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Abstract—Fast sector-steering in the mmWave band for vehicular mobility scenarios is a challenge because standard-defined
exhaustive search over predefined antenna sectors cannot be assuredly completed within short contact times. This paper proposes
machine learning to speed up sector selection using data from multiple non-RF sensors, such as LiDAR, GPS, and camera images in
the mmWave radios with large codebooks. The contributions in this paper are threefold: First, we propose a multimodal deep learning
architecture that fuses the inputs from these data sources and locally predicts the sectors for best alignment at a vehicle. Second, we
propose FLASH-and-Prune, which combines the knowledge from multiple vehicles by aggregating the local model parameters and
exploits model pruning to optimize the model parameter exchange overhead. Third, we present a pruning strategy that takes into
account the distributed nature of federated learning to adaptively prune or retrieve model weights. We validate the proposed
architecture on a real-world multimodal dataset collected from an autonomous car. We observe that FLASH-and-Prune incurs 29.25%
and 35.89% less overhead in the uplink and downlink, respectively, compared to standard federated learning.

Index Terms—sector selection, mmWave, multimodal non-RF data, federated learning, fusion, pruning.

✦

1 INTRODUCTION

AUtonomous cars are equipped with multiple sensors
that stream high volumes of locally recorded data to

a central cloud, which requires multi-Gbps transmission
rates [1]. This data is needed for safety-critical tasks such
as enhanced situational awareness, driving directives gen-
eration, and pedestrian safety, and may involve further
processing at a mobile edge computing (MEC). Given the
limited bandwidth in the sub-6 GHz band, the millimeter-
wave (mmWave) band is an ideal candidate for vehicle-
to-everything (V2X) communications [2]. As an example,
emerging standards offer up to 2 GHz wide channels within
the untapped spectrum resources at the 57-72 GHz.

To fully unlock the potential of mmWave-band opera-
tion, directional antennas are used to address the severe
attenuation and penetration loss that is characteristic of high
frequency transmissions [3]. Such antenna arrays manipu-
late steering directivity during runtime by changing the gain
and phase of each antenna element [4]. An exhaustive search
of all possible configurations results in a large overhead.
Hence, current standards, such as IEEE 802.11ad and 5G-
NR, prescribe a set of predefined patterns, referred to as
sectors [5], with a deterministic sweeping algorithm that
selects the optimal sector with the strongest mmWave link
between transmitter (Tx) and receiver (Rx). In particular,
these standards propose an exhaustive search of all sectors.
This process is time-consuming as it involves probing each
sector through a bi-directional packet exchange, especially
for mobility scenarios where the optimal sectors may dy-
namically change and large codebooks.

Fig. 1: The schematic of the FLASH-and-Prune framework for
mmWave vehicular networks, where each vehicle is equipped
with GPS, LiDAR and camera sensors. Our design employs
federated learning and model pruning to aggregate the knowl-
edge from all vehicles while minimizing the overhead caused
by model parameter exchange in the control channel.

1.1 Sector Selection using Multimodal Data

Due to the quasi-optical behavior of propagation in the
mmWave band, the sector selection process solves the
problem of locating the strongest signal for line of sight
(LOS) paths, or detecting the strongest reflection for non-
line of sight (NLOS) paths. Thus, the locations of the Tx,
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Rx, and potential obstacles play an important role in the
sector selection process [6], [7]. Interestingly, all of this
information is also embedded in the situational state of
the environment that is acquired through monitoring sensor
devices such as GPS (Global Positioning System), cameras,
and LiDAR (Light Detection and Ranging), which provides
a 3-D mapping of the surroundings [8], [9], [10].

Fig. 1 shows our scenario of interest with multiple mov-
ing vehicles and a roadside base station (BS) attempting
to find the best sector for the downlink transmission from
the BS to the vehicle. We note that multiple sensors are
now included as standard installations both in modern cars
and roadside infrastructures: LiDAR and camera sensors
are already indispensable parts of modern vehicles, used
for driving corrections and collision avoidance [11]; GPS
data is regularly collected and transmitted as part of basic
safety messages in V2X applications [12]. Thus, we propose
a deep learning (DL) framework that uses the non-RF sensor
data to select the best sector to probe without attempting an
exhaustive search. We use a fusion architecture operating on
all these different modalities to predict the optimum sector.
Note that using a multitude of sensor modalities improves
the prediction performance by providing a comprehensive
representation of the environment. Once the best sector is
determined, the BS starts the multi-Gbps downlink trans-
mission to the vehicle, instantaneously.

1.2 Federated Learning on Multiple Modalities
DL architectures benefit from the availability of large
amounts of data. When data is collected by an individual
vehicle for local training, the accuracy of the model, a Deep
Neural Network (DNN), may be impacted due to a limited
training dataset that may not capture the diversity of other
practical deployment scenarios [13]. Moreover, the vehicles
must have the latest trained models available on-board
when entering the network, which is difficult to accomplish
without a framework for model sharing.

A federated learning (FL) architecture is one candidate
solution to mitigate these issues. In this form of learning,
local network models are collected from the vehicles, ag-
gregated to a shared global model at the MEC, and then
disseminated back to the vehicles to be used in the next
iteration. Thus, vehicles collaboratively participate in learn-
ing the shared prediction model while keeping the raw
training data in the vehicles instead of requiring the data
to be uploaded and stored on a central server. This process
is important for high-speed vehicular scenarios, as locally
trained models can be updated on hidden obstacles and the
unseen environment previously detected by other vehicles.
Such a distributed FL architecture also allows the most
updated models to be available to new vehicles that are
entering the network environment. We assume that each
vehicle has the necessary computation power to train and
infer local machine learning (ML) models, and refer to such
vehicles as semi-autonomous edge nodes, distinguishing them
from the MEC. Moreover, we use a control channel (home
WiFi or cellular network) to relay the model updates.

1.3 Federated Learning with Model Pruning
DL architectures are typically over-parameterized with
much larger fitting capacities than required [14]. These un-

necessary weights are not desirable for resource-constrained
edge devices, where the inference is expected to be done in
real-time. On the other hand, although federated learning
drastically decreases the overhead by eliminating sharing
of local training data, it still requires exchanging the model
parameters in both uplink and downlink, periodically. As a
result, having more model parameters translates to consum-
ing more communication resources.

To further reduce the overhead of exchanging the model
parameters, we propose FLASH-and-Prune, which applies
model pruning after aggregation to generate a pruned global
model. In general, pruning mechanisms remove unneces-
sary weights in the model to increase inference speed and
decrease model storage size. However, they are typically
applied to the ultimate trained models. In particular, prun-
ing in federated learning suffers from significant challenges
due to the distributed nature of this learning framework.
The first challenge is to ensure the same accuracy as the
original, i.e., unpruned model, while removing weights.
Second, the pruning method must adapt to the knowledge
learnt over federated iterations and dynamically adjust the
model. The last challenge is addressing the possibility of
decreasing the convergence rate that arises from diminished
learning capacity caused by removing weights. Eventually,
this low convergence rate increases the total number of
federated iterations and might result in a much higher
accumulated overhead. To account for the above challenges,
we adopt a pruning algorithm tailored to the federated
learning framework to optimize the parameter exchange
overhead and communication efficiency, while granting the
same prediction accuracy.

1.4 Our Contributions
Our main contributions are as follows:

• We design robust DL fusion architectures that pre-
dict the best sector using non-RF sensor data from
devices such as GPS, camera, and LiDAR, wherein
the processing steps are contained within the semi-
autonomous edges (vehicles).

• We propose FLASH-and-Prune, a multimodal FL
framework, where 1) the local DL model weights are
globally optimized by aggregating them at the MEC
instead of submitting the local sensor data, and 2)
a model pruning algorithm is employed to further
reduce the overhead in both uplink and downlink.
Our results demonstrate that FLASH-and-Prune re-
tains the same accuracy (∼77%) as a standard FL
framework, without model pruning, while reducing
the communication overhead by 29.25% and 35.89%
in the uplink and downlink, respectively.

• We present a pruning strategy that is tailored to the
distributed nature of the FL framework. FLASH-and-
Prune takes into account loss reduction over feder-
ated iteration and relative model size to strategically
select the weights to be pruned. Moreover, it can
retrieve the pruned weights to maintain the accuracy
as the knowledge unfolds in each iteration, if re-
quired. We compare the performance of FLASH-and-
Prune against two state-of-the-art pruning strategies
(iterative pruning [15] and SNIP [16]) and note up to
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a 30.94% improvement in accuracy; thus, implying
the importance of our proposed pruning strategy.

• We rigorously analyze the end-to-end latency of the
FLASH-and-Prune framework and compare it with
both IEEE 802.11ad and 5G-NR standards. While
FLASH-and-Prune might not outperform the exhaus-
tive search based methods in small codebooks, we
make a case for using FLASH-and-Prune with large
mmWave codebooks.

2 RELATED WORKS

2.1 Sector Selection via Auxiliary Information
Steinmetzer et al. [5] propose a compressive path tracking
algorithm where the measurements on a random subset of
sectors are used to estimate the optimum sector. In [17],
Palacios et al. leverage the coarse received signal strength
to extract full channel state information (CSI) and account
for the overhead imposed by sector training. Saha et al. [18]
present a comprehensive analysis of practical measurements
on two commercial off-the-shelf (COTS) devices and explore
the trade-off between training overhead and sector selection
accuracy. Sur et al. [19] propose to exploit the CSI at sub-
6 GHz band to infer the optimum sector at mmWave band,
though it does not support simultaneous beamforming at
both the Tx and Rx.

With regard to ML-based approaches, Va et al. [20] use
the location of the target Rx as the input for their sector
inference algorithm, while Alrabeiah et al. [21] combine both
camera images and a recorded sequence of previous sectors
to model mmWave communication. Klautau et al. [22] and
Dias et al. [23] propose to reduce the sector search space
using GPS and LiDAR sensors in vehicular settings. On the
other hand, Muns et al. [24] use GPS and camera images
to speed up the sector selection. Nevertheless, none of this
literature considers real-world experiments on live sensor
data. Moreover, all of the above techniques focus on a
centralized system with the challenge of high bandwidth
data transfer through a control channel, which is susceptible
to saturation and malicious degradation.

2.2 Approaches for Efficient Federated Learning
Although FL provides frameworks to overcome the security
risks with a reduced overhead [13], recent works attempt
to reduce such overheads further [25]. There are efforts on
decreasing the FL overhead by optimizing parameters such
as the number of participating clients or the number of
local iterations [26], [27]. Yang et al. [28] target to solve the
learning and communication problem jointly by formulating
an optimization problem where the goal is to minimize the
total energy consumption of the system under a latency
constraint. An iterative algorithm is then proposed to de-
rive closed-form solutions for computation and transmis-
sion resources, at each federated iteration. Moreover, with
respect to pruning methods, Xu et al. [29] employ a one
shot pruning at iteration 0 followed by a selective client
selection to reduce the overhead. Finally, Jiang et al. propose
PruneFL [30] that adapts the model size during FL iterations
to reduce both communication and computation overhead
and minimize the overall training time. To summarize, these

prior works have not investigated the effect of pruning or
FL in a multimodal sensing environment. In this paper, the
proposed architecture both handles challenges and validates
over a live dataset. We also thoroughly study the overhead
considering the growing adoption of the 5G standard.

3 SYSTEM ARCHITECTURE

In this section, we first review classical sector initialization
and formally declare the sector selection problem. We then
introduce the system architecture in FLASH-and-Prune that
uses non-RF data from multiple sensors for sector selection.
We summarize the notations in Table 1.

3.1 Traditional Sector Initialization
Both the IEEE 802.11ad and 5G-NR standards exploit an
exhaustive search to identify the best sector for communi-
cation in mmWave bands. In the IEEE 802.11ad standard,
two end-nodes, referred to as the initiator and responder,
jointly explore different sectors in order to detect the best
one. First, the initiator transmits a probe frame from each
sector, while the responder listens to these frames in a
quasi-omnidirectional antenna setting. This process is then
repeated with the initiator and responder roles reversed [31].
The 5G-NR standard also employs a similar mechanism
where the transmitter and receiver sequentially explore dif-
ferent sectors through the so called synchronization signal
blocks (SSB). The maximum of 64 SSB can be grouped into
a SS burst that allows up to 64 sectors to be swept in one
SS burst. The 5G-NR standard defines that the SS burst
duration be fixed to 5 ms, which is transmitted with a
periodicity of 20 ms [32].

3.2 Sector Selection Problem Statement
Consider a Tx and Rx pair equipped with phased
antenna arrays and predefined codebooks CTx =
{t1, . . . , tM}, CRx = {r1, . . . , rN } consisting of M and
N elements, respectively. A total of M+N probe frames
or SSBs must be transmitted and the sector that returns the
maximum received signal strength is then selected as the
optimum sector. For example, the optimum sector at Tx is
derived by:

t∗ = argmax
1≤m≤M

ytm , (1)

with ytm being the observed received signal strength at the
Rx side when the transmitter is configured at sector tm.

3.3 FLASH-and-Prune
From Sec. 3.2, we note that the training time scales linearly
with the number of sectors in the codebook and this can
not be timely completed for a vehicular network with a
high number of sectors (a large codebook). We propose
a learning framework to exploit multiple sensor measure-
ments available at the vehicle to locally infer the best sector
t∗ in one shot and then immediately start the transmission.
We consider beamforming at the BS and omni-directional
transmission at the vehicle. Our FLASH-and-Prune frame-
work consists of the following steps during training and
inference (see Fig. 2).
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3.3.1 Asynchronous Training Phase:

The vehicles and MEC reiterate the following steps until
convergence to obtain the final model.

• Data Acquisition: The vehicles record multimodal
sensor data, including GPS, camera, and LiDAR.
Moreover, the vehicles record the RF ground-truth
by performing an exhaustive search (see Sec. 3.2)
to obtain the optimum sector. For LiDAR prepro-
cessing, we employ a quantization technique that
incorporates the BS and vehicle position to mark the
transmitter and target Rx in point clouds and the
remaining detected objects as obstacles; see Sec. 4.1.

• Local Training at the Semi-autonomous Edge:
Given preprocessed multimodal sensor data and RF
ground-truth, we design a novel fusion architecture
that is trained over local data (i.e., the data available
at a given vehicle or each semi-autonomous edge);
refer to Sec. 4.2.

• Federated Aggregation at MEC: The vehicles share
the locally trained models with MEC in the up-
link using the control channel. In FLASH-and-Prune,
we use a buffered asynchronous model aggregation
scheme [33], [34]. Thus, the model updates are sent
asynchronously over time, when the vehicles are
stationary (for example at the end of the trips where
they could simply use their home WiFi). These model
updates are stored in a buffer and the MEC performs
aggregation once it receives updates from a few
vehicles (once a day for example). Given the local
model updates from participating vehicles, we pro-
pose a multimodal FL-based architecture to aggre-
gate the local model updates and attain a global model;
see Sec. 4.3. The buffered asynchronous aggregation
strategy ensures that sharing the model weights in
FLASH-and-Prune does not affect the performance
of the other regular users.

• Pruning for Multimodal Federated Learning: We
strategically prune the least significant weights from
the global model to generate the pruned global model.
The MEC then reports back the pruned global model
in the downlink using the control channel, which is
used by vehicles in the next federated iteration; refer
to Sec. 4.4. Similar to the previous step, the global
model update is shared at the beginning of each trip
from the MEC to the vehicles using the home WiFi.

3.3.2 Inference Phase:

At the end of the training phase, the vehicles are updated
with the final model for sector prediction. Thus, in the infer-
ence phase, the vehicles use the sensor data and run a single
forward pass to predict the optimum sector. As a result,
the inference happens locally at the vehicles. Our system
includes sector selection at the BS. Thus, after inference,
the predicted sector is shared with the BS using the control
channel as the selected sector at the BS. Available interfaces
such as Open Radio Access Network (O-RAN) [35] systems
enable the BS to immediately plug in the inferred sector and
start transmission in the mmWave band.

Notation Description
CTx Codebook of transmitter with M sectors
CRx Codebook of receiver with N sectors
ytm Received signal strength for tm ∈ CTx

t∗ Optimum sector at Tx
X{C,I,L},ν Local samples of GPS, image and LiDAR

at vehicle ν

Nt, N
′
t Number of train and test samples

fWν
{C,I,L,FN}

Unimodal and integration networks for ve-
hicle ν

Vi Number of participating vehicles at iteration
i

N Number of federated iterations
W ν

i Local model weights for vehicle ν at iteration
i

Wi Global model weights at iteration i
M Model pruning mask
L(W ) Federate loss for weights W

W
′
i Pruned global model weights at iteration i

gν
W

′
i−1

Gradient at vehicle ν after local training

when initialized by W
′
i−1

P Parameter space of the model
Mp, Mt Number of pruned and unpruned model pa-

rameters
C(R) Relative model size

TABLE 1: Notation Summary

4 FLASH-AND-PRUNE FRAMEWORK

In this section, we describe the key components of proposed
FLASH-and-Prune framework.

4.1 Data Acquisition

To process the LiDAR data, we first construct a quantized
view of the spatial extent of the surroundings. This data
structure resembles a stack of cuboid regions placed ad-
jacent to each other. The LiDAR point clouds reside in
the cuboid regions according to their relative distances as
measured from a shared origin as in [23]. We mark the
cuboids that contain blocking obstacles using label 1. Since
we know the coordinates of the Tx and Rx, we label the
cuboids containing them as -1 and -2, respectively. The
LiDAR preprocessing happens at the vehicle. Thus, the BS
must share its location in downlink with the vehicles. This
can be done when the vehicles check in with the BS.

4.2 Local Training at Semi-autonomous Edge

Consider a number of vehicles V that are in the coverage
range of the BS and are trying to establish a link with
the latter. Each vehicle is equipped with GPS, camera,
and LiDAR sensors and collects the local dataset Dν =
{XC,ν , XI,ν , XL,ν}Vν=1. We denote the data matrices for GPS,
image, and LiDAR at the vehicle ν as XC,ν ∈ RNt×2, XI,ν ∈
RNt×dI0×dI1 , XL,ν ∈ RNt×dL0×dL1×dL2 , respectively, where Nt

is the number of training samples. Furthermore, (dI0 × dI1)
and (dL0 × dL1 × dL2) give the dimensionality of image and
preprocessed LiDAR data, while the GPS has 2 elements.
The label matrix Yν ∈ {0, 1}Nt×M represents the one-hot
encoding of M sectors, where the optimum sector is set
to 1, and rest are set to 0 as per Eq. (1). Each vehicle
uses its local dataset Dν to initiate a supervised learning
task. In the simplest case, the vehicles uses a DNN-based
unimodal network to extract discriminative features from
the input and infer the optimum sector. Each unimodal
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Fig. 2: Operating steps of the proposed FLASH-and-Prune architecture consisting of: (a) data acquisition, (b) local training, (c)
aggregation, (d) pruning, and (e) reporting. The time window for each step depends on the application requirements.

network makes a probabilistic prediction of the best sector
through softmax layer σ as:

uν
C = σ(fW ν

C
(XC,ν)), fW ν

C
: R2 7→ RM (2a)

uν
I = σ(fW ν

I
(XI,ν)), fW ν

I
: RdI0×dI1 7→ RM (2b)

uν
L = σ(fW ν

L
(XL,ν)), fW ν

L
: RdL0×dL1×dL2 7→ RM (2c)

where fW ν
C
(.), fW ν

I
(.), fW ν

L
(.) denotes the unimodal net-

work for each vehicle ν parameterized by weights W ν
C , W ν

I ,
W ν

L . On the other hand, using the data from all sensing
modalities can boost the prediction performance. Hence, we
design a fusion network that consists of four DNNs, three
unimodal networks (Eq. (2)), and an integration network
fW ν

IN
(.) parameterized by W ν

IN. Formally,

fW ν
FN
(.) = fW ν

IN
(fW ν

C
(.), fW ν

I
(.), fW ν

L
(.)), (3a)

uν
FN = fW ν

FN
(XC,ν , XI,ν , XL,ν), (3b)

where fW ν
FN
(.) is the fusion model parameterized by W ν

FN.
The unimodal networks and integration network can be
fused together following different architectural designs,
such as concatenation at the penultimate layer. Finally, the
prediction happens at the output of fusion network through
the computation of s = σ(uν

FN). The sector that has the
highest score is chosen as the predicted sector.

4.3 Multimodal Federated Aggregation

In the local training step, each vehicle ν performs training
on the local multimodal data for a few epochs using the
fusion network described in Sec. 4.2 and attains the local
weights as W ν

FN. For simplicity, in the rest of the paper, we
omit the subscript FN and denote the local weights at vehicle
ν at federated iteration i as W ν

i . If a vehicle decides to
participate, it sends the local model weights for the overall
fusion network (encapsulating four branches, GPS, image,
LiDAR, and integration) to the MEC, using the control chan-
nel. Moreover, since the training phase is asynchronous, the
BS waits for receiving a few model updates and stores them
in buffers before proceeding to the next step. In other words,
the training happens over the course of time not the sector
coherence time. At the aggregation step of ith iteration, the

MEC uses received local weights {W ν
i }

Vi
ν=1 from Vi vehicles

and employs an averaging scheme [13] to aggregate the local
model weights and calculates the global model weights Wi.
Formally,

Wi =
1

Vi

Vi∑
ν=1

W ν
i , (4)

Control Channel Overhead in standard FL. In a standard
FL architecture, the entire global model weights Wi are
transmitted back to all vehicles and used as the initialization
weights in the next federated iteration. In such case, the
global optimization of the local models requires the vehi-
cles to periodically exchange the local model parameters
{W ν

i }
Vi
ν=1 in the uplink and the MEC to report back the

global model Wi to all vehicles in the downlink, in each fed-
erated iteration. These parameter exchanges impose over-
head of õSul and õSdl variables in the uplink and downlink
control channels as:

õSul =
N∑
i=1

Vi × (|W ν
i |), õSdl = N × (|W ν

i |), (5)

where N is the total number of federated iterations. Note
that in a standard federated learning architecture, the local
and global models have the same number of parameters that
is constant over iterations, |Wi| = |W ν

i | = |W ν
C | + |W ν

I | +
|W ν

L | + |W ν
IN| ∀i ∈ {1, · · · , N}. Given the depth of the

DNNs, sharing all the locally trained weights for the three
different unimodal and one integration models to the MEC
occupies approximately 26.54 MB, which also scales with the
number of participating vehicles and iterations. Thus, we
propose a model pruning algorithm to reduce the number
of exchanged parameters in both uplink and downlink.

4.4 Pruning for Multimodal Federated Learning:

Model pruning techniques allow real-time inference for
resource-constrained devices [36], [37]. However, in dis-
tributed learning architectures such as federated learning,
they may reduce the number of model parameters to be ex-
changed and improve the communication efficiency. In this
section, we first describe the dissemination of our proposed
pruning module over the federated learning framework in
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Fig. 3: Layout of FLASH-and-Prune Sec. 4.4 at training phase,
where the model pruning module identifies the negligible
weights throughout the fusion architecture.

FLASH-and-Prune, and then describe our pruning strategy.
At the end, we discuss important design parameters and
describe the FLASH-and-Prune framework end-to-end.

4.4.1 Proposed Pruning Approach

In general, a pruning algorithm identifies a sub-network of
the original model, where a portion of the model weights
are selected to be pruned with the goal of compressing the
model, while maintaining the accuracy. The pruned model is
obtained by applying a mask on the original model weights,
with elements Mi = {0, 1} where the 0 and 1 indices refer
to the pruned and remained weights, respectively.
Types of Pruning. The model pruning strategies are either
unstructured, in which individual weights are pruned, or
structured, in which an entire neuron and its weights are
pruned together. The structured pruning severely limits the
maximum achievable sparsity in comparison with unstruc-
tured pruning. Moreover, it does not conform to the lottery
ticket hypothesis [38] that implies: if randomly-initialized,
the winning ticket sub-network reaches a test accuracy com-
parable to the original network in a similar number of
training iterations. In this paper, we opt for unstructured
pruning since it allows for maximum model compression.
Approach. In FLASH-and-Prune, we improve the multi-
modal FL framework by including the pruning over the
aggregated global model, which is a multimodal architec-
ture consisting of all four branches (GPS, LiDAR, image,
and integration); see Fig. 3. Overall, the pruning module
is disseminated over the multimodal federated learning
framework in these following stages:

1) Local Models to MEC: All participating vehicles share
their local models {W ν

i }
Vi
ν=1 with the MEC.

2) Federated Aggregation: Given the local model weights
from all vehicles at iteration i, the MEC aggregates
weights using Eq. (4) to generate the global weights
at ith iteration, Wi.

3) Pruning the Global Model: The global weights are
then passed through the pruning algorithm and
generate the pruned global model weights W

′

i

by applying the pruning mask M . Formally, the
pruned model weights are derived by calculating
the element-wise product with the pruning mask as:
W

′

i = M ⊙Wi.
4) Pruned Global Model to Vehicles: The pruned model

weights are then transmitted back to all vehicles and
used as initialization for the next federated iteration.

4.4.2 Model Pruning Strategy
In FLASH-and-Prune, we choose a pruning strategy that
enables us to adaptively shrink or expand the model. In
the case of centralized learning, the model is pruned after
training. However, in federated learning architecture, the
model is still being updated over the federated iterations.
Thus, the importance of weights can change drastically from
one iteration to the other. Thus, having an adaptive method
that can prune and also return back the weights ensures that
the pruning method utilizes the learnt knowledge over fed-
erated iterations. To properly construct a pruned model in
FLASH-and-Prune, we define two metrics: (a) loss reduction
over federated iteration and (b) relative model size.
(a) Loss Reduction over Federated Iterations: The loss
reduction metric captures the change in the global loss while
going from one iteration to the next, following the adaptive
pruning scheme discussed by Jiang et al. [30].

Theorem 1. If L(W ′

i−1) ≈ L(Wi−1), the loss reduction over
federated iterations, L(Wi−1) − L(Wi), relates to the sum of
squared aggregated gradients over all vehicles after local updates,∑

r∈R g2
W

′
i−1

(r), when initialized with the pruned model from the
previous iteration.

Proof. Recall that FLASH-and-Prune runs over four steps
as described in Sec. 4.4.1, where each iteration starts with
running the local training at vehicles and ends with report-
ing back the pruned global model to vehicles. As a result,
at the beginning of each federated iteration, the vehicles
receive the latest pruned global model from the MEC, i.e.,
W

′

i−1. The vehicles then initialize their local models with
the pruned global model (W

′

i−1) from previous iteration and
perform local training using their local datasets Dν . In this
case, the global model in the current iteration i, after local
training, reporting, and aggregation steps, is described as:

Wi = W
′

i−1 − ηgW ′
i−1

⊙MW
′
i−1

, (6)

where η and MW
′
i−1

denote the learning rate and mask of
the pruned global model and ⊙ is the element-wise product.
In Eq. (6), gW ′

i−1
is the aggregated local gradients over all

vehicles, collected after local training step:

gW ′
i−1

=
1

V

V∑
ν=1

gν
W

′
i−1

. (7)

In a federated learning architecture, the federated loss is
denoted as the average of losses (e.g., cross-entropy, mean
square error, etc.) over all clients. Formally,

L(W ) =
1

V

V∑
ν=1

Lv(W ), (8)

where Lv(W ) denotes the local loss at vehicle ν for weights
W . We estimate the global loss in the current iteration L(Wi)
using Taylor expansion as:

L(Wi) = L(W
′

i−1) + ⟨∇L(W
′

i−1),Wi −W
′

i−1⟩ (9a)

=L(W
′

i−1)− η⟨∇L(W
′

i−1), gW ′
i−1

⊙MW
′
i−1

⟩ (9b)

≈L(W
′

i−1)− η||gW ′
i−1

⊙MW
′
i−1

||2 (9c)
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where ||.|| denotes the norm operation on matrices. In the
above equation, Eq. (9b) is derived by replacing the second
term in the inner product using Eq. (6) and Eq. (9c) is
derived by approximating the stochastic gradient with its
expectation ∇L(W ′

i−1) ≈ gW ′
i−1

. As a result, the reduction
in loss from the latest pruned model to the aggregated
model weights in the current iteration is approximated as:

L(W
′

i−1)− L(Wi) = η||gW ′
i−1

⊙MW
′
i−1

||2, (10a)

∝ ||gW ′
i−1

⊙MW
′
i−1

||2, (10b)

=
∑
r∈R

g2
W

′
i−1

(r), (10c)

where R denotes the index set of remaining components in
the model, i.e., the components that are not pruned (|R| =
Mp). Interestingly, we observe the difference between the
federated loss of the pruned model from previous iteration
W

′

i−1 and current aggregated model Wi relates to the sum
of squared aggregated gradients over all vehicles after local
updates, when initialized with the pruned model from the
previous iteration.

However, our goal is to estimate the loss reduction from
one federated iteration to the next, i.e., L(Wi−1) − L(Wi).
We estimate the federated loss at the iteration i − 1, by the
loss of pruned model as there is no straight way to compute
it. However, to ensure that the approximation is valid, we
impose a constraint on our proposed optimization problem.

L(W
′

i−1) ≈ L(Wi−1). (11)

Hence, from Eq. 10c and Eq. 11, we prove the Theorem. 1,
by concluding:

L(W
′

i−1)− L(Wi) ∝
∑
r∈R

g2
W

′
i−1

(r). (12)

(b) Relative Model Size: This parameter denotes the rel-
ative size of pruned model with respect to the original
unpruned model. With Mp and Mt being the number of
pruned model and original unpruned model parameters,
the relative model size is defined as below:

C(R) =
∑
r∈R

1

Mt
=

Mp

Mt
, Mp = |R|. (13)

Intuitively, the relative model size provides a realization
about the required wireless resources to share the model
parameters.
Optimization. Note that both the above metrics are a
function of the remaining neural network components R.
Intuitively, the loss reduction over federated iteration and
relative model size establishes a trade-off between retaining
the accuracy and the required resources for exchanging
the model parameters, respectively. Thus, we define the
parameter ∆ as the ratio of two metrics:

∆(R) =
L(Wi−1)− L(Wi)

C(R)
∝

∑
r∈R g2

W
′
i−1

(r)

C(R)
. (14)

As a result, identifying the optimum sub-network translates
to maximizing the ∆ over the entire network parameter
space P . However, to account for the assumption in Eq. (11),
we impose a constraint on the optimization problem and

Algorithm 1: FLASH-and-Prune

Input: Pruned model from previous iteration W
′
i−1

Output: Pruned global model in current iteration W
′
i

At Vehicles:
Initialize local models with W

′
i−1

Local training for ξ epochs
Collect updated local model weights {W ν

i }Vi
ν=1 and

local gradients {gv
W

′
i−1

}Vν=1 for all vehicles

At MEC:
Calculate the aggregated global model Wi (Eq. (4))
Calculate the aggregated gradient g

W
′
i−1

(Eq. (7))
Construct E using Eq. (16)
S ← ∅

δ ← arg sort
j∈E

g2
W

′
i−1

(j)

C(j)

for j ∈ δ do

if
g2
W

′
i−1

(j)

C(j)
≥ ∆(S ∪ E) then

S ← S ∪ j
else

break
end

end
W

′
i = S ∪ E

MEC distributes W
′
i such W ν

i = W
′
i ∀ν ∈ V

prevent removing the weights that are essential for main-
taining the accuracy of pruned model as:

max ∆(S ∪ E), (15a)

s.t. S ⊆ E. (15b)

In particular, we partition the parameter space P into
two disjoint subsets E and E, where E ∪ E = P . The set
E denotes the essential weights that cannot be pruned to
satisfy the assumption in Eq. (11). This includes weights
whose magnitudes are larger than a certain threshold:

E = thresh(Wi) =

{
1 if |Wi| > λ

0 otherwise
(16)

The set E refers to the weights that can be potentially
removed. From this set, we select a subset S which cor-
responds to the weights that are chosen to be kept in the
network. To construct S, we first calculate ∆ for all the
weights in the set E and sort the values in non-increasing
order. We then gradually collect the weights from largest
and add them to the set S. We stop when adding an indi-
vidual weight does not increase the overall ∆. The selected
weights in the current federated iteration are the union
of the set S and E elements. Our sub-network selection
algorithm is summarized in Alg. 1. Note that the set S can
dynamically grow or shrink for each operation. This feature
grants the flexibility to adapt the model size according to the
knowledge learnt throughout the federated iterations. As
denoted in [30], an adaptive pruning algorithm converges
as long as the number of nonzero prunable parameters in E
decreases over the iterations.

4.4.3 Initial Pruning and Adjustment Iterations
The optimization problem in Eq. (15) provides the optimum
sub-network that learns the fastest. In order to obtain the so-
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lution, the gradients on the full parameter space are required
to compute the loss reduction over federated iterations, see
Eq. (9). As a result, the clients must transmit the gradients
along with model weights. It is also crucial to determine when
and how these gradients along with model weights should
be exchanged back and forth between the MEC and vehicles.
We present a three-phase modular design that helps to
regulate this exchange in the FLASH-and-Prune framework.
These three phases are: (a) initial pruning at a selected client,
(b) non-adjustment iterations, and (c) adjustment iterations.

(a) Initial Pruning at Selected Client: The model pruning
gradually decreases the number of parameters by removing
the unnecessary weights. However, to further optimize the
number of parameters to be transmitted, we propose to
employ an extra pruning step at a selected client before
starting the federated iterations. The initial pruning steps
follow the same structure as pruning strategy described in
Sec. 4.4.2. This enables the federated learning to start with
a smaller model at the beginning and decrease the channel
occupation. Recall that the adaptive feature of the proposed
pruning strategy in Sec. 4.4.2 enables handling the initial
pruning step and retrieving weights, if required.
(b) Adjustment Iterations: We note that the pruning step
does not need to be performed in each federated iteration as
the global model requires some iterations to be significantly
updated, and it also unnecessarily increases the overhead.
We design the system such that the pruning step happens
once in multiple FL iterations, a parameter that we refer
to as adjustment frequency (AF). In an adjustment iteration,
the MEC receives the local models and gradients from all
clients. After federated aggregation, the MEC solves Eq. (15)
to identify the optimum pruned model.
(c) Non-adjustment Iterations: The process of steps in a
non-adjustment iteration follows the same structure as a
standard FL architecture and includes three stages of local
training, aggregation, and reporting (see Sec. 4.3). Note that
in a non-adjustment iteration vehicles only share the model
parameters to the MEC.

4.4.4 End-to-End FLASH-and-Prune Framework

The overall FLASH-and-Prune architecture is depicted in
Fig. 4 and runs as follows. First, the MEC selects a client
to perform the initial pruning step using its local data. The
selected vehicle then shares the pruned model with the MEC
that is used for initializing the global model. By starting
the federated iterations, the vehicles use the local data to
train the models and collect the gradients over the entire
parameter space. In an adjustment iteration, the vehicles
send the local model weights and gradients to the MEC.
The MEC then aggregates the local models using Eq. (4) and
identifies the optimum sub-network by solving Eq. (15). The
pruned global model is then sent back to all vehicles. If the
system is not in an adjustment iteration, the system follows
the same structure as a standard FL architecture.
Control Channel Overhead. It is to be noted that the
FLASH-and-Prune impacts both the uplink and downlink
channel overhead following its pruning layout. Formally,

Fig. 4: Three phases of FLASH-and-Prune framework. The
initial pruning happens at a selected client only once before
starting the federated iterations. The pruning at MEC frequency
is set according to adjustment frequency.

the overhead in uplink and downlink is characterized as:

õPul =
N∑
i=1

Vi × [(1− 1i mod AF ̸=0)× |Mi−1| (17a)

+ 1i mod AF=0 × (Mt + |Mi−1|)]

õPdl =
N∑
i=1

|Mi|, (17b)

where ϕ is a Boolean predicate, with 1ϕ to be 1 if ϕ is
true, and 0 otherwise, and denotes being in an adjustment
iteration. Note that the first term in Eq. (17a) accounts for
the overhead in the case of non-adjustment iterations where
only the local weights (with the number of parameters
equal to the pruned model from the previous iteration)
are sent in the uplink. The latter in Eq. (17a) corresponds
to an adjustment iteration where the local model weights
and gradient over the entire parameter space (for all Mt

parameters of the original unpruned model) are sent in the
uplink. At the online inference phase, the vehicles use the
optimal global model and run the inference locally online.

5 EXPERIMENTS

In this section, we present an experimental multimodal
dataset (named ‘FLASH Dataset’) that is published in [39] for
community use. We then describe our competing methods,
implementation details, and performance metrics.

5.1 Dataset

The FLASH dataset is collected in the city of Boston, on a
two-way paved alleyway between two high-rise buildings.
A 2017 Lincoln MKZ Hybrid autonomous car is equipped
with on-board GPS, GoPro HERO4 camera, and Velodyne
VLP-16 LiDAR. Furthermore, two TP-Link Talon AD7200
tri-band routers (operating at 60 GHz) with 34 pre-defined
codebooks are located at the road-side BS and top of the
vehicle. The RF ground-truth includes the RSSI (received
signal strength indicator) observed at the Rx which has
omni-directional steering, while the BS is configured at each
of the 34 sectors. The dataset includes the synchronized
multimodal data as well as the RF ground-truth, the RSSI for
each of the 34 sectors or classes. The FLASH dataset spans
a variety of LOS and NLOS scenarios with pedestrians and
static or moving cars as obstacles.
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5.2 Competing Methods

We benchmark the performance of FLASH-and-Prune
framework against competing methods below.
• Local Learning: The vehicles use their own local training
data to optimize the local models, independently. In this
method, there is no data sharing; vehicles operate as disjoint
independent clients and the training data is confined to their
own local data only.
• Centralized Learning: The vehicles participate in a data
sharing scheme to converge to a generalized model. As a
result, all vehicles transmit their own local training data that
is centrally collected at the MEC. The latter trains a model
on the accumulated training data. This scheme requires a
control channel with the required bandwidth for sharing
such large amounts of data.
• Standard FL Architecture: The vehicles use only their local
training data to optimize their local model. Each vehicle
participates in a global model aggregation iteration, where
only the local models are sent to the MEC.
• FLASH: An orchestrator designates a branch to be ag-
gregated at the MEC, and only the weights of the updated
branch are transmitted back to the vehicles [40]. Thus, the
knowledge learned by other modality is entirely discarded.
• FLASH-and-Prune: An extra pruning module is employed
along with standard FL to further optimize the model ex-
change overhead. This includes initial pruning at a selected
client before starting the federated iteration and further
pruning at adjustment iterations at the MEC.

5.3 Implementation Details

We use the entire FLASH dataset with 4 different categories
and 21 scenarios (inclusive of LOS and NLOS). Each sce-
nario consists of 10 episodes or trials of data collection
and can be interpreted as having different vehicles. In this
way, we have 10 different vehicles, each having a total
of 21 different scenarios as their local dataset. During the
collection of the FLASH dataset, different episodes of the
same scenario are designed to be different, making each
local dataset (per vehicle) unique. To replicate real-world
situations, we create local training and validation datasets for
each vehicle by randomly separating 80% and 10% of the
data in each episode. However, to expose the trained models
to the unseen environment detected by other vehicles, we
create a global test dataset, where we combine the leftover
10% of each vehicle’s local data. The overall dataset contains
25456 and 3180 local training and validation and 3287 global
test samples, respectively. We set the LiDAR range to be
within ±80 m. We quantize each axis to a (20, 20, 20)
block array which corresponds to steps of (2.79, 4.65, 0.5).
Moreover, we resize the high quality raw images to (160, 90,
3). For all models (see Fig. 5), we exploit categorical cross-
entropy loss for training with a batch size of 32. For local
and centralized learning, we use 150 training epochs; for FL-
based methods, we use 20 local training epochs. Moreover,
we use early stopping based on the validation accuracy to
avoid overfitting and report the test accuracy of the best
model for all competing methods. We use Adam [41] as our
optimizer with β = (0.9, 0.999) and initialize the learning
rate to 0.0001. For pruning experiments, we set the λ in

(a) (b) (c) (d)

Fig. 5: Proposed network architectures for (a) GPS, (b) image,
(c) LiDAR, and (d) integration networks. The integration model
is designed by concatenating the highlighted layers from each
unimodal model. We set the dimensionality of high level fea-
tures according to the importance of each sensor modality.
While the GPS data does not include significant features that
could be extracted, we design our fusion network to map it to
high level features with dimensionality of 32. By increasing the
dimensionality of GPS data representation, we ensure that the
significance of this sensor is not glossed over compared to the
other sensor modalities.

Eq. (16) such that the thresholding function identified top
30% weights with the highest absolute value.

5.4 Performance Metrics
The errors in prediction, i.e., selecting a sub-optimal sector,
can affect the performance. Thus, we evaluate the sector
prediction performance by defining throughput ratio as

RT = 1
N

′
t

∑N
′
t

n=1
log2[1+yt̂(n)]
log2[1+yt∗ (n)]

. Here, t∗ and t̂ denote the best
ground-truth sector and the predicted sector, respectively,
and N

′

t is the total number of test samples. Intuitively,
this metric captures the ratio of degradation in perfor-
mance compared to the ideal exhaustive search method. We
evaluate the model pruning performance via compression
rate. Formally, for n and n

′
, the total number of model

parameters for the original unpruned and pruned models,
respectively, the compression ratio is n−n

′

n .

6 EVALUATION OF THE COMPETING METHODS

We compare the competing learning-based methods in this
section. For all experiments, we use a global test set to
evaluate performance.

6.1 Necessity of Federated Learning
In the first set of our experiments, we compare the accura-
cies with local, centralized and standard federated learning
strategies in Fig. 6a. In local learning, we train DNNs on
the local dataset for each vehicle and observe the top-1
accuracy range of 12%-36% over all 10 vehicles (maximum
accuracy is denoted with a diamond marker in Fig. 6a). In
centralized learning, we construct an accumulated training set
by gathering the local training set at MEC. We begin with
the data from a single vehicle and increase the accumulated
training set by adding the local data from other vehicles,
one at a time (see horizontal axis in Fig. 6a). We observe a
surge in top-1 accuracies, up to up to 87.31% accuracy, as
we add more vehicles to the accumulated training set at the
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(a) (b)

Fig. 6: Comparing (a) the performance of standard FL with local
learning and an increasing number of vehicles in centralized
learning. The numbers in parenthesis denote the federated
iteration (b) top-1 global accuracy for LiDAR only and fusion
of all three modalities with standard FL architecture.

cost of transmitting all the data to a central unit. Finally, we
present the performance of standard FL, where the vehicles
collaboratively learn a shared model by sharing local model
updates. In Fig. 6a, the star, dot, and triangle markers show
the standard FL accuracy at iterations 10, 40, and 150.

Observation 1. We observe that local learning fails to achieve
competitive performance when exposed to the global test dataset.
Moreover, in order to achieve 77.70% top-1 accuracy, the cen-
tralized learning requires data from around 8 vehicles, while the
standard FL architecture achieves the same accuracy without data
sharing and with only 150 iterations of aggregation.

6.2 Benefit of Fusion
In Fig. 6b, we consider the standard FL architecture and
compare the top-1 global accuracy when using only LiDAR
data versus fusion technique described in Sec. 4.2. We
choose LiDAR as it demonstrates the maximum accuracy
of 80.37% in centralized learning for unimodal models, com-
pared to 68.75% and 29.81% for image and GPS, respectively.
We observe that while both methods experience improve-
ment over federated iterations, the fusion architecture ex-
plicitly outperforms the LiDAR-only data with a maximum
improvement of 34.37% in the top-1 global accuracy.

Observation 2. We observe that taking advantage of fusion ar-
chitecture boost the learning rate compared to the most successful
sensor modality, i.e. LiDAR.

6.3 FLASH-and-Prune and Global Inference
We study the performance of the FLASH-and-Prune scheme
described in Sec. 4.4 with respect to different design param-
eters such as adjustment frequency (AF) and initial pruning.
Moreover, we provide comparisons with two other state-of-
the-art pruning strategies.

6.3.1 Effect of Adjustment Frequency
The original fusion model described in Sec. 5.3 (See Fig. 5)
includes 6,957,992 trainable parameters. In a standard FL
architecture, all model parameters must be transmitted in
each federated iteration. However, with FLASH-and-Prune
scheme, the number of model parameters is optimized at
each adjustment iteration that happens at the interval of the
AF between federated iterations. In an adjustment iteration,
both the model weights and gradients are considered as

Fig. 7: Top-1 global accuracy and accumulated number of
parameters in the uplink (including both model and gradient)
for standard FL and three FLASH-and-Prune schemes with
different AFs.

model parameters to be exchanged and a pruning step
is applied on the global model. In Fig. 7, we compare
the accumulated uplink overhead for four experimental
settings: (i) standard FL, (ii) FLASH-and-Prune with an AF
of 5, (iii) FLASH-and-Prune with an AF of 15, iv) FLASH-
and-Prune with an AF of 25. For all FLASH-and-Prune
experiments, our analysis includes the overhead associated
with exchanging both the local model weights and gradient.
We observe that all three pruning experiments achieve the
same accuracy as the standard FL; thus, yielding the same
performance. On the other hand, all three pruning methods
outperform standard FL in overhead. In particular, FLASH-
and-Prune with AFs of 5, 15 and 25 exhibit 13.91%, 20.73%
and 18.76% less overhead than standard FL, respectively.
Interestingly, we observe that although pruning at every
fifth iteration decreases the overall model size, the overhead
associated with sending the gradients results in a larger
overall overhead in comparison with two other AFs. On the
other hand, pruning with an AF of 25 has less overhead with
respect to gradient; however, the overall model compression
rate is also less. This implies that the AFs play a dominant
role in the proposed FLASH-and-Prune scheme.

6.3.2 Effect of Initial Pruning

We argue that the initial pruning step at a selected client
further decreases the exchange overhead. Fig. 8a denotes
the top-1 global accuracy of standard FL in comparison with
FLASH-and-Prune with and without initial pruning for an
AF of 15. We observe that all three competing methods
perform closely with respect to the ultimate accuracy and
learning rate over federated iterations. The adjustments in
the model size are shown in Fig. 8b, where standard FL
has a constant number of model parameters over federated
iterations. On the other hand, FLASH-and-Prune without
initial pruning gradually adjusts the model size starting
from the original model while the case with initial pruning
experiences a drop in model size in the first iteration and
gradually adapts the model later. This results in much
less overhead while promising a close performance in the
accuracy. In Tab. 2, we compare FLASH-and-Prune with
and without initial pruning against standard FL with re-
spect to accuracy and compression rate in the accumulated
uplink overhead. We conclude that initial pruning affects
the accuracy by 1.03-1.19%, but the accumulated overhead
(including the gradient) is 9.19-17.92% less than the case
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Case Without Initial Pruning With Initial Pruning

Accuracy Compression w.r.t
Standard FL Accuracy Compression w.r.t

Standard FL
Standard FL 77.70% - - -

FLASH-and-Prune AF=15 77.36% 20.73% 76.54% 29.92%
FLASH-and-Prune AF=25 77.57% 18.76% 74.68% 36.68%

TABLE 2: Effect of initial pruning on FLASH-and-Prune with
respect to the accumulated number of parameters in the uplink
for AFs of 15 and 25.

without initial pruning. Our experiments reveal that the top-
1 accuracy does not improve significantly after 150 iterations
(only 6.78% improvement with 250 more iterations). Thus,
we compare the results for 150 iterations only.

6.3.3 Effect of Number of Participating Users
In Fig. 8c, we compare the performance of FLASH-and-
Prune when different number of users participate in feder-
ated iterations. In this experiment, we set the adjustment
frequency to be 15 and include the initial pruning step,
which results in the optimum performance according to
Tab. 2. We consider a scenario where 2, 4, 6, 8, 10 users are
participating in federated learning. These model updates are
stored in the buffer and the MEC performs aggregation once
it receives the updates from a few vehicles. From this exper-
iment, we observe that having more users improves the ac-
curacy, as expected. In particular, the maximum achieved ac-
curacy for 2, 4, 6, 8 and 10 users are 33.86%, 48.09%, 62.64%,
72.25%, and 85.15%, respectively. Note that this experiment
corresponds to the worst case scenario, where the BS does
not receive enough model updates in the uplink. However,
since the training phase is asynchronous in FLASH-and-
Prune, the BS can wait for receiving a few model updates
from the vehicles before computing the global model.

6.3.4 Comparison with State-of-the-art Pruning Methods
We compare the performance of the proposed FLASH-and-
Prune method against two other pruning strategies methods
on the FLASH dataset. First, we consider an iterative prun-
ing scheme [15], one of the most popular pruning strategies,
where the model size is reduced over multiple iterations
and retrained after each pruning step. Second, we compare
against Single-Shot Network Pruning based on Connection
Sensitivity (SNIP) [16] that identifies structurally impor-
tant weights in the network before starting the federated
iterations. For our pruning method, we set the AF to be
15 and include the initial pruning step. Fig. 9 compares
the performance of proposed FLASH-and-Prune with two
aforementioned competing methods with respect to top-1
global accuracy and model size over federated iterations,
while targeting the same model density. We observe that the
proposed FLASH-and-Prune method outperforms both iter-
ative pruning and SNIP by 28.08% and 30.94% in accuracy
at iteration 150. In particular, the SNIP drastically decreases
the model size before starting the federated iterations; how-
ever, it fails to achieve the same accuracy as FLASH-and-
Prune (30.94% drop in top-1 global accuracy). On the other
hand, the iterative pruning gradually removes the weights
at each federated iteration, yet it cannot compete with the
compression rate achieved by FLASH-and-Prune. Moreover,
it results in a 28.08% drop in top-1 global accuracy.
Observation 3. The FLASH-and-Prune without initial pruning
decrease the overhead by 13.91-20.73% compared to standard FL.

Methods Modalities Architecture Top-1 Dataset Evaluation
Acc. (%) Type

Klautau et
al. [22]

LiDAR Centralized 30.5± 1 Raymobtime [42] Synthetic

Dias et al.
[23]

LiDAR Centralized 20.5± 1 Raymobtime [42] Synthetic

Standard
FL

GPS,
Image,
LiDAR

Distributed 77.70 FLASH [39] Testbed

FLASH
GPS,
Image,
LiDAR

Distributed 59.72 FLASH [39] Testbed

FLASH-
and-Prune

GPS,
Image,
LiDAR

Distributed 77.57 FLASH [39] Testbed

TABLE 3: Comparing FLASH-and-Prune with the state-of-the-
art techniques which use non-RF data for sector selection.

It offers 9.19-17.92% extra improvement with initial pruning
with neglectable drop in accuracy (∼ 1%). In FLASH-and-Prune,
the accuracy increases with the number of participating vehicles.
It also shows superiority over benchmark pruning methods.

6.4 FLASH Architectures vs State-of-the-art

In Tab. 3, we benchmark the performance of our proposed
FLASH-and-Prune architecture against the state-of-the-art
DL-based approaches by Klautau et al. [22] and Dias et
al. [23]. Both of these techniques use centralized learning
with only LiDAR sensors at the vehicle while considering
both LOS and NLOS situations on synthetically-generated
Raymobtime dataset [42]. Moreover, we compare against
FLASH [40] where different branches of the models are
selected through a multimodal orchestrator. We limit the
comparison study to the above techniques, as the other
state-of-the-art techniques differ from ours with respect to
various aspects, such as: (a) different evaluation metrics [20],
[43], [44]; (b) consideration of LOS-only scenarios while us-
ing camera sensors [45]; and (c) inclusion the RF inputs [21].
Observation 4. From Tab. 3, we observe that FLASH-and-Prune
outperform the state-of-the-art by 17-57% in top-1 accuracy and
maintains close competing accuracy compared to an standard FL
architecture.

6.5 Accuracy and Overhead Trade-off

Both the centralized and federated learning based methods
impose some communication overhead in the control chan-
nel for model initialization. We observe a trade-off between
overhead and accuracy over all five competing methods,
presented in Tab. 4. This analysis includes the average
overhead per iteration. Moreover, we use float16 data type
to compute the model sizes.
Local Learning. Though the local learning approach does
not require any data/model sharing, it provides up to only
36.78% top-1 accuracy.
Centralized Learning. The centralized learning approach
provides 87.31% accuracy, but it comes with a large commu-
nication cost of transmitting the data of all vehicles (∼2.5
GB per iteration) to the cloud, as well as privacy concerns.
Moreover, the trained model must be transmitted to all
clients after the training is completed at the MEC.
Standard FL. This approach reduces the communication
cost while preserving 77.70% accuracy by only sharing
the local models. This imposes 13.35MB overhead in the
uplink and downlink over federated iterations. Hence, we
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(a) (b) (c)

Fig. 8: (a) Top-1 global accuracy and (b) fluctuations in the number of parameters with standard FL versus FLASH-and-Prune
with and without initial pruning (IP) for an AF of 15. (c) Top-1 global accuracy over federated iteration for different number of
users. The top-1 accuracy increases with the number of users. However, since the training phase is offline in FLASH-and-Prune,
the BS can wait to receive the model updated from different vehicles.

(a) (b)

Fig. 9: Comparing the performance of the proposed FLASH-
and-Prune framework against iterative pruning and SNIP with
respect to (a) top-1 global accuracy and (b) model size over
federated iterations.

conclude that standard FL provides a 40.92% improvement
in accuracy over local learning and 97.93% improvement in
overhead over centralized learning.
FLASH. In the FLASH framework, one out of four branches
is sent back to the vehicles at each aggregation iteration.
Retrieving the global model in the downlink with unbiased
policy PUnbiased which uniformly selects a branch for aggre-
gation requires sending 13.35MB of data. Considering both
uplink and downlink, FLASH imposes 37.50% less overhead
than standard FL architecture; however; it comes with the
cost of 17.98% drop in the top-1 global accuracy.
FLASH-and-Prune. Finally, FLASH-and-Prune observes
only 0.34% (<1%) drop in accuracy with strategic weight
pruning according to Eq. (15). It also reduces the overhead
by 29.25% and 35.89% in uplink and downlink, respectively,
compared to standard FL architecture.
Observation 5. We observe that FLASH-and-Prune outperforms
(a) local learning by 40.92% in accuracy, (b) centralized learning
by 90.55% in overhead, (c) standard FL by 34.94% in over-
head, and (d) FLASH by 17.98% in accuracy. We conclude that
FLASH-and-Prune is the most successful framework out of the
five with the lowest overhead and comparable prediction accuracy.

6.6 Discussions and Requirements

Despite demonstrates promising results, we discuss implica-
tions of some of our assumptions and limitations that may
impact performance in practical scenarios. In this section,

Methodology Acc Overhead
(%) Data Model Sharing

Sharing Uplink (õul) Downlink (õdl)
Local Learning 36.78 - - -

Centralized Learning 87.31 2.5GB - 13.35MB
Standard FL 77.70 - 13.35MB 13.35MB

FLASH 59.72 - 13.35MB 3.31MB
FLASH-and-Prune 77.36 - 9.45MB 8.56MB

TABLE 4: Comparing the performance of the five data-driven
competing methods with respect to accuracy and average
model initialization overhead per iteration. All accuracies are
reported on the global test set.

we discuss these limitations and identify possible future
directions to address them.
• Sector Selection Speed: At the inference phase, FLASH-
and-Prune predicts the optimum sector ID from the mul-
timodal sensor data by following four steps: (a) Data ac-
quisition: given the high-sampling rates of COTS sensors,
we assume that sensor data is acquired almost instanta-
neously. Moreover, the LiDAR preprocessing step described
in Sec. 4.1 has a negligible latency that can be further
reduced by exploiting parallel processing; (b) Model infer-
ence: we pass a test sample 100 times over the DL model
and calculate the average inference delay of 0.6 ms; (c)
Sector sharing: an integer varying between 0-31 and 61-63,
representing the selected sector ID is sent back to the BS.
Even though the sector ID is only an integer, sharing it with
the BS requires sending an entire frame. The slot duration
is equal to 1ms in 5G standard with numerology 0 [46].
Moreover, considering the baseband Tx and Rx processing
delays the overall overhead is 3× of the slot time. As a
result, the end-to-end sector selection time with FLASH-
and-Prune ranges between 1.6ms-3.6ms. On the other hand,
the exhaustive search proposed by 802.11ad and 5G-NR take
1.27 ms (experimentally measured in [5]) and 2.65 ms [32],
[47], respectively. As a result, the beam selection time
with FLASH-and-Prune may exceed the exhaustive search
for small codebooks. The FLASH-and-Prune approach will
need to be thoroughly revised to enable competitive perfor-
mance for small codebooks. A possible solution is using a
proactive prediction mechanism [48] to obtain the optimal
sector prior to the arrival of the vehicle at a certain location
or incorporating customized control channels that provide
overhead of < 1ms to outperform the current exhaustive
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search based method.
• FLASH-and-Prune for Large Codebooks: In this paper,
we used the FLASH dataset for validation, as the only real
world dataset for the mmWave vehicular networks. This
dataset is collected using Talon AD7200 radios. In order to
collect the data, the firmware of this radio is hacked to access
the SNR and received signal strength (RSSI) for different
sectors. This process enables accessing to the profiles for
34 sectors. However, the entire codebook in this radio has
64 sectors. Another example is the National Instruments
mmWave radio [49] that has a codebook with 16 sectors,
which also enables beamforming at both Tx and Rx for
maximum efficiency; thus, a total of 256 sector combinations
are possible. Taken together, the COTS mmWave radios with
higher resolution have more sectors in their codebooks.
In this case, the sector selection overhead with these two
radios and 5G-NR standard are 4.992 ms and 64.914 ms,
respectively. On the other hand, the overhead of FLASH-
and-Prune with larger codebooks does not increase signifi-
cantly (nor exponential) at the inference. Thus, we conclude
that while FLASH-and-Prune results in higher overhead
in small codebooks compared to exhaustive search based
methods, the significance of reduction in the sector selection
time is more pronounced with larger codebooks [7].
• Asynchronous Model Update: In a synchronous federated
learning setting, the federated serve sends the model update
requests to the users. If a user decides to participate in
FL, it will share its local model update to the BS and the
participating users send their local model update in the
uplink, simultaneously. This may affect the experience of
the other regular users if the entire channel is designated
to the FLASH-and-Prune, or it may further increase their
overhead if there is contention between the FLASH-and-
Prune and other regular users [50]. Thus, we opt for buffered
asynchronous model aggregation in our design, where the
vehicles share the model updates when they are station-
ary (for example at the end of the trips where they could
simply use their home WiFi). The federated server in our
design collects and stores the model updates from a few
vehicles in a buffer, and performs the aggregation to obtain
the global model. Similarly, the vehicles can download
the most updated global model at the start of each trip
or at the start of a day. In an asynchronous setting, the
federated server buffers the model updates, and generates
the global model after receiving the model updates from a
few vehicles. Thus, the experiments results in this paper,
which are generated based on 10 participating users, hold,
as in an asynchronous setting the federated server generates
the global model whenever the model updates from 10
vehicles are received. Nevertheless, for the completeness of
our analysis, we provided results for cases, where less than
10 users participate in federated iterations in Fig. 8c.

7 CONCLUSIONS

We make a case for using multiple sensor modalities to
aid in mmWave beamforming, as opposed to using only
RF-based approaches. FLASH-and-Prune incorporates DL
based multimodal data fusion using architectures where
training and dissemination in real-world vehicular net-
works is achieved using a federated learning architecture.

FLASH-and-Prune also employs a pruning algorithm that is
customized for distributed federated learning architecture
and reduces the model parameter exchange overhead by
29.25% and 35.89% in uplink and downlink, respectively,
while maintaining the accuracy. The FLASH dataset is al-
ready available at [39] and the codebase for FLASH-and-
Prune will be released in the same repository upon the
acceptance of this article.
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