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Abstract—Advanced beamforming techniques enable stable
vehicular communication and address mmWave limitations by
accurately directing the signal. However, traditional beamforming
techniques struggle in high-speed vehicles due to time-intensive
codebook processing and image-based feedback adjustments.
Multi-modal beamforming using real-time data like GPS, cam-
eras, and LiDAR to train the Deep Learning (DL) models can
provide adaptive beam steering, improving reliability in dynamic
conditions. Despite this, centralized systems involving large raw
data transmission are vulnerable to saturation and malicious
interference, and they neglect privacy concerns, necessitating a
new framework. This paper proposes a novel federated attention-
based fusion learning framework named FedAttention for multi-
modal beamforming in the Internet-of-Vehicle (IoV). FedAtten-
tion further improves the model generalization ability by utilizing
the CNN-Transformer architecture and making full use of the
Multi-access Edge Computing (MEC) servers for the potential
federated split learning to enhance efficiency. Based on the real-
world datasets, FedAttention achieves 98.16% in Top-5 accuracy
and 82.09% in Top-1 accuracy, a 26.86% improvement compared
to the current FLASH framework with less wall clock time,
showing its training efficiency and robustness.

Index Terms—federated learning, multi-modal beamforming,
fusion learning, transformer, attention

I. INTRODUCTION

In 6G Vehicle-to-everything (V2X) communication, Inte-
grated Sensing and Communication (ISAC) is a pillar tech-
nology for improving environmental awareness by collecting
data from multiple sensors such as radar, LiDAR, cameras,
and GPS, leading to safer and more efficient autonomous driv-
ing [1]. Multi-access Edge Computing (MEC) further enhances
V2X communication by putting the computational resources
and data processing closer to vehicles and infrastructure,
thereby substantially pruning the E2E communication latency
and supporting real-time decision-making [2]. Meanwhile,
mmWave frequencies offer extensive bandwidth for rapid data
transmission and high-resolution sensing capabilities in the
Internet-of-Vehicle (IoV), which helps vehicles to achieve
faster and more efficient communication for applications such
as cooperative perception [3].

mmWave signals are vulnerable to blockages from obsta-
cles like buildings and trees, limiting their effectiveness in
complex environments [4]. Advanced beamforming techniques
can improve signal strength, coverage, and reliability by pre-
cisely adjusting beams in specific areas. However, traditional
beamforming struggles in high-speed vehicle environments, as

it relies on time-intensive codebook processing and image-
based feedback adjustments, which struggle to maintain stable
transmission amid rapid movement and uneven roads [5].
Moreover, these methods demand increasingly sophisticated
mathematical solutions, reducing their efficiency in dynamic
V2X scenarios.

In contrast, sensor-based beamforming utilizes real-time
environmental data for Deep Learning (DL) models to en-
able more precise and adaptive beam steering, significantly
improving efficiency and reliability in dynamic conditions.
For instance, Zheng et al. [6] proposed a 3D Convolutional
Neural Network (CNN) for optimizing power dissipation and
beam selection in V2X scenarios, leveraging 5G mmWave
communication and LiDAR sensor data for enhanced per-
formance. Reus et al. [7] proposed a DL-based data fusion
approach using visual edge devices and localization sensors to
reduce beam selection overhead and detect blockages. Xu et
al. [8] proposed 3D object detection to extract vehicle data and
design a DNN for optimal beam pair inference without pilot
signals, along with a vision-based BCT prediction method
to improve transmission rates. Yang et al. [9] developed a
mmWave network architecture that uses street camera images
and user identification to predict the optimal beam index and
blockage state without pilot training, achieving ultra-reliable
low-latency communication (URLLC).

Nearly all the studies focused on either single-sensor-based
beamforming or deep centralized learning-based approaches.
However, relying on a single sensor-assisted model can be
compromised by external factors such as adverse weather con-
ditions like heavy rain and complex road surfaces, which can
degrade the quality of sensing data, ultimately reducing beam-
forming performance and reliability [10]. Moreover, many of
the discussed techniques rely on centralized systems, which
introduce challenges such as high bandwidth demands for raw
data transmission, leaving them vulnerable to saturation and
malicious interference. Additionally, these approaches often
neglect crucial data privacy concerns, posing significant risks
in sensitive or large-scale deployments.

Federated Learning (FL) [11] is an emerging distributed
method that enables multiple clients to train models collab-
oratively without sharing raw data, thereby preserving data
privacy and preventing the overloading of control channels.
FLASH [12] explores the application of FL by employing
CNN for local model training on devices, followed by global
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aggregation of model weights. However, FLASH [12] suffers
from limitations such as very low accuracy for the best beam
sector prediction (even for the vast number of FL rounds). It
also exhibits reduced computational efficiency by leveraging
FL and very deep learning architecture, hindering the overall
effectiveness of FL in real-world V2X scenarios. Therefore,
our work aims to determine how to enhance the best beam
sector prediction accuracy in FL while maintaining training
efficiency.

In this paper, we propose FedAttention, a novel fed-
erated attention-based fusion learning framework for multi-
modal beamforming in IoV, as illustrated in Fig. 1. Our main
contributions are as follows:

• FedAttention leverages the combined strengths of CNN
and transformer architectures to effectively capture both
local and global features. This hybrid design significantly
improves model accuracy and training efficiency, address-
ing the shortcomings of current state-of-the-art FL-based
multi-modal beamforming methods.

• By making full use of the joint computing resources of
the MEC servers and the local vehicles, we introduce an
offloading indicator that enables federated split learning
(FSL) for vehicles with limited capacity to perform local
model training, thereby enhancing training efficiency.

• We evaluate FedAttention’s superior model generalization
and adaptability against existing FL-based multi-modal
frameworks, considering the heterogeneity of the dataset.
The results demonstrate that FedAttention significantly
improves accuracy, exceeding the upper limit of the
FLASH. To achieve the same global model accuracy
as FLASH, our framework requires fewer computational
resources and available data samples, as well as reduced
wall clock time, showing its enhanced training efficiency.

The remainder of this paper is organized as follows. Section
II introduces the design of the federated attention-base fusion
learning framework for multi-modal beamforming. Section
III evaluates the performance of FedAttention based on real-
world datasets with different variables. Finally, conclusions are
drawn in Section IV.

II. FEDERATED ATTENTION-BASED LEARNING
FOR MULTI-MODAL BEAMFORMING

A. System Model

Consider a set of autonomous vehicles Φ in the coverage
of a gNodeB that collaborates with MEC servers for training
the FL global model. Each vehicle ϕ ∈ Φ is equipped
with multi-modal sensors GPS, camera, and LiDAR, which
can be used to collect the multi-modal local dataset Dϕ =
{Xϕ,C , Xϕ,I , Xϕ,ζ} of size |Dϕ|. The parameters Xϕ,C ∈
RDϕ×2, Xϕ,I ∈ RDϕ×dI0×dI1 , and Xϕ,ζ ∈ RDϕ×d

ζ
0×d

ζ
1×d

ζ
2

represents the GPS, camera, and LiDAR data, respectively.
GPS data can be formulated as a simple vector with two
elements representing latitude and longitude, the image data
forms a matrix with dimensions (dI0 × dI1 × 3) representing
height, width, and the RGB values, while the LiDAR system
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Fig. 1. Schematic of FedAttention framework.

generates a point cloud represented in a grid and can be
formulated as a matrix with dimensions (dζ0 × dζ1 × dζ2).

As shown in Fig.1, in FL, multiple vehicles collaboratively
train the model based on their local multi-sensor datasets
without sharing them. Each vehicle is equipped with fusion
models for advanced training. We define the vehicle ϕ loss
Fϕ(ω) given the model parameters ω as:

Fϕ(ω) =
1

|Dϕ|
∑︂

(x,y)∈Dϕ

f(ω, x, y), (1)

where f(ω, x, y) is the local loss on the sample (x, y) ∈ Dϕ

and x represents a tuple in the dataset {Xϕ,C , Xϕ,I , Xϕ,ζ}.
The model parameters across the participating vehicles will

be shared with MEC for federated aggregation after the multi-
modality biased selection module. Then, the aggregated model
will be broadcast to the next-turn participating vehicles for
continuous training. The goal is to minimize a global loss
function F (ω), which is the weighted sum of local loss
functions Fϕ(ω) across all devices. This is expressed as:

F (ω) =

Φ∑︂
ϕ=1

|Dϕ|
|D|

Fϕ(ω), (2)

where |D| is the total size of all vehicle datasets combined.

B. CNN-Transformer-Based Fusion Model

Transformers rely on self-attention mechanisms to process
sequences of data, enabling efficient parallelization and better
handling of long-range dependencies [13]. In this paper, we
propose a CNN-Transformer-based fusion learning framework
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Fig. 2. CNN-Transformer-Based Fusion Architecture for Multimodal Beamforming.

for FL, namely FedAttention, designed for multi-modal
beamforming. The detailed logical model architecture is pre-
sented in Fig. 2.

Initial Feature Extraction: The preprocessed multi-sensor
data are embedded as the input of the CNN stacks for the
initial spatial feature extractions. Each Conv1D Block for GPS
or Conv2D Block for image and LiDAR data consists of the
normalization layer, the activation function using Relu, as well
as the convolutional layer, which applies filters over the input
data to capture essential features like edges, textures, and
patterns for Xϕ,C , Xϕ,I , Xϕ,ζ , respectively. This stage reduces
the complexity of data while preserving spatial relationships,
enabling the model to focus on meaningful patterns in different
sensor data.

Downsampling: The downsampling technique is applied to
reduce the spatial dimensions of the feature maps. The ad-
vanced AdaptiveAvgPool layer is applied, which dynamically
adjusts the output size, not only reducing the computational
load but also enhancing the model’s ability to generalize by
preserving important spatial features. Since the Transformer
architecture handles the most computationally intensive tasks,
and the AdaptiveAvgPool layer effectively reduces the size of
the intermediate activations, it is crucial to note that we place
the potential split point here for further offloading.

Transformer-Enhanced Encoding (TEE): In traditional
CNNs, local features are captured well, but global relation-
ships or dependencies can be lost. The Transformer block
compensates for this by learning the global context. This block
utilizes the Transformer architecture’s attention mechanism
and computes weighted averages of inputs after downsampling
to capture long-range dependencies in the 3D image and
LiDAR data.

Fusion Attention: After TEE, tensor data pass into the
Linear consisting of a set of fully connected layers, which
aggregate the features learned from previous layers and map
the extracted features into the output space. Next, it will go
into the fusion part for further training or inferring. The Linear
Block will reshape the tensor data as appropriate input to the

fusion Transformer Block. We use two Transformer blocks
in sequence to allow for more complex feature interactions,
especially enabling the model to learn interactions between
the outputs of the three sub-branches. After the Transformer
blocks, we use the Linear Block to map output space and the
softmax for the probability of all the probe frames, which can
be expressed as:

uϕFN = σ(fθϕ,ψ), (3)

where Ψ = {C, I, ζ,ϖ} is the index set of the model branches,
ϖ is the integrated branch, and θ represents all the model
parameters. We use Elastic Net regularization techniques in
the Linear Block to avoid overfitting during the training [14].
Finally, for example, considering the downlink communica-
tion, we can predict the best sector r∗ with the maximum
received signal strength after the mapping function Γθ from
the obtained datasets, which can be expressed as:

r∗ = argmax
n∈{1···N}

ŷrn (Γθ : Dϕ → ŷrn), (4)

where ŷrn is the predicted received signal strength at the Tx
side with the Rx configured with rn.

C. Federated Learning for Multi-modal Beamforming

During the distributed training phase, the local dataset Dϕ

belonging to each vehicle ϕ is divided into equally-sized
mini-batches, denoted as ς . Let j represent the index for
local iterations within the k-th round of FL. Using mini-batch
gradient descent, the local model weights wϕ are iteratively
updated according to the following equation:

w
(j+1)
ϕ = w

(j)
ϕ − η

1

ς

ς∑︂
i=1

∇
w

(j)
ϕ

Fϕ(ω), (5)

where η is the learning rate, which is dynamically adjusted
using the StepLR scheduler [15], Fϕ(ω) denotes the local
loss function of vehicle ϕ, which quantifies the discrepancy
between the true labels y(i) derived from Radio Frequency
(RF) data and the corresponding predicted labels ŷ(i).
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The FL process involves local model training at the device
and federated aggregation at the MEC, where autonomous
vehicles periodically share their model parameters, denoted
as θϕ, at a global level. To further enhance the training
computation efficiency, we allow each vehicle to decide dy-
namically whether to utilize split learning (SL) during the
model training. Considering a set of MEC servers as E, we
define an offloading indicator as Θ, which can be expressed
as:

Θ =

⎧⎪⎪⎨⎪⎪⎩ 1,
fN

(︂
Bϕ,e
Br

)︂
fN

(︂
ρϕ,e
ρr

)︂ > γ

0, otherwise

, (6)

where ρϕ,e is the capability ratio between the vehicle ϕ and
the MEC server e ∈ E, Bϕ,e is the bandwidth between them.
The function fN (·) performs normalization, while Br and ρr
serve as reference factors, and γ is a predefined threshold.
For instance, if the network throughput is sufficient and the
vehicle’s computing power is limited, Θ will be set to 1 based
on γ. In this case, the vehicle will employ SL and offload
the intermediate activations, the volume of which is expressed
as Vϕ to the MEC server before the Transformer-Enhanced
Encoding stage and Fusion Attention stage for collaborative
model training, where A(·) and A′(·) represent the split
training functions on vehicle and MEC servers, respectively.

This technique leverages the robust computing power of
the B5G MEC servers to handle the more complex com-
putations of the fusion transformer architecture, which is
named Transformer Migration. As a result, it can significantly
reduce training time and alleviate the bottlenecks at the FL
synchronization point, thereby improving overall distributed
training efficiency. The FedAttention algorithm is outlined in
Algorithm 1, consisting of jointly local training (refer to lines
3 to 10), federated aggregation, and model broadcasting (refer
to lines 11 to 12).

To ensure the robustness of our framework, we also cal-
culated the model size of FedAttention and compared it with
the FLASH framework [12]. Our findings show that the total
number of parameters in FedAttention is only 31.7% of those
in the FLASH framework. Despite utilizing a self-attention
mechanism, FedAttention employs a balanced combination
of convolutional and linear layers, advanced downsampling
techniques, and a moderately sized transformer block. This
architecture significantly reduces the parameters in the linear
block compared to the very deeper architecture of FLASH. The
total model size is 130 MB, making it smaller than both the
very deep FLASH framework and the object detection models
DETR (around 159 MB to 232 MB) [16] commonly used in
modern vehicles. This reduction improves efficiency during
model exchange in the FL stage.

III. EVALUATION AND SIMULATION RESULTS

A. Experimental Setup

All experiments were performed using real-world FLASH
datasets [12] on our laboratory server, which is equipped with

Algorithm 1: FedAttention for Fusion Learning in
Multi-Modal Beamforming for IoV
Input:
D = {Dϕ | ϕ ∈ Φ} = {Xϕ,C , Xϕ,I , Xϕ,ζ | ϕ ∈ Φ}:
Distributed multi-sensor datasets on all vehicles Φ
γ: Predefined threshold for the offloading indicator.
Output:
Γθ: Mapping function with the global model
/* Local model nationalization */

1 θψϕ ← θ
ψ(0)
g

2 for k ∈ K do
3 for j ∈ J do
4 for ϕ ∈ Φ do
5 if Θ then

/* MEC-assisted FSL */

6 Vϕ,e ← A
(k)

θC,I,ζϕ

(Dϕ)

7 ∇Vϕ,e, wϕ ← A
′(k)
θe

(Vϕ,e)

8 else
9 wϕ ← f

(k)

θψϕ
(Dϕ) // Classic FL

/* Local loss calculation */
10 Fϕ(ω)← 1

|Dϕ|
∑︁

(x,y)∈Dϕ f(ω, x, y)

/* Federated aggregation */

11 θψ(k) ←
∑︁
ϕ∈Φ

|Dϕ|
|D| θ

ψ(k)
ϕ for ϕ ∈ Φ do

/* Global model sharing */

12 θ
ψ(k+1)
ϕ ← θψ(k)

NVIDIA A40 GPUs delivering 149.6 TFLOPS for mixed-
precision (FP16/FP32) tensor operations, ensuring robust par-
allel computing capabilities throughout the testing process.

B. Dataset Heterogenity
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Fig. 3. Label distribution based on Dir(α) sampling with 32 label beams.

Each client typically has its own local dataset, which may
not be representative of the entire global dataset. On the other
hand, the vehicles may have access to non-iid datasets, for
example, vehicles collecting data from different environments,
such as highly-density building scenarios and suburban sce-
narios. Since the global model needs to generalize across
all clients, the accuracy of the vehicular FL framework is
susceptible to non-iid datasets across different vehicles.
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vehicles (Available datasets) on FedAttention.

Therefore, we delve into the influence of differing non-
iidness and the volume of training samples available on each
device on model convergence and accuracy to prove the
robustness of our framework. We redistributed the datasets
from the Dirichlet distribution Dir(α) [17], which can be
expressed as:

f(CTx, CRx;α1, ..., αM+N ) =

Γ(
M+N∑︁
i=1

αi)

M+N∏︁
i=1

Γ(αi)

M+N∏︂
i=1

xα−1
i , (7)

where CTx = {t1, ..., tM}, and CRx = {r1, ..., rN} are
the predefined sets of beamforming vectors that are used to
specifically direct the signals for the transmitter and receiver,
Γ(·) is the Gamma function, M + N are the number of
the probe frames required by the traditionally mandatory
Sector Level Sweep (SLS) in IEEE 802.11ad standard sector
initialization steps, and αi is the concentration parameter. The
αi controls how much of the distribution’s probability mass
is concentrated around particular proportions of the probe
frames. We set the {αi}M+N

i=1 = {0.1}M+N
1 or{10b}M+N

1 to
represent non-iid and iid settings, where b > 2, the label
distributions of which are shown in Fig. 3.

C. Results Analysis

Model generalization ability: During the training phase,
we configure the computing power between MEC servers and
vehicles, varying from 5 to 10 times. The network throughput
fluctuates dynamically between 20 and 80 Mbit/s during
the parameter exchange in each FL round, with federated
aggregation occurring only upon reaching the synchronization
point. FedAttention combines the strengths of CNN and trans-
former architectures to efficiently capture both local and global
features and effectively manage complex interactions within
the fusion model. As shown in Fig. 4(a), it achieves 81.08%
Top-1 accuracy in 100 communication rounds, representing a
39.91% improvement over the FL-based FLASH framework.
Top-5 accuracy refers to the probability that the optimal beam
is included in the top five candidates. Compared to FLASH,
FedAttention achieves 97.90% Top-5 accuracy, reflecting a
29.67% improvement and emphasizing its superior general-

ization performance. Additionally, as depicted in Fig. 4(b),
the fusion model outperforms the single-modal LiDAR model,
with FedAttention achieving a final best beam prediction
accuracy of 82.09%, surpassing all other methods. After 200
FL rounds, the FLASH model exhibits minimal improvement
in Top-1 accuracy and fails to reach the 70% threshold, further
highlighting the superior effectiveness of FedAttention.

Effect of the number of clients (Available datasets): The
impact of varying numbers of participating clients is evaluated
in FedAttention, which directly affects the amount of available
data for training the global model. As shown in Fig. 4(b),
when the dataset size is significantly reduced, or the number of
participating vehicles is very low (Φ = 4), the Top-1 accuracy
declines sharply, indicating that the global model struggles
to capture the diverse interests of all vehicles. However, a
moderate reduction in the size of the training datasets (18045
samples) and the number of participating vehicles (Seven
clients) results in only a slight decrease in accuracy, which
remains within an acceptable range with 87.25% Top-5 accu-
racy. Notably, even with only seven vehicles involved in FL
training, the accuracy still surpasses that of FLASH, while the
training time is significantly reduced. This demonstrates the
strong generalization capabilities of the FedAttention model.

Performance in heterogeneous environments: In the FL
process, dataset heterogeneity significantly impacts the ac-
curacy and convergence of the global model. In this phase,
we set the αi from the Dirichlet distribution to control the
characteristics of the datasets. As shown in Fig. 5., when
the αi is set as 0.1 to represent the non-iid settings, the
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Fig. 5. Accuracy with different concentration factors across FL rounds
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datasets on client 2 have only 397 data samples, only 0.063
times the data samples of client 6. Under this condition,
FedAttention’s Top-1 accuracy drops from 72.16% to 61.82%
in 50 FL rounds, highlighting the impact of data heterogeneity.
For FLASH, the accuracy also declines, and more notably,
the convergence process is even less smooth compared to
IID settings. Despite the non-IID environment, FedAttention
significantly outperforms FLASH in terms of accuracy and
convergence, demonstrating its robustness.

Computing efficiency: Since the transformer leverages the
self-attention mechanism, increasing computation time per FL
round, we assess the accuracy in relation to wall clock time
to account for both local training and global communication
time. To further enhance training efficiency, FedAttention in-
corporates SL to solve the potential struggler arising from the
heterogeneity of the different vehicle systems. As illustrated
in Fig. 6, while FedAttention may have a longer training time
per FL round compared to FLASH, it requires fewer rounds
to converge and achieve higher prediction accuracy. Within
a fixed timeframe of 109.53 minutes, FedAttention with SL
achieves a 74.17% Top-1 accuracy, outperforming both FedAt-
tention without SL (67.47%) and FLASH (60.38%). Moreover,
in terms of Top-5 accuracy, FedAttention significantly exceeds
FLASH (77.85%), achieving 96.35% and 94.98% Top-5 ac-
curacy with or without SL. This demonstrates the training
efficiency of the FedAttention framework, particularly when
using SL, despite the need to exchange a small amount of
smashed data—only 1.01 MB per communication round.

IV. CONCLUSIONS

In this paper, we propose FedAttention, a federated
attention-based fusion learning framework designed for multi-
modal beamforming. By fully leveraging the collaborative
learning between MEC servers and local vehicle resources,
FedAttention significantly enhances computational efficiency.
We also demonstrate the robustness of our model across
heterogeneous datasets. In terms of beam sector prediction
accuracy, FedAttention achieves a Top-5 accuracy of 98.16%
and a Top-1 accuracy of 82.09%, representing improvements
of 26.86% and 20.84%, respectively, compared to FLASH, all
while maintaining a smaller model size. By integrating CNN
and transformer architectures across multiple branches and
the fusion block, results based on real-world datasets validate
the superiority of our model generalization ability, showing it
is both capable of benefiting from FL and maintaining high
accuracy.
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