given in [5] in Sionna, selecting the same signal properties of
the WI dataset and materials, metal, concrete and glass. The
vehicle traveled down an alley situated between a building and
a parking garage with a Rx. The datasets encompassed two
distinct scenarios, each representing category 1 and 3 in [12].
We collected an 6 scenarios for each category to represent the
selected scenarios in Sionna, to match WI’s three twins and
their LOS/NLOS scenarios. Due to having access to Sionna for
a longer time, we were also able to collect every episode from
categories 1 and 3 from FLASH and simulate them in Sionna.
For this extra data, we solely compare Sionna to FLASH.

C. Automating DT creation

The DT generated using WI was automated using a Python
script interfacing with the software’s graphical user interface
(GUI). The simulation in WI involved modeling the transmis-
sion of data from the base station to the vehicle using a set
of 34 different antenna patterns. The received power of each
beam transmission was recorded, and the optimal beam pattern
for communication was determined based on the received
power. The DT generated with Sionna was achieved through
scripting a Python program to interact directly with Sionna’s
API. We utilized the antenna beam capabilities provided by
Talon Tools for the DTs.

D. Performance Comparison Metrics

To evaluate the performance of our DTs, we quantitatively
evaluate received signal power and how it affects the rank-
ing of the 34 beam candidates to choose for the optimal
communication between the Tx and Rx. We have utilized
several different metrics towards that end, including Accuracy
(Acc), Magnitude Difference (MD), Cosine Similarity, Con-
cordance Index (CI) and Normalized Discounted Cumulative
Gain (NDCG), described in detail below. We also visually
inspect the 3D antenna similarity between the DT as well as
the real world Talon antennas Fig. 2).
Accuracy. Salehi et al. [5] quantify the accuracy of a simula-
tion relative to the real world ground truth via notion of relaxed
accuracy. For a DT and the corresponding real-life counterpart
in a scenario, let x, y represent the vectors of received powers
of each receiver antenna in dB in the two settings. Then, given
a set of scenarios, the relaxed accuracy Acc(K,T ) contains the
fraction of scenarios in which the top-K beams in simulated

Acc(10, 0) Acc(10, 1) Acc(10, 2)
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Fig. 4: Relaxed accuracy ACC(K,T ), comparing received powers
from Sionna (shades of green) and WI (shades of blue) map to the
real world’s data. We use three DTs of increasing fidelity for WI and
Sionna and determine how accurately the top beams map to the real
world. There are three different thresholds used in our experiments
(0, 1, and 2 dB) to determine if the top beams fall within them.

vector x contain a beam within T dB from the optimal beam
in the ground truth vector y. We experiment with this metric
for different values of K and T .
Magnitude Difference. MD is the Euclidian distance of the
received powers of the antennas between the two simulations,
i.e., MD = ∥x−y∥, where x, y represent the received powers
of each receiver antenna in dB in two settings.
Cosine Similarity. CS measures the cosine of the angle
between the two vectors, i.e., CS = x·y

∥x∥∥y∥ , ranging from
1 (completely aligned) to -1 (aligned but the vectors are
in opposite directions): This measures the similarity of the
received powers’ orientations ignoring differences in scaling.
Concordance Index. The CI measures how well a model’s
predicted outcomes align with the actual outcomes in pairwise

rankings. Formally, CI =
∑d

i=1

∑d
j=i+1 1xj<xi

·1yi<yj

d(d−1)/2 , where
d = 34 is the vector dimension (number of beams). Intuitively,
CI is the ratio of the number of concordant pairs and divided
by the total number of pairs. A score of 1 indicates perfect
concordance per pair, while 0 indicates a full order reversal.
Normalized Discounted Cumulative Gain. NDCG captures
both ranking importance and gain magnitudes, focusing more
on agreement on larger beams. Formally, the discounted cu-
mulative gain (DCG) of x w.r.t. y is given by: f(x, y) =∑n

i=1
x(i)

log2(i+1) where x(1), x(2), . . . , x(n) is an indexing of
the coordinates of x w.r.t. the order induced by y (that is, (1) is
the index of the highest gain in y, (2) is the index of the second
highest gain, etc.). The NDCG is defined as NDCG = f(x,y)

f(x,x) .
Perfect alignment yields a score of 1. Missaligning more
powerful beams lowers scores more, due to the log term.

V. RESULTS

We present here the results of the experiments described
in Section IV. We first compare between pairs, i.e., Sionna
and WI, Sionna and FLASH, and WI and FLASH. We also
discuss the differences between the restricted and unrestricted
approaches that we employed to combat missing beam data
from FLASH, determining the strengths and weaknesses of
each approach. We then compare the metrics of the Twins
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Metric Scenario
Sionna-WI

Sionna-FLASH WI-FLASH

Restricted Unrestricted Restricted Unrestricted

Base 1R 3R 1R 3R 1R 3R 1R 3R 1R 3R

MD
LOS 1.47 2.85 3.77 3.23 3.14 3.55 3.46 9.71 7.29 11.21 8.53

NLOS 3.38 2.90 4.04 4.43 3.78 5.38 6.02 9.12 6.89 12.60 9.3

CS
LOS 0.99 0.99 0.99 0.99 0.99 0.74 0.74 0.99 0.99 0.99 0.99

NLOS 0.99 0.96 0.99 0.76 0.99 0.48 0.50 0.99 0.99 0.99 0.99

CI
LOS 0.53 0.99 0.99 0.32 0.32 0.52 0.51 0.32 0.32 0.47 0.47

NLOS 0.54 0.99 0.99 0.29 0.29 0.48 0.48 0.29 0.29 0.51 0.51

NDCG
LOS 0.74 0.85 0.88 0.94 0.93 0.57 0.54 0.92 0.95 0.90 0.91

NLOS 0.83 0.88 0.86 0.95 0.94 0.53 0.55 0.96 0.97 0.87 0.90

TABLE II: Comparison of score metrics of Sionna and WI against an episode of FLASH using parameters such as LOS/NLOS scenarios,
base, 1 and 3 reflection simulation fidelities and the use of restricted and unrestricted methods.

Execution Time (Seconds)

# Beam Reflec-
tions

WI Sionna

LOS NLOS LOS NLOS

1 12.510 14.360 0.254 0.251

3 20.474 23.920 0.414 0.446

5 28.358 33.634 0.602 0.688

7 36.408 41.466 0.827 0.965

10 43.854 51.495 1.192 1.387

TABLE III: Comparison of WI and Sionna’s execution time per-
formance for calculating the received powers for one point in one
episode of our experimentation. Measurements are provided for both
LOS (Line of Sight) and NLOS (Non-Line of Sight) scenarios.

on a more granular level, by comparing their metrics in LOS
vs NLOS scenarios, at speeds of 10 vs 15 vs 20 mph, and
between 1 and 3 reflections for the fidelity of the Twin.

A. Digital Twin’s Similarity to Real World

To assess the performance of WI and Sionna digital
twins, we conduct an evaluation of the mapping accuracies,
implementing the accuracy metric Acc(K,T ) with K set
to 10 and gradually relaxed the SNR threshold T (T =
{0 dB, 1 dB, 2 dB}). Figure 4 illustrates the comparison of
different DTs w.r.t. the ground-truth measurements from the
FLASH dataset to validate the fidelity of emulation outputs
(Base Twin, 1R, 3R). The power threshold T = 0 represents
the most extreme case, considering only the top-K beams
in FLASH. As shown in Figure 4, the absolute accuracies
between WI and Sionna were similar overall, with Sionna’s
trends slightly outperforming WI within certain parameters.
An exception to this is Acc(10, 1) in an LOS scenario, where
Sionna’s accuracy was lower in the Base twin experiment.

The trend for both simulators is that the mapping accuracy
increases as the fidelity of the DT increases. For example,
Sionna’s accuracy in a LOS scenario for Acc(10, 0) goes from
0.54 to 0.73 to 0.82 for Base, 1 reflection, and 3 reflection
twins, respectively. This is to be expected, as the number of
reflections and similarity of the environment to the real world
increases, the accuracy of the DT should increase.

B. Comparison between Digital Twins

In Table II, we compare WI to Sionna, WI to FLASH,
and Sionna to FLASH using the metrics MD, CS, CI and
NDCG. We also provide execution times in Table III. The
MD scores between Sionna and WI trend upwards as the
simulation fidelities increase from 1R to 3R. This could mean
that the simulators’ received powers diverge at lower fidelities
and increase with fidelity. This could be due to deviations
in the simulations becoming more pronounced with each
computation. The CS of WI and Sionna are very high, meaning
that the simulators’ received powers are pointing in a very
similar direction. The CI scores of the Base-Twins are low, but
the NDCG scores are higher. The CI and NDCG scores were
high for the 1R and 3R Twins. This leads us to believe that
when accounting for every pair of received powers, the Base
simulators do not have strong similarities between the order
of the strongest and weakest beams. However, biasing towards
the most powerful beams, the simulators do have stronger
similarities; this is indeed the most interesting regime, as we
care about the most powerful beams. Overall, the similarities
between WI and Sionna were satisfactory.

When comparing the simulators to FLASH, other differ-
ences between them come to light. The MD is higher when
comparing WI to FLASH versus comparing Sionna to FLASH.
The CS is lower when comparing Sionna to FLASH in an
unrestricted manner. The CI is similar between the two, but
NDCG is lower for Sionna when using the unrestricted ap-
proach. This leads us to believe that Sionna performs similarly
to FLASH and WI when accounting only for the present beams
in FLASH, but WI is more robust to substituting missing data.

C. Enhanced Comparison between Sionna and FLASH

Since we were able to generate more episodes of Sionna
to match the number of LOS and NLOS episodes in FLASH,
we performed a third evaluation with an increased focus on
the differences between Sionna and FLASH. Figures ?? and
8 delve into the differences between the two datasets. We use
our restricted and unrestricted approaches for our comparisons.
We split the datasets three times, one for LOS versus NLOS
scenarios, one for 1 versus 3 reflection simulation fidelities,
and one for 10 versus 15 versus 20 mph speeds.
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Fig. 5: Comparisons between the Sionna and FLASH datasets,
grouped by LOS vs. NLOS, using the restricted (blue) and unre-
stricted (orange) methods.

When comparing the unrestricted and restricted approaches,
the MDs are typically higher when using the unrestricted
approaches. This is most likely due to the added zeros in the
FLASH dataset not compensating for the non-zero elements
in Sionna, causing the magnitude difference to be higher than
when removing elements in the Sionna dataset. For the CS
scores, the unrestricted approaches were also trending lower
with higher standard deviations, once again most likely due to
the added zeros not compensating adequately. The CS score
being high in the restricted scenarios also implies that the
direction of the Sionna datasets is still very accurate when ac-
counting for beams with lost transmissions. The CI and NDCG
scores had near identical medians, but significantly lower
standard deviations in the unrestricted approaches. While the
CI scores imply that there’s little concordance between the
datasets when taking all beams into account, the NDCG scores
show that the added zeros increase the importance of the
beams that are present, reducing the impact of missing beams.

When comparing across the LOS scenarios versus NLOS,
the comparison scores of Figure 5 are similar, with the
exception of MD, where the LOS scenario has a higher median
score and standard deviation. This difference was unexpected;
it may be due to how Sionna calculates the path loss of beams,
leading to a lower path loss when there are fewer obstacles
in the environment. When comparing across the 1 reflection
scenarios versus 3 reflections (Figure 6), there is similar per-
formance across all metrics, with a slight improvement using 3
reflections over 1. This supports that using higher fidelity
DTs can improve the accuracy of real world simulations, but
satisfactory performance can be achieved using lower fidelity
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Fig. 6: Comparisons between the Sionna and FLASH datasets,
grouped by 1 vs. 3 reflections, using the restricted (blue) and
unrestricted (orange) methods.
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Fig. 7: Comparisons between the Sionna and FLASH datasets,
grouped by 10 vs. 15 vs. 20 mph speeds, using the restricted (blue)
and unrestricted (orange) methods.

DTs. When comparing 10 versus 15 versus 20 mph speed
scenarios across the datasets (Figure 7), there is a significant
increase in standard deviation of the MD and CS scores as the
speed of the receiver increases. This is to be expected, as there

127

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 27,2024 at 08:13:43 UTC from IEEE Xplore.  Restrictions apply. 



4 6 8 10
Magnitude Difference

0

25

50

75

100

125

150

175

200

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0
Concordance Index

0

50

100

150

200

Fr
eq

ue
nc

y

0.5 0.6 0.7 0.8 0.9 1.0
NDCG

0

50

100

150

200

Fr
eq

ue
nc

y

Fig. 8: Histogram plots detailing the distribution of the comparison
metrics across the entirety of the Sionna and Flash datasets.

is a higher likelihood of inaccuracies between the estimated
location of the receiver and the actual location. While the MD
and CS scores had significant standard deviations, this was not
the case for CI and NDCG, leading us to believe that these
metrics are resilient to the variations between experiments.

Lastly, we aggregate the metric scores of the Sionna dataset
(Figure 8). The CS, CI and NDCG distributions show that there
was a relatively low variance in those scores, with their modes:
0.99, 0.5 and 0.85, respectively, occurring significantly more
frequently than other values. MD, however, has a larger vari-
ance in the dataset and has a bimodal distribution. Comparing
the plots in Figures 5–7 to Figure 8, this bimodal distribution
is caused by the distributions of the unrestricted and restricted
scores having differing peaks.

VI. CONCLUSIONS

Our real-world to digital-world comparison confirms that
WI and Sionna achieve a sufficient level of accuracy with real-
world scenarios, with respect to several key metrics. Beyond
the direct comparison between Sionna and WI, this paper’s
contributions also include the creation of a dataset covering
different wireless scenarios and their digital twins. We make
this and our code publicly available as a valuable resource
for researchers working on wireless communications.1 Au-
tomating the DT generation in real-time, including via varied
obstacle modeling, and using it for performance prediction as
in Salehi et al. [5] is an potential future direction that we could
consider. Another direction we could follow is integrating our
pipeline with LiDAR simulating softwares to create a more

1https://github.com/genesys-neu/DITTO/tree/automation

comprehensive autonomous vehicle environment via a sensor
fusion framework. We can integrate other sensors as well, both
real-time and non-real-time. Real-time sensors such as image
and event cameras and LiDAR sensors provide continuous data
streams, immediately reflecting changes in the environment.
Non-real-time sensors, such as weather stations, offer periodic
updates suitable for applications like environmental monitor-
ing where immediate response is not critical. Integrating them
will make our DTs more comprehensive.
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