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Abstract—Digital twins are virtual replicas of the real world
that capture precise interactions between actual devices and the
environment in which they operate. Enabled by advancements
in computing and ubiquitous software, digital twins may receive
data from the real world as well as generate virtual datasets
for making decisions that ultimately influence the complex real-
world actions. As a use case, we propose applying digital twins
in connected and autonomous vehicles for exceeding the wireless
quality of service (QoS) in non-line-of-sight (NLOS) scenarios.
Key to this vision is incorporating programmable base stations
(BS) and reconfigurable intelligent surfaces (RIS) that mitigate
the frequent blockages in dynamic vehicular networks. In our
method, a LiDAR sensor mounted autonomous car detects
obstacles between itself and the base station (BS) it is connected to
during its voyage in order to predict NLOS situations, which are
then reported to the BS, where the digital twin is deployed. Upon
an obstacle notice, the digital twin is triggered and runs ray-
tracing by placing an obstacle in the digital twin’s virtual map in
order to determine i) BS settings, such as transmit power, antenna
directivity, wireless standard, and ii) RIS configurations that will
maintain the QoS along the autonomous vehicle’s trajectory. We
validate the feasibility of our proposed method using real life
LiDAR data and Wireless InSite ray-tracing software, in which
we determine the base-station and RIS configurations to maintain
QoS by testing wireless standards, i.e. 802.11ac and LTE, antenna
patterns and directivity, and transmit power levels. Results reveal
that can detect obstacles from 11m away, giving enough time
for BS to reconfigure itself and RIS within city speed limits, and
reduce the required transmit power by 2.32×, on average in
dBm, compared to the LOS scenarios through RIS.

Index Terms—digital twin, autonomous cars, intelligent sur-
faces, quality of service

I. INTRODUCTION

A digital twin is a replica of a physical system in a
virtual environment, which captures the properties of its real-
world counterpart as well as interactions among the replicated
components [1]. By having a continuous information exchange
cycle between the virtual and real worlds, a digital twin en-
ables tracking state-changes of the real entity and studying the
impact of any configuration setting. This way, not only a real
system can be tested before its deployment, but also after the
deployment the system can take early actions through machine
learning and artificial intelligence (ML/AI) models deployed in
the virtual world [2]. Despite such a groundbreaking potential,
previous digital twin implementations in manufacturing, oil
and gas, construction, and bio-engineering fields rely on one-
time modeling, which is also the case in the wireless examples,
where digital twins are used only to determine base station
locations [2]. In this paper, we propose a programmable
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Fig. 1: The proposed framework, in which we utilize programmable
base station and RIS for maintaining QoS during NLOS cases in
vehicular networks with the help of digital twins.

and interactive digital twin for dynamic vehicular networks,
with the goal of maintaining quality of service (QoS), using
reconfigurable intelligent surfaces (RIS) and reconfigurable
base stations (BS), which can be Open Radio Access Network
(O-RAN) compliant [3].
•Scenario of Interest: As shown in Fig. 1, our scenario
involves a moving vehicle (subject vehicle) with the speed of
ν, where the Doppler effect is negligible, carrying a receiver
(Rx), communicating with a BS that has the transmitter (Tx)
with LOS at time t1. However, at time t2, as the vehicle
moves, a large obstacle, e.g. another vehicle, blocks the direct
communication between Tx-Rx. This creates an NLOS case,
which in turn drops the QoS at the moving vehicle. Mitigating
the impact of NLOS communication necessitates addressing
many unknowns, such as detecting the NLOS situation, its
duration, and identifying the transmission power (PTx) and
antenna direction that ensures connectivity.
•Motivation for Digital Twins: In real life, making dynamic
network decisions is complicated and consumes a lot of
precious wireless resources without guaranteeing the timing
requirements of fast-pacing vehicular networks. There are sev-
eral methods to mitigate the performance degradation in NLOS
communication scenarios, such as multiple input multiple
output (MIMO) beamforming. However, long training time [4]
for initiating the communication link makes it impractical
for highly dynamic environments. ML/AI based algorithms
are another potential candidate for solving this performance
degradation, but it is limited by the environments seen during
training time. In case of data distribution shifts, ordinary
ML/AI algorithms fail in prediction accuracy [4]. Therefore,
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we propose utilizing digital twins in order to address the
aforementioned problems, given that digital twin is a replica
of the real world, having a complete view of the network
dynamics with the ability of modifying settings on the fly.
•Motivation for Programmable Vehicular Networks: De-
termining correct strategies to address the drop in QoS in
NLOS cases is essential. One way to achieve this is to
predict a vehicle’s trajectory and update various network
resources at the Tx accordingly, by benefiting from digital
twin’s flexibility and complete view of the network. These
updates could include increasing PTx, switching to another
wireless standard, e.g. cellular or WiFi, changing the antenna
pattern in use, or directing one or multiple beams to certain
directions. Deciding optimal parameters among many possibil-
ities requires high computation power, which can be addressed
by newly introduced intelligent components of Open Radio
Access Networks (O-RAN) [3], which is a next generation
cellular system requiring ML/AI models to yield outputs with
time restrictions, e.g., < 1s.

The aforementioned opportunities by digital twins open
further doors for enhancing the QoS at Rx during NLOS
scenarios. Accordingly, we propose using RIS, as shown in
Fig. 1, that are able to alter the phase (θ) and direction (ρ)
of the reflecting electromagnetic waves with the goal of con-
structively adding the signals at a target receiver. We envision
connecting RIS to BS/Tx, which programs RIS properties for
constructive signal addition upon predicting NLOS cases.
•Proposed Approach: In this paper, we propose the use
of digital twins in vehicular networks in order to maintain
QoS in NLOS scenarios at the same level as LOS through
intelligent surfaces that will work in coordination with the BS.
First, we create a virtual replica of the experiment setup that
is composed of a map, buildings, realistic wireless settings,
obstacles, RIS, and vehicle movement representation, which
collectively make up the digital twin and is deployed at
BS. The subject vehicle uses its on-board LiDAR sensor
in combination with local deep learning to detect obstacles
between Tx-Rx, i.e. NLOS cases, which triggers the digital
twin. Detecting obstacles at a distance in advance gives BS
enough time to run the digital twin, determine optimal wireless
settings, and reconfigure its resources to mitigate the NLOS
effect. Upon triggering, the digital twin places the obstacle
in the virtual world, using the coordinate and dimension
information that was uploaded to BS by the subject car, and
runs a ray-tracer to determine the drop in received power
at the Rx (subject vehicle), compared to the LOS scenario.
Then, the BS determines the optimal wireless settings using
two strategies: i) modifying BS sources, such as PTx, beam
directivity, and communication standard in a way that PRx is
maximized and ii) modifying phase (θ) and direction (ρ) of
the reflecting signals from the RIS using passive antennas such
that the reflected signals are added constructively at the Rx.
Method ii) has also the flexibility to modify BS sources.

In this framework, main the challenges are a) creating a
virtual world that is accurate enough to represent the real world
without exorbitant details, b) correctly detecting obstacle loca-
tion and its size, c) strategically placing and configuring RIS
while updating wireless resources at the BS.

•Summary of Contributions:
• We create a digital twin that is a virtual and accurate

representation of the real-world experiment setup, which
captures the interactions among moving entities.

• We propose a framework that includes strategies to main-
tain QoS during the NLOS scenarios by updating wireless
resources at the BS and modifying RIS configuration.

• We detect vehicles that block LOS communication be-
tween Tx-Rx, by minimally modifying the PointPillars
algorithm [5] using the LiDAR component of the real
world FLASH dataset [6].

• We demonstrate the feasibility of our idea in a ray-tracing
tool, Wireless InSite [7], by comparing LOS cases with
the strategies we identify above. We form baseline in
LOS scenarios and then implement our two solutions to
show the improvement and practicality of our proposed
strategies.

In the remainder of the paper, we first review related work
on digital twins, its applications in vehicular networks and
RIS. Then, we detail our vision supported by a rigorous
simulation and experiment design, and provide performance
evaluation. We conclude with future directions and challenges.

II. RELATED WORK

A. Digital Twin

Though the idea of digital twins blossomed in 1960s for
NASA’s Apollo space program [1], the first real world ap-
plications of digital twin emerged in the aviation and then
manufacturing industry [12]. Recently tech giants, such as
Microsoft, Siemens, General Electric started to invest in digital
twins, too [1].

Given the increasing complexity and demand in wireless
systems, digital twins have found their way into internet of
things (IoT) as well [12]. Next generation wireless systems
have three main aims i) high data rate, ii) large scale seamless
service, and iii) low latency. However, realizing these goals
simultaneously is not feasible using traditional and physical
device dependent methods, because the calculation burden and
usage of wireless sources inhibit service quality. Fundamen-
tally, digital twins for wireless networks are used for resource
allocation [10], spectral efficiency [12], energy efficiency [11],
customization [8], and security measures [9]. Depending on
the computation and latency requirements, virtual world/digital
twin can be deployed at edge, cloud, or edge-cloud based
infrastructures [2]. Applications of such a scheme include the
use of metasurfaces to increase network capacity, mitigating
unreliability by deploying digital twins at the edge, and mobile
cell tower management [12].

B. Digital Twins for Vehicular Networks

Liao et al. [8] assert that large scale traffic data inhibits the
purpose of digital twins by exhausting computation sources.
Thus, the authors propose an on-demand digital service model,
where vehicles are able leverage digital twins by applying
blockchain principles for intelligent transportation. El Marai
et al. [9] propose deploying digital twin boxes for capturing
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Wireless
InSite LiDAR Urban traffic Deep

Learning, RIS
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QoS

TABLE I: Overview of state-of-the-art methods solving different issues in the vehicular networks using digital twins. We highlight our
contribution in the last row, which differs by the usage of programmable RIS in the vehicular contexts in digital twins.

video images and GPS coordinates of the dynamic vehicular
environment to process with the goal of detecting vehicles and
pedestrians, which are then sent to digital twins for decision
making in autonomous driving. Liao et al. [10] aim to ease
traffic jams at ramp merges through vehicle-to-cloud based
digital twin, which they implement using real cars and an app
on each vehicle, transmitting vehicle’s raw position and speed
to the cloud over 4G/LTE infrastructure. At the cloud, where
the digital twin in deployed, a nonlinear autoregressive neural
network based model uses the transmitted data to optimize
the vehicle’s movements. Sun et al. propose a digital twin
framework for computation offload, which consists of ground
vehicles, road side units (RSU), and unmanned aerial vehicles
(UAV) [11]. By utilizing a two stage Stackelberg game,
the authors assign ground vehicles to RSUs for offloading.
They show the feasibility and convergence of their proposed
mechanism in simulation. The selected relevant works are
summarized in Tab. I.

C. Reconfigurable Intelligent Surfaces

The concept of RIS refers to an array of programmable
electromagnetic structures that are used to control the reflective
properties of the surface in order to direct signals to a
particular target for maximizing the delivered power [13].
Overall, this is achieved by altering the phase and direction
of the reflecting signals from the surface, as shown in Fig. 2.
Additionally, they can be used for enhancing network capacity
and coverage area through beamforming and resource manage-
ment. All these possibilities combined with what the recent
fast ML/AI algorithms, RIS presents immense opportunities
for performance enhancement in wireless networks. Given that
every communication generation comes with a higher data
demand, requiring more energy, the usage of RIS is inevitable
for environmental reasons in addition to user satisfaction.

RIS can be categorized under various different classes [14],
based on their design, such as i) material (metamaterial or
patch-array), ii) tuning mechanism (electrical, mechanical, or

thermal), and iii) energy consumption (passive-lossy, passive-
lossless, or active). Each of these RIS types can be used for
enhancing a different part of a communication system.
Novelty of Proposed Approach over State-of-the-art:
Though digital twin applications on vehicular networks are
emerging, the existing literature does not consider integrating
RIS into the vehicular context of digital twins. In this paper,
we propose a framework for programmable BS and RIS for
vehicular networks in digital twins.

III. PROPOSED FRAMEWORK

A. Obstacle Detection

The obstacle detection algorithm, PointPillars [5], is an on-
board module that uses LiDAR data, which is also collected
on-board. In this paper, we utilize the LiDAR portion of
the FLASH dataset and the PointPillars 3-D object detection
model to i) identify, ii) locate, and iii) determine the bounding
box dimensions of the obstacle vehicles in the direct commu-
nication path. Although camera images that are synchronized
with the LiDAR data are available, for simplicity we choose
to utilize LiDAR only.

B. Invoking Digital Twin

Upon obstacle detection, the subject car notifies the BS it is
connected to, using the standard in operation. This notification
includes the relative distance coordinates between Tx-Rx and
the bounding box dimensions, which were indicated above.
The notification triggers the digital twin that is deployed at
the edge or cloud server of the BS in our proposed scheme.
A major component of a digital twin in our context is map.
Since the location of the BS is set, the BS already has the local
map, Tx location, and material properties for the surrounding
buildings. Thus, after the digital twin is triggered, it places
the detected obstacle on the fly to run ray tracing simulation,
which in our case is Wireless InSite [7].
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It is worth noting that a twin’s performance is affected
by the level of detail in i) map precision and ii) wireless
parameters. Map detail includes precision in geometry and
reflective surface material properties, which are available to-
day, e.g. OpenStreetMaps. Wireless details include the number
of allowed ray reflections, penetration through walls, and
diffractions, which grow the computation burden. The trade-
off between i) and ii) can be decided based on the target
performance of the twin and computation resources.

C. Initial Decision-making at the Digital Twin

Once the ray-tracing is complete, the digital twin is able to
make a decision as to which combination of the following
wireless parameters to suggest to the real-world BS: PTx,
communication standard, channel frequency, antenna pattern,
and antenna directivity. Depending on the desired precision
and time flexibility, the decision could be made using a simpler
ML/AI algorithm deployed at the BS itself, or, if the standard
is set to be 5G, O-RAN’s powerful near-RT RIC component
that can potentially host many xApps could be utilized for
faster and more accurate results [3].

Additionally, the digital twin needs to make a decision
on whether changing wireless parameters is sufficient or the
support of RIS is required to achieve the target QoS at the Rx.
For this, additional ray-tracing simulations might be needed
to set the reflective properties of RIS, i.e. modification in
phase, θ, and reflection direction, ρ. In such cases, more
powerful computation resources might be needed, shifting the
standard decision towards 5G O-RAN to utilize near-RT RICs.
Among the aforementioned decisions, the antenna pattern and
antenna directivity have a direct impact on the settings, hence
performance, of the RIS we propose using. There are already
fast beam steering implementations [15] that enable changing
beam directions, fitting our proposed method of RIS usage.

Once the complete decision is made within the digital twin,
it is sent to the subject car using the current LOS settings
so that when the subject car enters the NLOS region the
Rx can update its settings accordingly. Given the fact that
PointPillar is able to detect obstacle at a distance, there should
be sufficient time for BS and Rx.

D. Improved Decision with Intelligent Surfaces

As indicated before, RIS are capable of altering the phase
and direction of the reflecting signal for targeting a specific
location or constructive signal addition. Accordingly, in Fig. 2,
the incoming signal follows the solid path rather than the
dashed path that corresponds to the reflecting signal if the
surface was not engineered. In our proposal, we have in-
valuable location information from the LiDAR data and the
subject car’s speed. Also, the LiDAR-based vehicle detection
runs continuously, which allows us to predict the speed of
moving vehicles. This way, the timing of the NLOS case
can be predicted at the BS and the RIS configurations can
be arranged in a way that the beams emitted from the BS
add constructively at the Rx. We envision that the RIS are
connected to the BS via cables in order to eliminate possible
communication disruption between BS and RIS.

Obstacle 
Detection 

Invoke 
Twin

Network 
Decisions

Wireless InSite
θ', ρ'O-RAN

LTE
WiFi

PTx

Fig. 2: Flowchart of the proposed model, where the digital twin
reconfigures BS settings and RIS parameters to mitigate QoS drop
in NLOS scenarios.

IV. EXPERIMENT DESIGN: MAINTAINING LOS QOS IN
DIGITAL TWIN

A. Real-world: Creation of Ground Truth

Our ground truth is taken from the FLASH dataset [6],
which is a multimodal dataset comprising GPS, camera, and
LiDAR data for beam selection in vehicular networks that are
collected with on-board sensors of an autonomous vehicle in
an urban valley environment. We opt for the LiDAR point
clouds (10Hz data rate) to detect obstacles due to its ability
to precisely map surroundings in 3-D with larger field of
view. The scenario we employ consists of a combination of
three stationary obstacle locations with respect to the BS
(Left, Front, Right), and two subject vehicle speeds (15mph,
20mph), making the total number of cases six, where each
case has 10 episodes. The pretrained PointPillars training set
is not the FLASH dataset, so it lacks ground truth labels. To
partially automate the labelling process for retraining, we used
MATLAB’s LiDAR Toolbox and predicted cars via the pre-
trained PointPillar detector [5]. By comparing the predictions
with the camera images, we manually finalized labels to fine-
tune the model for our environment.

B. From Real-world to Digital Twin: LiDAR-based Obstacle
Detection and Localization

The LiDAR sensor is placed on top of the self-driving
car, becoming the origin point. We fine-tune the pre-trained
model’s hyperparameters, e.g. batch size, learning rate, number
of epochs, using Adam optimizer. The PointPillar detection
model produces results, which are depicted in Fig. 3, for
each LiDAR frame in the format of [x, y, z, dx, dy, dz, ϕ, ω, ψ],
where (x, y, z) are the centroid coordinates of the bounding
box for the detected car with respect to the origin. The
bounding box dimensions are given by (dx, dy, dz), corre-
sponding to length, width, and height, respectively. (ϕ, ω, ψ)
correspond to the orientation angles. In our analysis, we use
d =

√
∆x2 +∆y2 for distance between the origin and the

detected car.

C. Digital Twin Setup in Wireless InSite

1) Initial Twin Creation: An outdoor virtual world creation
for a digital twin starts from making a map that is an appropri-
ate representation of the real world. Accordingly, we obtained
the map of the experiment location from OpenStreetMaps,
which we then processed in Blender to use it in Wireless
InSite, making sure that building and road dimensions, mate-
rial types, and foliage are a good match with their real-world
counterparts. In reality, objects have many reflective surfaces,
which puts a computation burden, without helping with the
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ray-tracing results. The effects of these reflective surfaces are
rather addressed by reflection coefficients through previous
publications.

The subject car’s trajectory is the opposite lane of the vehi-
cle obstacle. We model the obstacle car (2018 Toyota Camry)
as a metal box with the dimensions of 1.84m×4.88×1.44m,
by reading them from the car’s specifications. We placed
the BS location in a way that its location relative to the
surrounding buildings matches with the real world. The height
of the BS is 0.95m, following the FLASH dataset [6], which
we use to evaluate the performance of obstacle detection. We
used directional antennas for RIS experiments, whereas for
the rest of the experiments we used half-wave dipole antennas
for implementation convenience. We selected the propagation
model in the Wireless InSite to be X3D, as it is the most
comprehensive one. The number of allowed reflections and
diffractions are 3 and 1, respectively.

2) Running the Twin: Upon obstacle detection, the digital
twin automatically places the obstacle on the fly using the
PointPillar algorithm’s output. This is followed by running
ray-tracing, which determines PRx values at the subject car’s
trajectory. Then, the digital twin calculates PTx level that will
achieve the same PRx values as in the LOS case. Once the rays
are determined, the effect of the rest of the wireless parameters
could be calculated. There are a number of wireless metrics
to change, which collectively make up many combinations.
Deciding the best wireless parameters could be done using
deep learning techniques.

3) Running the Improved Twin: Among the decisions of the
deep learning model, deciding whether using RIS will further
improve the received power is the triggering factor for RIS.
Once this is decided BS reconfigures antenna beams and the
reflective parameters of the RIS so that the emitted signals are
added constructively at Rx.

V. PERFORMANCE OF THE PROPOSED DIGITAL TWIN

A. Evaluation Metrics

Our evaluation consists of three parts. First, we evaluate
the performance of the obstacle detection using recall scores.
Second, we make analysis for PTx needed to achieve the same
level of PRx, which we refer to as QoS, when we only recon-
figure the BS. Lastly, in addition to the BS reconfiguration,
we also reconfigure the RIS for PTx analysis. For the second
and third evaluation methods, we test two wireless standards,
namely LTE and 802.11ac, over different obstacle distances.

B. Performance of the Obstacle Detection Module

For generating this set of results, we choose transfer learning
approach, taking a baseline PointPillar model [5] and adapted
it to our distribution. We divided our dataset into 70% training
and 30% testing, assigning fair representation to each sub-
category, and used grid search for fine-tuning the model. We
select recall as an evaluation metric to quantify the error due
to missing predictions by comparing it with the accurately
labelled ground truth samples. Fig. 4 compares the recall
scores from each sub-category and average recall is 73.46%.
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Building Road

Road

y x

dx dy
dzCar

Fig. 3: A sample output of obstacle detection using finetuned PointPil-
lars [5] and the FLASH dataset [6]. The autonomous car is displayed
at the center (black region with an automobile silhouette) and the
detected car as a green bounding box. The outputs from PointPillar
and the surrounding labels are displayed in bold white for visual
presentation, where ϕ = ω = ψ = 0.
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Fig. 4: Recall plot for object detection using finetuned PointPil-
lars [5].

We observe average maximum distance from which an ob-
stacle can be detected is 11m allowing for sufficient time to
perform further steps. When obstacle and vehicle are parallel
distance eventually reduces to 5.3m. The middle plot in Fig. 5
exemplifies distance change over time samples for a typical
episode. µ(dx,dy,dz) = (1.94, 4.64, 1.67), µ indicating average,
which slightly deviates from the real obstacle dimensions.
Thus, for our ray tracing experiments, we used the real
dimensions.
Inference: The adapted PointPillar algorithm yields an av-
erage recall of 0.73 on the FLASH dataset, while deviating
only 19cm, on average, from the real obstacle dimensions.
This allows more precise ray-tracing, hence PTx allocation,
through digital twins when an obstacle is detected.

C. Performance Gain by Reconfiguring BS Parameters

We provide the PTx analysis to achieve the same level of
PRx over different distances, d, and communication standards
when only the BS is reconfigured in the top plot in Fig. 5. The
distances between the detected car obstacle and the subject
car are displayed in the middle plot, with x-axis displaying
time stamps of the 10Hz sampling rate for LiDAR data. The
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(top), predicted distances between the subject car and the obstacle
(middle), digital twin with sample points displayed (bottom). The
use of RIS always outperforms LOS case in terms of required PTx.

bottom picture consists of multiple snapshots of the Rx on the
subject car along with the Tx, vehicle obstacle, and RIS in
the digital twin, which are all created in Wireless InSite. The
snapshot locations are labeled as p−2, p−1, p0, p1, p2, which
are displayed in every plot in Fig. 5. The figure is from the
scenario of Front-15 mph. In our analysis, we vary PTx in a
way that PRx at every sample point on the car trajectory is
−65 dBm, which is labeled as an excellent signal level.

It is evident from the top plot in Fig. 5 that required
PTx for excellent signal level in NLOS cases are much
higher compared to the LOS, because of the lack of direct
communication links and received signals having to travel
more, undergoing more attenuation. The Tx compensates this

with higher transmit power. We select the LTE and 802.11ac
signal frequencies, fc, to be 2.14GHz (band 1) and 5.16GHz
(channel 32), respectively. When we compare the LTE and
802.11ac standards, we observe that LTE requires less power
due to operating in lower frequency, which causes less atten-
uation as signals propagate over the air.
Inference: Determining optimum PTx is beneficial and im-
portant, because excessive transmit power could be a method
to mitigate the QoS drop in NLOS case, which comes with
extra energy cost. Contrarily, if PTx is underestimated, QoS
is sacrificed or even lost. Using digital twins, optimal PTx

values could be reliably calculated. We show that even with
configurable BS, required PTx is 18 dBm higher in NLOS, on
average.

D. Performance Gain by Reconfiguring BS and RIS Parame-
ters

For this PTx analysis, the experiment setting is the same as
we described previously, except this time we direct transmitted
power to RIS using directional antennas, where both the E and
H-plane half-power beam widths are 15◦. Then, RIS reflects
these incoming beams to the target destination. We use two
RIS located on the same side of the Tx, which are shown
on the bottom figure in Fig. 5 and depending on the target
location we active only one RIS. Evident from the top figure,
the use of RIS consistently requires lower PTx from the Tx
compared to both only BS configuration (NLOS scenario)
and LOS scenario. In fact, compared to the LOS cases, RIS
reduces the required PTx −16.3 dBm → −27.6 dBm and
−2.9 dBm → −14.3 dBm for LTE and 802.11ac, respectively.

RIS provides more efficient use of the transmitted power.
The rays emitted from the BS that are not directed to the
target will be lost, but with the usage of data-driven antenna
directivity and RIS, we utilize the power which otherwise
would be wasted. We simulate the improvement from RIS
in Wireless InSite following an ad-hoc approach, meaning
we place one transmitter at each RIS location and let these
transmitters emit the same power level as the delivered power
from the BS at RIS locations using directional antennas.
Inference: Using digital twin supported reconfigurable RIS,
we achieve 2.32× less PTx in dBm, on average, even in
NLOS between the BS and Rx.

VI. FUTURE DIRECTIONS AND CHALLENGES

The concept of digital twin and RIS is still at nascent
stage and integrating that into the connected and autonomous
vehicles bring a number of challenges and open problems.

• Vehicle-to-everything (V2X) networks require updated
infrastructure that should be easy to deploy at low cost.
Given that O-RAN deployment proposals rise [1], the
flexibility and multi-vendor interoperability of O-RAN
could be a solution for lowering deployment and opera-
tional costs.

• Interconnected components in V2X might expose security
and privacy vulnerabilities. However, security measures
are already under development for O-RAN [3].
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• In this paper, we only use LiDAR data for obstacle
vehicle detection. For the future work, we aim using
multimodal data, e.g. camera and LiDAR, to make more
robust detections.

• High computing sources [12] and efficient algorithms [9]
are vital for timely decisions in fast-pacing V2X net-
works. A quantitative trade-off analysis between compu-
tation burden and acceptable sacrifice, e.g. wrong obstacle
detection vs. QoS gain/loss vs. consumed power, will
determine priorities.

• As real life RIS implementations that support multiple
operation frequencies emerge, we plan expanding our
simulation into real RIS implementation and dynamically
configuring RIS and BS resources through reinforcement
learning within digital twins.

VII. CONCLUSIONS

We propose a digital twin framework for connected and
autonomous vehicles with the goal of bettering QoS during
inherent NLOS cases in dynamic vehicular networks using
programmable BS and RIS. The workflow of our method
starts with obstacle detection using a set of vehicle-mounted
LiDAR sensors and a detection module, which notifies the BS
the autonomous vehicle is connected to about the obstacle,
providing the location and dimensions information. Then, the
digital twin, deployed at the BS, is triggered and runs ray-
tracing to determine optimum BS settings, e.g. transmit power,
communication standard, antenna directivity, whether to utilize
O-RAN’s computing sources, and RIS parameters, reflection
and phase modification, that will mitigate the QoS drop
when no direct communication is possible for the autonomous
vehicle. We tested the feasibility of our framework using
real life LiDAR data for obstacle detection and Wireless
InSite for digital twin evaluation. We show that using RIS
allows reducing transmit power by 2.32×, on average in dBm,
compared to the LOS scenarios during even NLOS cases
between the BS and Rx.
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