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Abstract—We are being increasingly surrounded by electronic
devices that need reliable authentication before they can be
accessed. While typed passwords, face and fingerprint-based
authentication are popular today, we explore the possibility of
using additional bio-origin signals, especially electrocardiogram
(ECG) signals that can be collected without an active engagement
and attention of the human user. Our proposed approach,
abbreviated as FERST, uses a two-stage deep learning framework
for signal processing and classification. The acquired and pre-
equalized ECG signal is transferred from a wearable device
through arm-wrist-palm galvanic coupled channel. The first part
of the reception framework consists of a denoising autoencoder
(DAE) that filters this noisy ECG signal. Then, the second stage
includes a convolutional neural network (CNN) to classify and
authenticate the denoised ECG signal as present/absent in a prior
database used for training. The overall design goal of our ap-
proach is to achieve acceptable authentication performance with
simple hardware, which further decreases network complexity
and enables miniaturization of the end-to-end system. Results
reveal that the FERST provides (i) 82% improvement in inference
time relative to state-of-the-art adaptive filtration methods, (ii)
outperforms the state-of-the-art with 99.7% classification accu-
racy on a standardized ECG library dataset and (iii) a relatively
high classification accuracy of 99.2% for different arm-wrist-
palm channel dimensions.

Index Terms—ECG, signal denoising, deep learning, convolu-
tional neural network

I. INTRODUCTION

The explosive growth of connected Internet of Things (IoT)
and smart wearables have transformed the way humans access
information and interact with the environment. With simple
gestures and voice commands, we can now control Internet-
linked appliances on the other side of the world. While such
freedom has the potential to dramatically enhance quality of
life, it also raises concerns of misuse, especially, in context of
the dangers of unauthorized access of these very devices. Thus,
any secure IoT framework now uses an authentication step,
through which the legitimate user is verified before allowing
access to its controllable features.
Approach and motivation: There are several methods for
authentication in use today, with the most popular being typed
passwords. While such passwords can be made reliable and
strong by increasing the length, non-standard combinations of
regular and special characters, this requires the user to actively
type in the password. Furthermore, it assumes the device is
capable of supporting a virtual or physical keyboard. Other
forms of authentication use biometrics, such as fingerprints,

Fig. 1. An overview of proposed FERST ECG reception system architecture
for user authentication for a noisy ECG input.

iris scans and face recognition. Apart from the requirement of
specialized fingerprint sensors and cameras, there have been
reported cases of intentional ‘eavesdropping’, where the prints
are lifted off object surfaces [1], and face and iris recognition
are compromised through high-resolution photos [2]. Finally,
as in the case of fingerprints, these methods also require
focused effort on behalf of the human user. Thus, we are
motivated to further study other bio-origin signals, such as
ECG, which are easy to obtain, offer discriminative properties
suitable for user authentication, and most importantly, do not
require an active effort as part of the authentication. Our
hypothesis is that a mere touch as part of normal device in-
teraction, for example, typing on a keyboard, will authenticate
the user in real time.
Unique properties of ECG: ECG signal captures the state
of the heart’s electrical conduction, easily acquired through
non-invasive techniques. The characteristic features of ECG
include the P-wave and QRS complex which capture the
atrial and ventricular depolarization actions, respectively. ECG
can be recorded at various locations [4], although the wrist
location offers easy access. This signal must then propagate
to the authentication point without being compromised en-
route. One way to achieve this is by leveraging the galvanic
coupled channel [3] that leverages the conductive properties
of the human body channel that include skin and muscles.
This confines the energy propagation within the body channel,



making eavesdropping infeasible even at close proximity. We
note that ECG signals collected at the wrist are noisy compared
to other locations closer to the heart. Hence, we need to
take into account the signal distortions caused by so called
baseline wander (BW), muscle artifact (MA) and electrode
motion (EM).
Limitations of existing ECG authentication systems: De-
spite vast strides in the area of ECG authentication [6],
there are several open challenges in terms of effective noise
reduction in the captured signals and reducing classification
complexity. Previous works either use classical signal process-
ing for ECG denoising [6] or filtered ECG signals to validate
their system design [5]. Works that propose novel denoising
methods are limited to a single noise-source or require refer-
ence signals in their system implementation. These methods
are difficult to incorporate within wearables that only support
single-lead ECG reception. As opposed to these approaches,
FERST enables a full-ECG reception system that takes into
account realistic ECG acquisition and reception artifacts. It
considers the system efficiency (inference speed), suppression
of major ECG noise types, and ensures high classification
accuracy.
FERST for user authentication: Fig. 1 represents an high-
level overview of the authentication process for a noisy ECG
input. The proposed system comprises three main stages:
preprocessing, feature extraction, and user authentication. The
first stage includes a deep learning based denoiser that aims to
efficiently suppress major ECG noise types, normalize ECG
waves and enable a simple system architecture. This in turn
helps to speed up processing speed and accuracy. The second
stage extracts discriminative ECG features for the eventual
classification step. The user authentication stage classifies test
subjects according to their ECG signal similarity percentage
with signals in an existing database.

The main contributions of this paper are as follows:
• We propose a full ECG reception system for user au-

thentication that uses two-stage deep learning: the first
denoises the ECG signal using denoising autoencoders
(DAE), while the second ensures accurate classification
through signal pattern matching.

• We propose a deep learning based denoiser that outper-
forms the state of the art in terms of denoising inference
time and filtration accuracy.

• We demonstrate an optimized testing pipeline using de-
noised ECG signals that yields an overall 99.7% classifi-
cation accuracy, considering a dataset of signals imported
from MIT-BIH and QT databases.

• We consider the variations between people in the arm-
wrist-palm channel dimensions and our FERST system
shows a relatively high authentication accuracy of 99.2%.

II. RELATED WORK

Signal processing methods have been widely used for fil-
tering and denoising ECG signals for various clinical appli-
cations. Discrete Wavelet Transform (DWT) is a method used
for noise suppression [7]. Despite its good performance in

terms of filtration, DWT may contribute to fluctuations and
amplitude attenuation in the final filtered signal. In [8], the
Empirical Mode Decomposition (EMD) is proposed for ECG
denoising, which aims to decompose signals into intrinsic
mode functions (IMFs). However, this technique may suppress
the unique ECG QRS complexes due to wrong discrimination
with high frequency noise.

More recently, neural networks have been used for en-
hancing ECG signals by minimizing root-mean-squared error
(RMSE) and percentage root-mean-squared difference (PRD)
for use cases such as arrhythmia prevention and detection
and the overall examination of the cardiac tissue [11]. More
specifically, DAEs are used as an alternative to adaptive
filtering, to avoid the need for a reference signal. For bio-
metric authentication, we wish to acquire ECG on the wrist
with single-lead electrodes. Thus, adding a reference signal
increases the complexity of the system [10]. Deep neural
networks (DNNs) have been used to analyze ECG signals for
clinical objectives, for example to identify the occurrence of
one or more of six different abnormalities on 12-lead ECG
signals [12]. For single-lead ECG signals, [13] proposes two
CNNs used to classify arrhythmia for emergencies when no
physicians available.

The work that comes closest to our approach is [14] that
proposes a wearable authentication device with a trained neural
network classifier combining ECG and fingerprint data. While
it aims to identify a user by classifying the QRS segment of
the ECG signal, unlike FERST, [14] does not use DNNs for
denoising and pre-processing the ECG signals, and also bases
the final authentication decision on more than one biometric.

III. FERST SYSTEM ARCHITECTURE

An ECG-based authentication system is composed of data
acquisition, feature extraction, and pattern matching with
signals present in an existing database. We first recall the
main noises that contaminate the ECG wave. The common
ECG artifact is the baseline wander (BW) which emerges
from breathing or movement. Muscle activities generally cause
muscle artifact (MA). Electrode motion (EM) arises from the
variations in electrode-skin impedance due to skin stretching.

A. System Overview

The general block diagram of the FERST ECG authenti-
cation system is shown in Fig. 2. The preprocessing stage
includes ECG signal filtration and normalization. The nor-
malized ECG wave enters the feature extraction stage to
get prepared for the eventual user classification. Equation 1
represents the mathematical model of a real ECG signal:

XECG(t) = A0 +

N∑
n=1

∑
j∈J

αj(n) cos(ω(n− τj)n) (1)

Where N represents the number of pulses or heartbeats per
timestamp t, j is an event [P,Q,R, S] that is incident at the
time τj , A0 =

∑
j∈J Aj represents ECG waveform from the

line of zero voltage and αj(n) is the Fourier coefficient.



The FERST system consists of a transmitter and a re-
ceiver where the transmitter acquires ECG, pre-equalizes and
transmits it through arm-wrist-palm channel. FERST receiver
processes the acquired signals for authentication.

B. FERST Transmitter

• Galvanic coupling channel: By coupling weak electric
signals at low (sub-MHz) frequencies to human tissue,we
send information through the arm-wrist-palm channel
(around 10 cm). The modulated ECG signal is confined in
the human tissue, and is transmitted through the galvanic
coupling channel to be decoded and demodulated at the
RX. An AWGN noise is added to the ECG signal to
emulate realistic body channel conditions.

• Equalizer: Once the ECG signal is acquired via a wear-
able device, a simple pre-equalizer is applied to the signal
to compensate the estimated human body channel atten-
uation and to avoid noise enhancement issue. We utilize
the equivalent circuit done in [3] to apply a zero forcing
(ZF) pre-equalizer using the known average channel body
dimensions. Then, the ECG signal is transmitted through
human tissues using galvanic coupling for reception.

C. FERST Full Reception Receiver

Our proposed receiver consists of the following three stages:
• ECG denoising: In order to eliminate the effect of the

three major noise types on ECG signal (as mentioned in
Sec. I), an efficient deep learning method is used for opti-
mizing this task. A Denoising Autoencoder (DAE) based
on a fully convolutional network (FCN) method is used
to attain highest accuracy results and least validation loss.
DAE comprises of a back-to-back encoder and decoder. It
aims to reconstruct a clean or filtered signal from its noisy
version. The encoder takes the contaminated input signal
and down samples it to map to a hidden representation
defined by the code layer. Then the decoder uses a
non-linear transformation to map the code layer version
to its new reconstruction output. The rationale behind
using the FCN instead of the traditional convolutional
neural network (CNN) is that the former discards the
fully connected layer to get a simpler network with low
computational complexity. Furthermore the ECG wave
is normalized to compensate the effect of the change in
ECG frequency due to different environmental conditions
(for e.g., after vigorous exercise) and also take into
account the difference in input data range.

• Feature extraction: The normalized ECG wave enters
feature extraction and selection stage where we extract
the P-wave and QRS complex interval. These are the most
discriminative and informative features of the signal for
user authentication. This stage aims to enhance user’s
uniqueness from his/her ECG heartbeat.

• User classification and authentication: An 8-layer CNN
is used to finally identify a user who has permission for
accessing a device. An ‘accept’ or ‘reject’ decision is

Fig. 2. The proposed FERST ECG reception system architecture for user
authentication for a noisy ECG input.

made according to the percentage of ECG similarity with
signals in the registered database.

IV. FERST FRAMEWORK

In this section, we discuss different steps and components
of the proposed FERST framework.

A. Data Acquisition

The first step of any user authentication system is data
acquisition. FERST framework works on the ECG signals
acquired from the wrist of a person. We denote such acquired
ECG signals as XECG(t) collected at timestamp t.
Representation of ECG inputs and outputs: We define
the data matrix of the acquired ECG signal as: XECG(t) ∈
RdECG0 ×dECG1 , where (dECG0 × dECG1 ) represents the dimension of
the ECG signal. We represent the pool of participating people
of P via binary label matrix YECG ∈ {0, 1}|P|.

B. FERST Deep Learning based Denoiser

We propose a denoising autoencoder (DAE) based on deep
learning models to filter the subject’s noisy ECG signal and
prepare it for the classifier. This model utilizes the FCN
described in [18] to generate a clean ECG image output from
a received noisy ECG signal. The network architecture of the
proposed DL denoiser is shown in Fig. 3. We also remove
the pooling layers except for the code layer. The encoder of
the deep learning denoiser comprises of a series of six layers
sharing the same kernel size of 3. Each layer performs three
operations on the noisy ECG input: convolution, batch normal-
ization, and activation. The convolution operation aims to use
the kernel to shift through the pixels in the whole ECG image.
Batch normalization is utilized to increase the training speed
and balance the weights of the neural network during training.
The exponential linear units (ELU) are used for activation
after normalization instead of the common rectified linear
units (ReLU) to further improve the classification accuracy
and lower the overall system computational complexity. The



Fig. 3. Deep learning based denoising autoencoder (DAE).

Fig. 4. CNN for user ECG classification.

number of filters is changed with different feature maps and
a single filter is used to down-sample the ECG image to get a
compressed low dimensional version in the code layer. Note
that the decoder has a symmetrical effect to the encoder with
the deconvolutional layers replacing the convolutional layers.
Denoiser modeling: The input dimension of the original ECG
signal XECG(t) is (dECG0 , dECG1 ), where dECG1 = 144 and dECG2 =
224. We use the original ECG signals for training and testing
of the denoising autoencoder. This generates denoised ECG
signal XDAE

ECG (t) from the original noisy ECG signal XECG(t),
where α is linear activation, and F DAE

θ (.) denotes the denoising
autoencoder.

XDAE
ECG (t) = α(F DAE

θ (XECG(t))) F DAE
θ : RdECG0 ×dECG1 7→ RdECG0 ×dECG1

C. Feature Extraction

The main goal of feature extraction stage is to promote the
uniqueness of each user from his/her segmented heartbeat. In
this study, we extract the informative ECG fiducial features
to express the individual’s heart structure. ECG P wave and
QRS complex are used specifically to perform authentication
thanks to their robustness against noise and user variability.

D. FERST Deep Learning based Classifier

The last stages of the ECG Authentication system are
classification and pattern matching. We first create a database
of denoised ECG segmented images for each person. Every
image includes one QRS complex (one beat) for image com-
parison and user authentication with the key metric being
similarity of the signal features with those contained in the
existing database. The proposed convolutional neural network
(CNN) is composed of a series of 8 layers, all of which share
the same kernel size and ReLU activation function. Each layer
has an independent number of filters for feature extraction,
followed by ReLU activation.The last flattened dense layer is
utilized along with the SoftMax function to determine the final
class probability.
CNN modeling: The denoised ECG signals (XDAE

ECG (t)), gener-
ated from the DAE are used for training and testing the CNN
classifier along with one hot representation, YECG ∈ {0, 1}|P|,

of the ground truth information of the original ECG signals.
The proposed CNN-based classifier predicts the probability of
each class from (2) using the denoised ECG signal XDAE

ECG (t),
where γ is Softmax, and F CNN

θ (.) denotes the classifier CNN.

Ŷ CNN = γ(F CNN
θ (XDAE

ECG (t))) F CNN
θ : RdECG0 ×dECG1 7→ R|P| (2)

As shown in Fig. 5, we train the CNN with XDAE
ECG (t) using

categorical cross-entropy loss for 100 epochs with stochastic
gradient descent optimization. During the testing phase, we
process the denoised ECG signals and feed them to the trained
CNN model. The predicted class index, k̂, from the probability
vector, Ŷ CNN, is determined as (3).

k̂ = argmax
0≤k̂≤len(ICNN)

(Ŷ CNN) (3)

E. Authentication Procedure
The denoised ECG dataset is split into a training and testing

set. Both sets include sequences of size 1 × N , where N is
the total number of samples in the ECG waveform. After the
one-hot encoding, YECG, the Softmax function is used to get
a measured class probability. After completing the training,
the ECG test sequence is injected for evaluation. The user
is authenticated only if the predicted class index k̂ has the
maximum probability in all classes.

V. EXPERIMENTAL EVALUATION

We validate the FERST framework on widely used Phys-
ioNet datasets. We use Keras 2.2.5 with Tensorflow backend
(version 2.8.0) for the implementation. Furthermore, we use
different evaluation metrics that capture the individual perfor-
mance of the denoiser and the classifier blocks.

A. Validation Datasets
To validate the proposed framework, we use publicly avail-

able PhysioNet datasets such as QT database [15], Arrhythmia
database (MIT-BIH) [16] and the Noise Stress Test Database
(NSTDB) [17]. The QT database contains over hundred ECG
recordings of 15-min length, each with end-markers for QRS
from 30 to 50 selected beats. The MIT-BIH NSTDB database
comprises of 12 half-hour ECG recordings digitized at 360
samples per second per channel and 3 recordings that contain
the three main ECG noises: baseline wander, muscle artifact,
and electrode motion. During validation of CNN classifier, the
denoised database is used for pattern matching and authenti-
cation purposes.

B. Evaluation Metrics
To evaluate the denoiser performance, we use maximum

absolute distance (MAD), Percentage root-mean-square differ-
ence (PRD), and cosine similarity metrics. For CNN classifier
evaluation, we are using accuracy for comparison with state-
of-the-art.

C. FERST Transmitter Settings
To estimate body channel attenuation, we use typical arm-

wrist-palm thickness values and average lengths as an input
to the equivalent circuit in [3]. A simple ZF pre-equalizer is
then applied to compensate anticipated channel distortion and
improve authentication accuracy.



Fig. 5. The proposed FERST train/test pipeline.

TABLE I
TRAIN/TEST TIME FOR DIFFERENT ECG DENOISERS. FERST EXHIBITS

45% OF DECREASE IN TEST TIME COMPARED TO LANLD FILTER.

Method/Model Train (GPU) Test (GPU)
h:m:s:ms h:m:s:ms

FIR filter 0 1:56:07.37
IIR filter 0 0:00:35.73

Multibrach LANLD [19] 2:53:34.81 0:00:11.08
FERST-DAE (proposed) 0:58:32.28 0:00:06.76

D. Validation of FERST Denoiser
In order to validate the performance of the denoising

autoencoder, we compare it with the conventional adaptive
filtration techniques commonly used in the state-of-the-art that
have been applied for ECG [6].

For practical assessment, we also focus on the denoiser
efficiency in terms of inference time and filtration accuracy.
The lower the value of the inference time with accurate
filtration, the better and faster the denoising performance.
Additionally, it mitigates the chance for any possible attacks
and eavesdropping with adversarial receivers. During testing,
the ECG signals are contaminated with the common baseline
wander and the white Gaussian noises.
•Comparison with the state-of-the-art: We see from Table I
that the conventional IIR/FIR filters don’t have GPU training
time since they rely on CPU-based Scipy filters during run-
time. Additionally, adaptive filters show the longest test time
that makes the ECG authentication system prone to attacks and
surrounding interference. As shown in Table II, adaptive filters
result in the worst denoising performance, which necessitates
a complex classifier to compensate the final authentication
accuracy. Although multi-branch linear and non-linear dilated
convolution approach described in [19] shows the best de-
noising performance, our proposed technique shows filtration
results very similar to LANLD [19], while at the same time
it outperforms others in terms of both training and testing
(inference) time. This makes the FERST authentication system
better suited to mitigate the risk of possible attacks. The bar
plot in Fig. 6 represents the improvement percentage in test
time of different ECG denoisers relative to adaptive filters.
It can be observed that our DAE approach shows the best
timing performance among others with 82% and 45% decrease
than IIR and LANLD [19] . Fig. 7 represents the ECG signal
comparison between adaptive-filtered and DAE-filtered signals
against a clean signal.

Fig. 6. Comparison between proposed FERST-DAE and state-of-the-art in
terms of test time improvement. We observe 99.9% and 82.8% of improvement
in FERST denoiser than the state-of-the-art FIR and IIR filters.

Fig. 7. Comparison between clean ECG signal, adaptive filtered and DL
filtered ECG signal. FERST DAE filtered ECG (blue) shows the highest
similarity with the original signal (green).

E. Validation of FERST Reception System

To validate the proposed FERST full reception system, we
focus on some of the previous work done on ECG authenti-
cation using adaptive filtration. In this paper, we highlight the
system efficiency of the whole ECG authentication reception
system including the denoising and classification stages. The
target is to achieve an efficient ECG authentication system
with highest accuracy possible.
•Comparison with the state-of-the-art: We compare our
approach with previous work in terms of accuracy percentage.
We assume that the arm-wrist-palm channel here is pre-
equalized with average body dimensions (10 cm), hence the
effect of the IBC channel is compensated. As shown in



TABLE II
COMPARISON OF PERFORMANCE OF PROPOSED FERST DENOISER

(FERST-DAE) WITH THE STATE-OF-THE-ART. MAD AND PRD IS LOWER
THE BETTER, FOR COSINE SIMILARITY, HIGHER THE BETTER.

Method/Model MAD PRD Cosine similarity

FIR filter 0.797 ±0.541 74.129 ±15.548 0.632 ±0.185
IIR filter 0.747 ±0.504 72.660 ±15.650 0.651 ±0.179

Multibrach LANLD [19] 0.372 ±0.256 51.012 ±29.760 0.899 ±0.094
FERST-DAE (proposed) 0.465 ± 0.306 52.327 ± 25.729 0.876 ± 0.118

TABLE III
COMPARISON OF AUTHENTICATION PERFORMANCE OF FULL RECEPTION

FERST WITH THE STATE-OF-THE-ART.
Papers Added noise Denoising Classifier Accuracy (%)

Patro et al. [20] BW LPF SVM/RF 94.9 - 95.3
Diker et al. [21] BW BPF DEA 97.5

Tirado-Martin et al. [22] BW BPF MLP 97.78

FERST (proposed) BW FERST-DAE CNN 99.7
FERST (proposed) BW + AWGN FESRT-DAE CNN 99.6

Table III, FERST outperforms other state-of-the-art methods
by obtaining 99.7% classification accuracy with 1.94% of
improvement. This is because FERST achieves high fidelity
in the filtration and accuracy in the classification stages,
respectively. We then take into account the variations in the
arm-wrist-palm channel dimensions and the corresponding
final system accuracy. Table IV reveals a relatively high system
accuracy even with changed IBC channel dimensions.

TABLE IV
COMPARISON OF THE CLASSIFICATION ACCURACY OF FERST SYSTEM

WHEN DIFFERENT ARM-WRIST-PALM CHANNEL DIMENSIONS ARE USED.

Person Arm-wrist-palm dimensions (cm) Accuracy

Adult Larm = 4.5, Lwrist = 1.5, Lpalm = 9 99.26%
Child Larm = 1, Lwrist = 1.5, Lpalm = 2.5 99.21%

VI. CONCLUSIONS

This paper proposes FERST, a full ECG reception system
that can be used to authenticate users for access to allowed de-
vices. It considers the transmitted ECG signal from a wearable
device through human tissues via galvanic coupled channel.
FERST takes a step towards practical and efficient ECG
classification by showing superior performance compared to
the state-of-the-art in terms of denoising inference time and
classification accuracy. Results show that acquired ECG can be
confined to human body and at the same time can be precisely
authenticated. Future work includes extending this system to
continuously authenticate people in real time.
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