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Abstract—The Open Radio Access Network (Open RAN)
specifies the evolution of RAN with a disaggregated, open and in-
telligent architecture to meet the requirements of next-generation
networks. While this provides flexibility and optimization for
RAN, it raises new security concerns, potentially increasing
vulnerability to cyber threats through disaggregated elements.
We introduce a security architecture that functions as a platform
to evaluate configurations and train security algorithms within
a Network Digital Twin (NDT), which is compliant with the O-
RAN architecture defined by the O-RAN Alliance. The elements
of the security architecture reside within the NDT and facilitate
the training of machine learning (ML) models, which play a
pivotal role in the O-RAN security operations. To exemplify this
framework, we demonstrate a hierarchical Federated Learning
(FL) based anomaly detection algorithm that can be applied for
three traffic slices in O-RAN. We use Colosseum, an O-RAN-
compliant emulation system, to generate time-series data for
training. Our trained model is able to detect anomalous traffic
and identify traffic slice types with over 99% accuracy.

Index Terms—Open Radio Access Network, Network digital
twin, Anomaly detection, Federated learning

I. INTRODUCTION

In the Open Radio Access Network (Open RAN), there is a
developing trend of disaggregation, which entails the gradual
separation of distinct functional elements and components that
have traditionally comprised an integrated network infrastruc-
ture [1]. This separation extends to hardware, software, and
network services, allowing them to exist as distinct entities
that can be administered and operated independently. While
this approach offers advantages in terms of flexibility and
optimization, it also introduces new cyber threats against
Open RAN (O-RAN) and its operations as each disaggregated
element potentially becomes an entry point for cyberattacks.

The process of RAN softwarization and the increased open-
ness of its architecture, including communication interfaces,
align the implementation of O-RAN with the trends in efficient
code delivery through Continuous Integration and Continu-
ous Development (CI/CD) practices. When Machine Learning
(ML) models are deployed in the O-RAN environment (i.e.,
defined by O-RAN Alliance), there are many potential issues
that arise in terms of both the development and deployment
stages of the model life cycle. In the development stage, issues
may appear for data acquisition, data reliability, model struc-
tures, model updates, and hyperparameters. In the deployment
stages, potential problems arise with respect to model decay,
fairness, generalization ability, robustness, or numerical stabil-
ity. Therefore, it is vital to choose the appropriate Artificial
Intelligence (AI) technique, using synthetic data and managing

the ML lifecycle properly in the RAN Intelligent Controllers
(RICs) platform to overcome these challenges [2].

Federated Learning (FL), including its various forms such
as hierarchical or distributed FL, is well-suited for scenarios
involving the disaggregated nature and accordance with the
general principles such as securing data privacy of the O-
RAN framework [3] . It employs locally generated data to train
models and combines model updates to train a global model.
FL models can be effectively trained to detect anomalies or
intrusions in O-RAN [4]. These models can be deployed within
RICs to analyze real-time network traffic, identify anomalies,
pinpoint their origins, and potentially detect security attacks
before they can affect the RAN infrastructure. Another advan-
tage of FL is that it can reduce the communication overhead
of transferring data from different interfaces to a centralized
location. Therefore, in this paper, we present a hierarchical
FL-based anomaly detection mechanism and demonstrate its
applicability using three traffic classes generated from an
O-RAN emulator. We also present a Network Digital Twin
(NDT) with a security architecture for O-RAN, as shown in
Figure 1, where its components contribute to continuously
updating and training FL models responsible for O-RAN
security operations.

The remainder of the paper is organized as follows. Sec-
tion II describes the background on O-RAN and NDT security.
Section III presents the proposed NDT security framework.
Section IV and V respectively elaborates on the O-RAN
experimental setup and the numerical results obtained. Finally,
Section VI provides the conclusions and future works.

II. BACKGROUND AND RELATED WORK

According to the reference architecture proposed by the O-
RAN alliance [5], the O-RAN components are disaggregated
into Central Unit (O-CU), Distributed Unit (O-DU) and Radio
Unit (O-RU) accompanied by the RICs, i.e., near-Real Time
(RT) and non-RT, Service Management and Orchestration
(SMO) framework, and open interfaces. O-RAN promises the
possibility of higher security measures with interoperability of
different hardware and software components, protected RAN
disaggregation with interface security, higher availability due
to disaggregated architecture and software security different
stages of O-RAN lifecycle [1].

NDTs can be used for training and testing AI/ML algo-
rithms, taking data from the physical and synthetic data from
NDTs. In the context of RAN, NDTs have to take into account



Fig. 1: Proposed security architecture for O-RAN with NDT.

the highly dynamic nature of the wireless communication
medium. A RAN NDT finds a compromise between complex-
ity, accuracy, and flexibility to keep up with the continuous
changes in the physical network. The authors in [6] introduce
a NDT design incorporating a data repository responsible for
collecting and preserving data from the physical RAN. This
encompasses service mapping models that digitally depict the
various components and functions of the physical RAN and
manage the NDT components and their interactions. Following
this approach, different network monitoring and optimization
applications can then utilize a RAN NDT instance customized
to their specific needs.

The authors in [7] list some requirements for efficient de-
ployment of an operational RAN NDT that provides the means
to monitor and predict (e.g., through simulations, emulations,
or AI models) operational states of the physical network,
and directly control its configuration based on the analysis
performed in the NDT. They highlight the need of distributed
approaches for balancing the AI/ML model accuracy, train-
ing time, and related communication overhead. As explained
in [8], an O-RAN NDT could enable the training of rApps and
xApps with up-to-date information both on network level data
and with specific measurements on channel conditions and
mobility patterns of individual User Equipments (UEs). An
O-RAN NDT with UE DTs will enable AI-driven network
security, threat, and fault detection by using real-time and
historical data to train anomaly detection algorithms.

The application of FL in O-RAN has been advocated for
optimizing resource allocation [9] and enhancing access con-
trol mechanisms [10]. Building on our prior research, which

employed peer-to-peer FL for anomaly detection within O-
RAN, we recognize industry recommend offline training of
ML models as a best practice [3]. However, there is a notable
gap in the literature regarding the challenges associated with
the training ML models offline. Addressing this, we introduce
a novel security framework that incorporates NDT to mitigate
these training challenges.

III. SECURITY ARCHITECTURE WITH NDT

As shown in Figure 1, the logical components of security
architecture are located inside the NDT. In the process of secu-
rity threat identification, NDTs can be used to predict potential
network disruption and network flow anomalies [8]. For in-
stance, each base station within its coverage will continuously
send performance management data to the NDT. These may
include aggregated metrics such as service availability, service
quality, packet drop ratio, service accessibility level, etc. This
data can be used for ML models to train for anomaly detection.
Although the current O-RAN ML workflow specification does
not support the real-time control loop and model training at
E2 nodes yet [3], we utilize those in the NDT for the model
training to showcase further possible enhancements.

The upper layer is the network application layer. This
performs the optimization of security policies and network-
level security configuration based on user requirements, re-
source availability or other appropriate parameters. When the
verification process is complete, the NDT layer sends the
control updates for the security configuration and security
policy updates to the physical network through the southbound
interfaces. The main components of the NDT security archi-
tecture are described below.

Security data collector: This component collects security
data and logs related to security operations. It identifies the
security configurations made with the given interfaces, such
as A1, O1, O2, and E2. This will also facilitate the efficient
and up-to-date storage of large-scale security data.

Security data models: This should include the Basic Net-
work Model blueprint and the Security Functional Model
responsible for security services. The basic network model
blueprint refers to the network element model and the network
topology model, where the NDT is mapped with the accurate
physical network in complete scale. The security functional
models refer to the security data models that are assigned for
security analysis, threat identification, and attack mitigation,
which are established by making full use of the security
data related to a specific application scenario. The security
functional models can be defined with respect to the security
analytical engine, security threat intelligence engine, and deci-
sion engine. The security data collector collects security data
from both the physical network and DT and feeds those data
to the security analytical engine to train AI/ML models.

Security management for DT entity management: This
completes the security management functions of the NDT
while also coordinating with topology and model manage-
ment of data models. In particular, security management is
responsible for all types of security operations related to NDT.



This may include confidentiality, integrity, and availability
protection of the lifecycle of data security, model security,
and interactive security of the NDT.

IV. EVALUATION OF FL-BASED ANOMALY DETECTION

Here we describe the experimental setup, traffic analysis,
model architecture and data processing.

A. Experimental set-up
As presented in the logical network architecture in Figure 2

and adhering to O-RAN reference architecture given in [5], the
near-RT RIC can be connected to multiple E2 nodes and one
non-RT RIC can be connected to multiple near-RT RICs. We
consider an experimental architecture as shown in Figure 2
where one or more gNBs (i.e., a combination of RU, DU
and CU) with an E2 interface connect to one near-RT RIC.
Each gNB is able to support multiple traffic slices. In our
experiment, we choose to use three broad 5G slices: enhanced
mobile broadband (eMBB), massive machine type communi-
cation (mMTC), and ultra reliable low latency communication
(URLLC). UEs are assigned to the appropriate traffic slices.
The gNB records a wide range of Key Performance Indicators
(KPIs) and periodically reports these KPIs to an xApp in the
near-RT RIC. For each traffic slice, we generate both normal
traffic and attack traffic that comprises anomalies.

Fig. 2: Logical network architecture considered for simulations

1) Normal Traffic Class: For the normal traffic class, real-
world 5G traces were collected in a variety of conditions for
each traffic slice (i.e., eMBB, mMTC, URLLC) and stored
in the security data collector. The packet arrival rates and
payload sizes are based on real user traffic and do not follow
a statistical distribution closely. Thus, we consider the UEs
to have non-Independent and Identically Distributed (IID)
data distribution. These traces are replayed in an O-RAN-
compliant emulation environment using Colosseum [11] to
generate realistic KPIs. Now, the Colosseum emulator behaves
as the basic network model in our NDT. These KPIs are
reported per UE basis for the xApp operating in the near-RT
RIC every 250 ms. In this way, we generate a robust dataset
for the normal traffic class that represents a wide range of real
user traffic patterns.

2) Anomalous Traffic Class: To generate the anomalous
traffic class, we develop two distinct attack models. The first
model focuses on a User Datagram Protocol (UDP) Distributed
Denial of Service (DDoS) attack, where an attacker-UE inun-
dates the gNB with a substantial volume of UDP packets,
thereby degrading system performance. To create this attack,
we initially examine Packet Capture (PCAP) files from the
malicious traffic dataset available in [12]. Drawing insights
from this traffic analysis, we devise a statistical approach to
simulate a UDP DoS attack within our Colosseum-based O-
RAN environment. In this simulation, we model the DDoS
attack by having each UE generate packets with an arrival
rate λ determined by a Poisson distribution and packet sizes
based on a Normal distribution. In our experimental scenario,
we set λ = 3.3 × 10−5 seconds. For packet sizes, we
employ two distinct distributions: U1 ∼ N (404, 100) and
U2 ∼ N (1400, 1600) in bytes. We term this simulated attack
as UDP Poisson.

The second model introduces a more sophisticated attack
variant known as the bandwidth hog attack. This attack
represents an attempt to disguise a DDoS attack by closely
mimicking realistic packet arrival rates. However, it employs
artificially large packet sizes, leading to network congestion.
To generate this attack, we utilize the original user traces but
increase the payload size by adding D = 70+X bytes, where
X ∼ N (30, 100). All of the simulated attacks are stored in
the security data collector.

B. Traffic analysis

Figure 3 illustrates the packet size behaviour of the re-
alistic UDP DoS attack of [12] compared to our simulated
UDP Poisson attack in time-domain. The arrival packet sizes
of the actual UDP DoS attack are approximated by the
simulated attack using packet size U1 (i.e., UDP Poisson t1).
A larger packet size U2 (i.e., UDP Poisson t2) is used to
saturate the network further. This analysis reveals that we
could approximate the real-world UDP DoS attack using the
arrival rate and the size of the packets.

Fig. 3: Time domain analysis on packet size of realistic and
simulated UDP Poisson attacks.

TABLE I: DT classifier performances

Maximum Depth of
Tree

Accuracy Precision Recall F1-score

3 50% 23% 28% 23%



Fig. 4: Time domain analysis for rx brate uplink [Mbps]
feature in normal eMBB slice vs. eMBB slice with simulated
bandwidth hog attack.

TABLE II: Decision rule for each of the classes based on DT
classifier

Slice
Type

Decision rule

eMBB 0.473 < rx brate uplink [Mbps] ≤ 0.731 and
ul n samples > 93.5 or
rx brate uplink [Mbps] ≤ 0.731 and
22.5 < ul n samples ≤ 93.5

URLLC rx brate uplink [Mbps] ≤ 0.473 and ul n samples > 93.5
Anomaly rx brate uplink [Mbps] ≤ 0.731 and

ul n samples ≤ 22.5 or
0.731 < rx brate uplink [Mbps]

TABLE III: Dataset features and model hyperparameters

Feature Description
dl n samples Downlink number of samples transmitted

since last time stamp
dl buffer [bytes] Downlink current queue length in bytes
tx brate downlink [Mbps] Downlink throughput in Mbps
tx pkts downlink Downlink number of packets transmitted

since last timestamp
ul n samples Uplink number of samples received since last

time stamp
ul buffer [bytes] Uplink current queue length in bytes
rx brate uplink [Mbps] Uplink throughput in Mbps
rx pkts uplink Uplink number of packets received since last

time stamp
LSTM Model Hyperpa-
rameters

Description

Optimizer Adam
Learning rate 0.001
Batch size 128
Loss function Cross entropy loss
Window size 100/50/10/4/1
Clusters 3
Local epochs 5
Cluster rounds 5
Global rounds 20

Figure 4 depicts the second variation in the UDP DoS attack,
bandwidth hog, compared to normal slice traffic. The plots
show the uplink throughput in Megabit per second (Mbps)
in eMBB slice under normal conditions (top plot) and band-
width hog attack (bottom plot) separately. The traffic patterns

exhibited by the bandwidth hog closely resemble those of
normal slice traffic, rendering it a significantly stealthy form
of attack. During the traffic analysis, we tried to identify a
linear classifier or a set of rules from the features to classify
the traffic classes. In our study, we employed a Decision Tree
(DT) classifier and visualized the resulting DT in Figure 5,
and the detection accuracy for the classifier is given in Table I.
Table II interprets the decision rules extracted from the DT.
Although the classifier gives a human-readable rule-based
logic to classify the slice traffic, the accuracy of the classi-
fier needs to be improved. This discovery, however, serves
as an eye-opening illustration of the formidable challenge
of distinguishing between legitimate and malicious network
traffic. It hints at the intrinsic complexity of the task, where
both legitimate and malicious traffic can sometimes appear
deceptively similar. This realization is a compelling motivation
to adopt more sophisticated ML methods.

C. Model architecture and data processing

Our goal is to detect malicious UEs which are distributed
across the network and to identify the slice type based on the
KPIs generated at the gNB per UE. These KPIs are described
in the Table III. From the traffic analysis, high usage of
malicious UE’s uplink channel highlighted the uplink side
features given in Table III as relevant features for the anomaly
slice detection. The accurate classification of normal traffic
slices to eMBB, URLLC, and mMTC required both uplink
and downlink features given in Table III. To analyze the traffic
flows, we use a Long Short-Term Memory (LSTM)-based
classification model. The main motivation is that LSTM is
designed to avoid long and complex dependency issues, and
can remember extensive historical information [13]. The model
consists of one LSTM layer and one fully connected layer
followed by a softmax layer (Figure 6). The hyperparameters
used during the training are described in Table III.

Every client is considered to have one normal traffic slice
(i.e., eMBB, mMTC, URLLC) and at least one anomalous
traffic slice. The data pre-processing involves two main steps:
data scaling and data windowing. Standardization was applied
for data scaling, and data windowing was implemented to
structure the data sequentially, enabling it to serve as input
for the LSTM model. Given the temporal dependencies in the
data, partitioning the time series data into training, testing,
and validation sets was performed according to sequential time
values. The first 80% of the time-series records were allocated
to the training set. The subsequent 20% of the time-series
records were designated as the testing set. For the validation
of the model during training rounds, the last 20% of time
records from the training set were extracted and defined as
the validation set.

To comply with the hierarchical and distributed architecture
as presented in Figure 2, where data is distributed across E2
nodes, we use FL for the anomaly detector training process.
Another purpose of using FL in ML model training in NDT
is to avoid model decay when deployed in the production
environment. In other words, the performance of a centrally



Fig. 5: DT visualization for the slice traffic classification.

Fig. 6: LSTM classification model architecture.

trained model in a federated environment may not be as
good as a model trained in a federated manner in the same
environment [14].

We consider E2 nodes as federated clients where each client
has local traffic slice data to train their local models. The
model aggregation is performed at two levels separately, near-
RT RIC and non-RT RIC. In the first level of aggregation, one
near-RT RIC and its corresponding E2 nodes are taken as one
cluster. First, federated client models in E2 nodes are trained
utilizing locally available data, and the model vectors are
communicated to the relevant first-level aggregators hosted in
near-RT RICs. After the aggregation, the calculated aggregator
model vector is sent back to each local trainer in the same
cluster, indicating the end of a cluster round. Furthermore,
after a pre-defined number of cluster rounds, the first-level
aggregators communicate their model vectors to the second-
level aggregator residing in a centralized non-RT RIC. Then,
the global aggregator performs the averaging of the received
models and transmits the global model vector back to all the
federated clients by completing one FL global round.

V. NUMERICAL RESULTS AND DISCUSSION

This section presents the numerical results and the observa-
tions we make on them. One interesting behaviour is that when

attempting to simulate the DoS attack, UE uplink capacity
saturates before the gNB slice PRBs saturate. Therefore, a
single UE cannot perform a simple DoS on a gNB. Thus, the
given attack scenario was simulated as a DDoS attack where
multiple UEs target to saturate the gNB slice PRBs. Identifying
such limitations and proactive emulation of network attacks in
a controlled environment are benefits of incorporating NDT,
which can help improve the security of the O-RAN framework.

Synthetic data has been used to train FL models offline,
as real-world traffic is initially unlabeled. The security data
collector in NDT is considered a trusted data source. RIC
platforms are trusted entities that are used for model ag-
gregation and initialization. E2 nodes can be malicious. The
purpose of bringing FL model training to E2 nodes is to
improve detection time and reduce privacy risks. Once the
FL model is deployed in the live network, it will continue to
train using real-world traffic. Proposing training and inference
to E2 nodes prevents attackers from getting traction beyond
E2 nodes and reduces the communication overhead in the
E2 interface. ML model training in NDT was conducted as
FL since centrally trained ML models lose performance in a
distributed environment. It has shown that the ML model needs
a few training rounds in the federated setting to achieve the
previous accuracy [14]. During this recovery time, the network
is exposed to a potential attacker.

During evaluations, different ML models were considered
to be the anomaly detector. DT, LSTM autoencoders as an
unsupervised learning technique, and LSTM classification
model as a supervised learning technique. The hyperparameter
tuning was also done extensively for all the possible methods.
Only the LSTM classification model showed promising results.
This depicts the benefit of having the NDT as the offline
learning platform for the O-RAN, which avoids this kind of
risk in ML model deployment in the actual network.

Performance results for the trained LSTM classification
model are provided in Table IV. Model performance increases
as the window size is reduced. This is a remarkable improve-
ment compared to the baseline results for the DT classifier



given in Table I. The confusion matrix for the trained model
with window size one is provided in Figure 7. We observed
noticeable accuracy enhancement in traffic classification with
the window size reduction. This indicates our dataset has
shorter temporal dependencies. Hence, the model could make
real-time predictions based on our dataset. This emphasizes
the significance of NDT, which could be utilized to fit the
model’s configuration to the particulars of the data.

TABLE IV: Performance results for LSTM classification
model with different window sizes

Window size Accuracy Precision Recall F1-score
1 99.87% 99.87% 99.83% 99.85%
4 99.73% 99.77% 99.65% 99.71%
10 99.6% 99.6% 99.49% 99.54%
50 96.65% 94.21% 95.35% 94.44%
100 95.34% 93.04% 93.48% 92.0%

Fig. 7: The confusion matrix for LSTM classification model
with window size one.

A key observation is that if a UE transmits anomalous traffic
only (i.e., no normal traffic), our model is able to identify
malicious UEs with 100% accuracy under any window size. If
the UEs have both normal and anomalous traffic, classification
accuracy depends on the window size as given in Table IV.

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper has presented a comprehensive security frame-
work for O-RAN, incorporating the NDT architecture as
a robust platform for the evaluation and training of secu-
rity algorithms. The security architecture is described inside
the NDT, enabling the training of ML models, poised to
play a crucial role in enhancing O-RAN security. We have
demonstrated the effectiveness of this framework through a
hierarchical FL-based anomaly detection algorithm that detects
anomalous traffic across three traffic slices in O-RAN. We
also have proven that a simple rule-based traffic classifier
is insufficient to detect anomalies with a higher accuracy.
Our trained LSTM model exhibits exceptional accuracy in

detecting anomalous traffic, marking a significant step forward
in securing the O-RAN ecosystem. We have shown that ML
models can be trained in NDT using simulated scenarios
before deploying them in the physical network in accordance
with the general principles in the O-RAN framework [3]. With
this NDT architecture, we intend to achieve adaptive model
learning by periodically feeding network data, which may also
include zero-day anomalies. ML workflow proposed in the
NDT can be deployed in the O-RAN framework in future
architecture versions to process real-time network traffic to
detect anomalies, identify root causes, and predict potential
attacks. The performance of the LSTM classification model
should be further validated using more sophisticated attacks,
such as variants of DDoS attacks, botnet attacks, and jamming
attacks.
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