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Abstract—The RF environment in a secure space can be com-
promised by intentional transmissions of hard-to-detect underlay
signals that overlap with a high-power baseline transmission.
Specifically, we consider the case where a direct sequence spread
spectrum (DSSS) signal is the underlay signal hiding within a
baseline 4G Long-Term Evolution (LTE) signal. As compared
to overt actions like jamming, the DSSS signal allows the LTE
signal to be decodable, which makes it hard to detect. ICARUS
presents a machine learning based framework that offers choices
at the physical layer for inference with inputs of (i) in-phase
and quadrature (IQ) samples only, (ii) cycle-frequency features
obtained via cyclostationary signal processing (CSP), and (iii)
fusion of both, to detect the underlay DSSS signal and its
modulation type within LTE frames. ICARUS chooses the best
inference method considering both the expected accuracy and
the computational overhead. ICARUS is rigorously validated
on multiple real-world datasets that include signals captured in
cellular bands in the wild and the NSF POWDER testbed for
advanced wireless research (PAWR). Results reveal that ICARUS
can detect DSSS anomalies and its modulation scheme with 98-
100% and 67 − 99% accuracy, respectively, while completing
inference within 3 − 40 milliseconds on an NVIDIA A100 GPU
platform.

Index Terms—Anomaly detection, LTE, DSSS, IQ, CSP.

I. INTRODUCTION

The presence of unauthorized wireless signals in secure
spaces constitutes a security risk, and several examples ex-
ist where private information was transmitted to external
entities [1], [2]. It becomes hard to detect a signal when
it hides (henceforth referred to as an anomaly) within a
preexisting and stronger standard-compliant signal like cellular
LTE (henceforth referred to as a baseline). The research
community has just started to explore the impact of such
anomalies under assumptions of different signal types [3] that
are relevant to both consumer [4] and federal [5] stakeholders.
We have considered the 4G LTE signal as baseline to generate
a complex detection scenario for anomaly signal, in contrast
to a more bursty 5G signal where the underlay can become
more easily visible.
• An example anomaly signal. We specifically consider
in this paper the noise-like direct sequence spread spectrum
(DSSS) anomaly that hides within the LTE baseline. Moreover,
the processing gain in the despreading operation enables the
anomaly to exist with a low signal-to-interference-and-noise
(SINR) ratio. Several wireless standards utilize a variant of
DSSS, such as code-division multiple access (CDMA), IEEE
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Fig. 1. Steps in detecting an anomaly and recognizing its modulation
type within the baseline signal by selecting one of the four color-
coded pipelines composed of neural networks (NNs) and/or signal
processors: (1) signal processing on CSP features, (2) NN on IQ
only, (3) NN on CSP features only, (4) NN fusing both IQ and
CSP features. One of these four inference pipelines must be chosen
considering computational resource constraints.

802.11b specifications used in Wi-Fi, and the Global Posi-
tioning System [6], any of which can be used by a malicious
actor to construct an ‘anomaly’ hiding within the baseline. The
baseline signal that contains an underlying anomaly signal is
referred as anomalous baseline signal in the remainder of the
paper. Next, we list several challenges related to the specific
problem of DSSS detection.
• Challenge 1. Accuracy of methods for detecting DSSS
anomaly: In general, we list four different methods (Fig. 1)
for DSSS detection, each with its own overhead and detection
accuracy that combine signal-processing and machine learning
(ML). However, detection of a subtle anomaly like DSSS is
specifically challenging because it spectrally resembles the
broadband noise present within the baseline signal, as shown in
Fig. 2. Hence, we present the basics and associated problems
of these so called ‘Pipelines’ below (see 1-4 in Fig. 1).
Pipeline 1: Pure signal processing. Cyclostationary Sig-
nal Processing (CSP) algorithms can be used to extract highly
discriminative features from most RF signals based on periodi-
cally time-variant probabilistic parameters, and their estimates,
for the signal. Simple threshold-based algorithms can use these
features to detect the presence of DSSS signals. Pipeline 1
requires significant processing power to generate CSP features,
longer signal collection times, and expert knowledge, but no
a priori dataset gathering or training is needed [7], [8]. Prob-
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Fig. 2. Spectrograms of the DSSS signal overlapping with LTE show
the impact of relative power levels on signal discriminative ability.
The signal to interference ratio (SIR) is the power of the LTE signal
divided by the power of the DSSS signal. In (b) the central higher
power band of DSSS is clearly visible, but not in (a).

lem: Using expert knowledge to select the most representative
CSP features for Stages 1 and 2, and quantify the impact of
block lengths of IQ samples needed to compute them.
Pipeline 2: ML using In-phase and Quadrature (IQ) sam-
ples. Once trained on representative datasets, neural network-
based ML models can be used for rapid inference tasks, while
consuming very little real-time data. Prior ML approaches that
use IQ samples have been demonstrated for problems like
transmitter identification [9], channel estimation [10], outlier
detection [11]. Problem: IQ-only ML models may suffer from
lack of generalizability on encountering channel conditions
different from those represented by the training dataset.
Pipeline 3: ML using CSP features. This approach par-
tially includes Pipeline 1 by giving all CSP features
obtained from the former to the ML model as input, allowing
the latter ‘black box’ to take over for final inference. By
not using IQ inputs from Pipeline 2, this approach is
robust to varying channel conditions. Problem: Selecting the
best low-dimensional approximation to the inherently high-
dimensional CSP features, and generating a comprehensive
dataset of labeled CSP features for training.
Pipeline 4: ML fusing CSP features and IQ. This ap-
proach fuses the latent embeddings from both the pipelines for
IQ (Pipeline 2) and for CSP features (Pipeline 3) for
the final inference. This approach combines the representative
power of both pipelines. Problem: Designing a robust fusion
model that accepts latent embedding of different dimensions.
• Challenge 2. Computational cost: Pipelines 1-4 in-
cur different computational costs and elapsed times depending
on the hardware specifications. For example, a 4-core Intel i7
CPU is better suited for Pipeline 3 as it supports ∼38
giga floating point operations per second (FLOPS). Similarly,
an NVIDIA A100 GPU is better for Pipeline 2, as it
supports ∼ 312 tera FLOPS [12]. Thus, only considering
the accuracy of the pipeline is not sufficient for a practical
anomaly detection system. The data preprocessing latency that
shapes the inputs for the respective pipelines described above,
the computational requirements of the component inference
models, and the constraints of compute hardware, must all be
considered in the designing of the end-to-end inference steps.
• Proposed approach: To address Challenge 1, ICARUS
includes a pure signal processing approach (Pipeline 1) as

well as multiple high-accuracy neural network (NN) architec-
tures for detecting DSSS signals within a baseline LTE using
both IQ samples and CSP features (Pipelines 2-4). It is
robust to different relative DSSS signal power levels compared
to the baseline, ranging from -10dB to 10dB signal to interfer-
ence ratio (SIR, defined as ratio of LTE to DSSS signal power).
If DSSS is detected, ICARUS provides additional qualifying
characteristics, such as whether BPSK or QPSK modulation is
present. This hierarchical approach is depicted in Fig. 1, where
we have trained models for the stages of anomaly detection
(Stage 1) and modulation recognition (Stage 2), respectively.
ICARUS addresses Challenge 2 by incorporating an algorithm
for autonomously choosing the optimal Pipeline (1-4)
given the hardware specifications and constraints, and thus, it
eliminates the need for a human operator for this decision.
Generalizability of ICARUS: ICARUS can be used in more
general settings involving other kinds of anomaly and base-
line signals because the training of different versions of the
system is not strongly dependent on the statistical nature of
the signals, and because many different kinds of anomalous
signals possess readily estimable cyclic (CSP) features, such
as PSK, CPM, FSK, OFDM, and various generic TDMA
signals. However, this paper’s focus on DSSS as the anomaly
is central to the basic problem of interest in that it can be
successfully received by the anomaly receiver in spite of heavy
cochannel interference imposed by the baseline signal, unlike
most non-DSSS signals. The name ‘ICARUS’ reflects a design
goal: Like its mythical Greek counterpart, ICARUS aims to
optimize performance, here inference accuracy (in place of
high altitude flight described in the myth). However, unlike
its namesake, our software framework is aware of the envi-
ronmental conditions, specifically computational constraints.
Thus, it explicitly recognizes such hardware constraints and
avoids an impractical outcome where the processing cannot
be completed in time at all. Regrettably, a perilous outcome
could not be avoided for the winged ICARUS, who ignored
system limitations and flew too close to the sun.
• Paper contributions and ICARUS design:
(1) We propose a pure signal-processing based DSSS
anomaly detector using domain knowledge of CSP and DSSS
(Pipeline 1).
(2) We design a deep learning based NN architecture that can
detect the DSSS anomaly within LTE baseline using only IQ
samples (Pipeline 2). We also propose a second neural
NN model that performs the same task but uses CSP features
extracted from the signal (Pipeline 3).
(3) We design a fusion-based NN architecture, where the
latent embeddings from the CSP and IQ NN models are
fused together to serve as input to a subsequent NN inference
model (Pipeline 4). We propose a hierarchical classifier
that identifies the modulation scheme (Stage 2 in Fig. 1),
BPSK or QPSK, following the DSSS prediction at Stage 1.
(4) We design an algorithm that selectively triggers specific
parts of the ICARUS framework depending on available com-
puting resources, resulting in autonomous selection of one of
the Pipelines 1-4.
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Fig. 3. The spectral correlation function measured for rectangular-
pulse BPSK signal.

(5) We validate ICARUS on synthetic and OTA IQ sam-
ples collected from cellular LTE basestations and the NSF
PAWR Platform for Open Wireless Data-driven Experimental
Research (POWDER). We observe 98−100% of anomaly- and
67−99% modulation detection accuracy across these datasets.

II. RELATED WORK AND BACKGROUND ON CSP

Here, we survey the state-of-the-art for detecting the pres-
ence of underlay signals within a baseline signal. Benedetto
et al. use pure signal processing for detecting unauthorized
access in underlay satellite communication networks in [13].
Similarly, Hofmann et al. present a novel anomaly detector
based on cyclostationary signal properties for low SINR con-
ditions in low-earth orbit satellite communication links in [14].
Different from signal processing, [15] and [16] design ML-
based detection using the power spectral density (PSD) and
spectrogram of the received signal, respectively.
DSSS detection. Pure signal-processing-based methods for
detecting the presence of such spread spectrum signals have
been proposed in [17]. Recently, Zhang et al. demonstrate the
use of wavelet decomposition to detect the DSSS signal under
low SNR in a non-cooperative communication system in [18].
Liu et al. propose a non-cooperative compressive detection
technique that uses random as well as designed measurement
kernels for DSSS signals [19]. Similarly, [1] describes a single-
class support vector machine (SVM) to detect a DSSS anomaly
in the baseline using signal power information entropy.

While the above works make great strides in anomaly
detection, to achieve near real-time operation, we need to
consider the computational cost of the approaches. Different
from the above works, ICARUS selects a combination of
signal processing and ML steps for end-to-end inference,
depending on both computational requirements of the chosen
method and hardware availability. Furthermore, following the
state-of-the-art [20], [21] in other domains, it takes the first
step towards fusing IQ samples with CSP features as well
as providing information about the modulation type of the
detected DSSS signal, which are not covered in prior work.
Background on CSP. A cyclostationary signal has statistical
parameters that vary with time, such as mean, variance, and
higher-order moments [8]. These parameters can be defined
for both the time- and frequency-domain representation of a
signal, for which we have temporal- and spectral moments,
respectively. The second-order spectral moment of a signal
is also called the spectral correlation function (SCF). Fig. 3

shows the SCF surface of a BPSK signal. We consider four
different parameters, {F, A, C, S}, extracted from the SCF,
which we henceforth collectively refer to as CSP features. F is
conventional spectral frequency (f in the plot), A is the cycle-
frequency (α in the plot), C is the peak coherence magnitude
for α, and S is the peak spectral correlation magnitude for α.
Rigorous mathematical formulations of these features can be
found in [7], [8], [17]. In summary, when we refer to CSP
features in this paper, we imply this 4-tuple set {F, A, C, S}
corresponding to selected peaks from the SCF.

III. SIGNAL TYPES AND SYSTEM MODEL

A. Signal Notations
Baseline LTE signal. The LTE standard supports a variety
of downlink configurations and duplex modes [22]. We con-
sider frequency division duplex (FDD) LTE downlink signal
transmission, which uses OFDMA modulation. We represent
this baseband LTE signal using notation sLTE(t) and the
received signal as rLTE(t) = sLTE(t) + w(t), where w(t) is
the background noise.
DSSS anomaly signal. We represent a DSSS baseband signal
as sDSSS(t), modulated with either BPSK or QPSK.
Anomalous baseline signal. The received baseband anoma-
lous signal (DSSS is present within the baseline LTE) is
represented as: rLTE+DSSS(t) = sLTE(t) + sDSSS(t) + w(t),
where w(t) is the background noise. In particular, the DSSS
with BPSK and QPSK modulations are separately denoted
as: rLTE+DSSSBPSK(t) and rLTE+DSSSQPSK(t), respectively. Hence,
rLTE+DSSS(t) ∈ {rLTE+DSSSBPSK(t), rLTE+DSSSQPSK(t)}.
B. Problem Formulation

We define the problems for anomaly detection and modu-
lation recognition, separately as follows.
• Anomaly detection. We formulate the function for anomaly
detection A(.) assuming rSIG(t) ∈ {rLTE(t), rLTE+DSSS(t)} as:

A(rSIG(t)) = 0 ⇒ LTE (1a)
= 1 ⇒ LTE+DSSS (1b)

• Modulation recognition. We denote the function for
modulation classification as M(.), and rLTE+DSSS(t) ∈
{rLTE+DSSSBPSK(t), rLTE+DSSSQPSK(t)}. Hence, we formulate the
problem as:

M(rLTE+DSSS(t)) = 0 ⇒ BPSK (2a)
= 1 ⇒ QPSK (2b)C. Overview: Model Training

The ICARUS system architecture consists of four compo-
nents (see Fig. 4) as a modular solution:

1) CSP Computation: The first component extracts the
CSP features from the received signal rSIG(t) (details in
Section IV-A). The extracted features are then passed to
Pipelines 1, 3, and 4 for Stage 1 and Pipelines
3 and 4 for Stage 2.

2) Signal Processing + ML Stage 1: Anomaly Detection:
The first stage of the hierarchical classifier within ICARUS
consists of Pipelines 1-4. We perform training for the
Pipelines 2-4 using the IQ samples and extracted CSP
features. The CSP features are directly fed to Pipeline 1
for conventional anomaly detection without involving ML. The
details are discussed in Section IV-B.
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Fig. 4. The ICARUS training framework, details in Section III-C.

3) ML-only Stage 2: Anomaly Modulation Recognition:
We use the IQ samples and extracted CSP features from the
received signals rLTE+DSSS(t) for generating trained models for
Pipelines 2-4. Additional details are in Section IV-C.

4) FLOP-efficient Pipeline Selection: Once the NN models
are trained for all the pipelines, ICARUS can dynamically
trigger one of the pipelines depending on available computing
resources and expected FLOPS. An example of pipeline selec-
tion is given in Fig. 4, where the ‘CSP network’ (Pipeline
3) and ‘fusion network’ (Pipeline 4) are selected for
anomaly detection and modulation recognition, respectively.
The details are discussed in Section IV-D.

D. ICARUS Overview: Example of Inference

We show an example inference phase in Fig. 5, which is
performed once the models are trained and incorporated. Note
that the selected ‘CSP network’ (Pipeline 3) and ‘fusion
network’ (Pipeline 4) from Fig. 4 are used for inference
in Fig. 5. Depending on the available computation resources,
these networks are used to predict whether DSSS anomaly
is present within the baseline LTE or not. Once an anomaly
is detected, the same IQ samples and CSP features are fed
to the selected network of ML-only Stage 2 for modulation
recognition.
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Fig. 5. The ICARUS inference framework. Here the input signal is
either rLTE(t) or rLTE+DSSS(t).

IV. DETAILED DESIGN OF THE ICARUS FRAMEWORK

A. Computing CSP Features

The anomalous baseline signal, i.e., LTE with DSSS present,
exhibits discriminative cyclostationary properties relative to
the baseline LTE signal. Let the IQ samples of rLTE(t) and
rLTE+DSSS(t) be represented as IQLTE and IQLTE+DSSS. IQLTE

and IQLTE+DSSS are processed using CSP to generate low-
dimensional feature matrices CSPLTE and CSPLTE+DSSS. We
represent one block from IQLTE and IQLTE+DSSS as BLLTE

and BLLTE+DSSS, respectively, with block length of BLN .
The number of blocks NumBL in IQLTE and IQLTE+DSSS

can be computed as IQLTE

BLN
and IQLTE+DSSS

BLN
, respectively. The

CSP features computed from the bth block BLb
LTE can

be represented as CSP b
LTE = {(fj , αj , cj , sj)}

NLTE
CSP,b

j=1 , where
NLTE

CSP,b is the number of CSP features estimated for that
block. Similarly, we denote the features for BLb

LTE+DSSS as:

CSP b
LTE+DSSS = {(fj , αj , cj , sj)}

NLTE+DSSS
CSP,b

j=1 , where NLTE+DSSS
CSP,b is

the variable number of CSP features estimated for the bth

block of IQLTE+DSSS.

B. Signal Processing + ML- Stage 1: Anomaly Detection
After computing the CSP features, both the IQ samples and

CSP features are passed through the Stage 1 of our hierarchical
classifier. Here, we predict the presence of an anomaly using
one of the 4 different pipelines.
Pipeline 1: Pure signal processing. In the first pipeline,
we use only signal-processing methods to detect the presence
of DSSS within the LTE baselines by processing the computed
features CSPLTE and CSPLTE+DSSS. Since we do not require
any form of training, this approach can directly be used
‘out of the box.’ Pipeline 1 consists of an application
of the strip spectral correlation analyzer (SSCA) algorithm
followed by a cycle-frequency pattern recognizer (CPR). The
SSCA produces the {F, A, C, S} feature matrix and the CPR
processes that matrix and outputs a decision.
• SSCA. The SSCA fSSCA(.) is a conventional time-smoothing
method for estimating the SCF for all cycle-frequencies on a
cycle-frequency grid with spacing equal to the native cycle-
frequency resolution of all CSP methods, which is the re-
ciprocal of the processed data length [23], [24]. Therefore,
no cycle-frequency exhibited by the input data is missed due
to a search-pattern deficiency. The SSCA itself produces the
large set of point estimates of the spectral correlation function
that cover the diamond-shaped CSP principal domain. To
detect which of these millions of point estimates correspond
to true cycle-frequencies exhibited by the data, the spectral
correlation estimates are converted to correlation-coefficient
estimates by the usual normalization of correlation by the
geometric mean of the variances of the involved quantities.
This processing step produces the spectral coherence, which
can be conveniently thresholded with a single threshold across
the principal domain.

A final processing step combines the detected cycle-
frequencies across multiple values of spectral frequency f for
each detected cycle-frequency α (see Fig. 3), leading in most
cases to a small values of NLTE

CSP,b and NLTE+DSSS
CSP,b and generates

{F, A, C, S} feature matrix.
• CPR. The design of the CPR requires knowledge of the
expected patterns of CSP features, which depend on the
probabilistic parameters (spectral moments) of the LTE and
DSSS anomaly signals. Downlink LTE signals have relatively



weak cyclostationarity, but also the particular α values and
the numbers of significant cycle-frequencies NLTE

CSP,b for the
bth block depend on time as the LTE signal goes through
various changes due to unpredictable user loads, framing, and
movement of pilot subcarriers. The DSSS anomaly signals,
on the other hand, have highly predictable and time-invariant
cycle-frequencies that are harmonics of the code-repetition
rate, including the chip rate and, in the case of BPSK, the
doubled-carrier frequency plus such cycle-frequencies. Both
kinds of cycle-frequencies will be found at the output of the
SSCA when both the anomaly and LTE are present. The job of
the CPR is to blindly find the cycle-frequency patterns that are
present. It does this by looking for sets of cycle-frequencies
with harmonic relations and joining them together.

Ideally the CPR would produce two decisions whenever
both the anomaly and LTE are present: DSSS and LTE.
Due to the time-variant and weak nature of the LTE cycle-
frequencies, typically the output of the CPR with only LTE
present will consist of no found patterns, whereas when the
DSSS signal is present in isolation or is combined with
LTE, the typical output would be DSSS or a generic cycle-
frequency chain. In Pipeline 1, we decide that the DSSS
anomaly has been detected when the DSSS or cycle-frequency-
chain decision is made with a cycle-frequency chain that has
elements exceeding 100 kHz, since the typical DSSS anomaly
will have its strongest cycle-frequency that is equal to the chip
rate, and this will be a large fraction of the occupied LTE
bandwidth. That is, DSSS will produce long cycle-frequency
chains with members with large α and LTE will produce at
most small frequency chains with small α as the strongest LTE
cycle-frequencies are well below 100 kHz.

We define the CPR domain knowledge as a function fCPR(.)
operating on the 4-tuple {F, A, C, S} matrix. Hence, in this
case A(.) is defined as: A(.) = fCPR(fSSCA(.)).
Pipeline 2: ML using IQ samples. The training data matrix
for IQ is composed of the IQ samples IQLTE and IQLTE+DSSS

from NA
t baseline LTE and anomalous baseline LTE+DSSS

signals, respectively. This data matrix is denoted as: XA
IQ ∈

RNA
t×dIQ0 ×2. The (dIQ0 × 2) gives the dimensionality of the IQ

samples where 2 accounts for the I and Q components. The
set of the output labels are: LA = {LTE, LTE + DSSS}. We
consider the label matrix YA ∈ {0, 1}NA

t×|LA| that represent
the one-hot encoding for either DSSS present or absent.

The penultimate (second to last) layer of each neural net-
work captures the latent representation of the input data [25].
We assume that the penultimate layer of this network has dIQA
neurons. Hence, we represent the penultimate and ultimate
layer transformations with pIQ

θIQA
and fIQ

θIQA
, respectively, param-

eterized by weight vector θIQA . The pIQ
θIQA

maps the input to a
vector with dimension dIQA . The fIQ

θIQA
maps the input to the one-

hot encoded output. Formally, we define the penultimate and
ultimate layers of the IQ network as:

zAIQ = pIQ
θIQA

(XA
IQ), pIQ

θIQA
: RdIQ0 ×2 7→ RdIQA (3a)

sAIQ = σ(fIQ

θIQA
(XA

IQ)), fIQ

θIQA
: RdIQ0 ×2 7→ R|YA| (3b)

where zAIQ represents the extracted latent embeddings for
input data XA

IQ, σ : R|YA| 7→ (0, 1)|YA| signifies the Softmax
activation, and sAIQ is the prediction score of the network.
Overall the anomaly detection problem is solved using the
IQ network by: A(.) = argmaxσ(fIQ

θIQA
(.)).

Pipeline 3: ML using CSP features. The training data
matrix of CSP features XA

CSP ∈ RNA
t×dCSP0 ×4 is composed of NA

t

CSPLTE and CSPLTE+DSSS feature matrices from baseline LTE
and anomalous baseline signals, respectively. The dimension
of the CSP features are (dCSP0 × 4), where 4 implies the
{F, A, C, S} values. The representation of label matrix
Y ∈ {0, 1}NA

t×|YA| is same as earlier. The penultimate (with
dCSPA neurons) and ultimate layers of the CSP network are:

zACSP = pCSPθCSPA
(XA

CSP), pCSPθCSPA
: RdCSP0 ×4 7→ RdCSPA (4a)

sACSP = σ(fCSP
θCSPA

(XA
CSP)), fCSP

θCSPA
: RdCSP0 ×4 7→ R|YA| (4b)

where zACSP are the extracted latent embeddings for input data
XA

CSP, σ is same as earlier, and sACSP is the prediction score of
the network. Hence, the anomaly detection problem is solved
as: A(.) = argmaxσ(fCSP

θCSPA
(.)).

Pipeline 4: ML fusing IQ samples and CSP features.
In this pipeline, we leverage both the IQ samples and CSP
features as input to a complex neural network, called a
fusion network. The latent embeddings from the penultimate
layers of both IQ and CSP networks are concatenated [25] to
generate the combined latent feature matrix zA = [zAIQ; z

A
CSP] ∈

RdIQA +dCSPA . Layers that follow concatenation step form the fu-
sion network fFN

θFNA
(.), intuitively assign higher weights to either

IQ or CSP features depending on their relevance. Finally, the
prediction vector is generated through a Softmax activation:

sAFN = σ(fFN
θFNA

(zA)), fFN
θFNA

: RdIQA +dCSPA 7→ R|YA| (5)

In this pipeline, the anomaly detection problem is solved with:
A(.) = argmaxσ(fFN

θFNA
(.)).

C. ML-only Stage 2: Modulation Recognition

After the anomaly is detected within a signal, we propose
the second stage of hierarchical classifier to detect the modu-
lation techniques used in the DSSS. We use the Pipelines
2-4 for this task.
Pipeline 2: ML using IQ samples. In this case, the data
matrix of IQ samples XM

IQ ∈ RNM
t×dIQ0 ×2 constitutes NM

t

IQ samples of anomalous signals IQLTE+DSSS. The output
labels are: LM = {BPSK, QPSK}. The label matrix is YM ∈
{0, 1}NM

t×|LM| in the one-hot encoding representation to signify
either BPSK or QPSK modulation schemes. The penultimate
(with dIQM neurons) and ultimate layers of this IQ network are:

zMIQ = pIQ
θIQM

(XM
IQ), pIQ

θIQM
: RdIQ0 ×2 7→ RdIQM (6a)

sMIQ = σ(fIQ

θIQM
(XM

IQ)), fIQ

θIQM
: RdIQ0 ×2 7→ R|YM| (6b)

where σ : R|YM| 7→ (0, 1)|YM| is the Softmax activation, zMIQ
represents the latent embeddings and sMIQ is the prediction score
of the network. The modulation recognition problem is solved
as: M(.) = argmaxσ(fIQ

θIQM
(.)).



Pipeline 3: ML using CSP features. The data matrix of
CSP features XM

CSP ∈ RNM
t×dCSP0 ×4 has NM

t CSP features from
the anomalous baseline signals IQLTE+DSSS. The penultimate
(with dCSPM neurons) and ultimate layers of this IQ network as:

zMCSP = pCSPθCSPM
(XM

CSP), pCSPθCSPM
: RdCSP0 ×4 7→ RdCSPM (7a)

sMCSP = σ(fCSP
θCSPM

(XM
CSP)), fCSP

θCSPM
: RdCSP0 ×4 7→ R|YM| (7b)

where zMCSP and sMCSP hold the similar meaning as earlier.
The solution through this pipeline is represented as: M(.) =
argmaxσ(fCSP

θCSPM
(.)).

Pipeline 4: ML using IQ and CSP features. The combined
latent feature matrix zM is defined as: zM = [zMIQ; z

M
CSP] ∈

RdIQM +dCSPM . The fusion network fFN
θFNM

(.) is used to generate the
prediction vector following a Softmax activation:

sMFN = σ(fFN
θFNM

(zM)), fFN
θFNM

: RdIQM +dCSPM 7→ R|YM| (8)
Hence, the modulation recognition problem is solved as: M(.)
= argmaxσ(fFN

θFNM
(.)).

D. Algorithm for FLOP-efficient Pipeline Selection

While ICARUS strives to achieve faster inference from
both the stages of hierarchical classifier, it also aims to
maximize the accuracy of inference. Hence, ICARUS includes
Algorithm 1 that dynamically selects one pipeline out of four
for Stage 1, and out of three for Stage 2. In Pipelines
2-4, the higher-weighted neurons are more important for
generating a prediction [26] from the the NN models. Hence,
Algorithm 1 considers the viability of the Pipelines 2-4,
by ranking the corresponding NN models depending on the
number of important neurons they have to ensure the best
performance [26], while meeting the threshold of the FLOPS
supported by the device.
Stage 1: Formally, in the Stage 1 of ICARUS, Pipelines
2-4, information of CSP features (BLN , NumBL), and
floating point operations (FLOPs) threshold ThresFLOP are
fed to the Algorithm 1. The associated NN models are:
NIQ = fIQ

θIQA
, NCSP = fCSP

θCSPA
, and NFN = fFN

θFNA
. The importance

vectors of those NN models are calculated (Step 5) as:

InN =

Ln∑
l=1

|l|∑
i=1

αl||θi||22 + βl, n ∈ {IQ, CSP, FN} (9)

where l is the layer index, |l| is the total number of neurons
in layer l, θi is the weight of ith neuron, αl, βl ∈ RLn are
learnable parameters, Ln is the total number of layers of nth

network, ||.|| denotes l2 norm. This importance vector reflects
the number of important neurons a model has: the higher the
value, the greater the probability of the NN model to perform
more accurately [26]. Hence, we rank the NIQ, NCSP, and NFN

depending on their IN . Finally Algo. 1 chooses the best ranked
model, where the number of required FLOPs meets the FLOPS
configuration ( ThresFLOP ) of the given device. If none of
the NN models of Pipelines 2-4 satisfy the hardware
constraint (Step 14), the required FLOPs for Pipeline
1 is compared against the ThresFLOP . In case Pipeline
1 also fails to meet the ThresFLOP (Steps 18-21), the

Algorithm 1: FLOP-efficient Pipeline Selection
1: Inputs: Pipelines P1, P2, P3, P4, block length BLN ,

approximate number of blocks per signal NumBL,
and FLOPs count threshold ThresFLOP

2: Output: The selected pipeline PSelected

3: NIQ= model(P2), NCSP= model(P3), NFN= model(P4)
4: for each n ∈ {IQ, CSP, FN} do

5: Initialize the importance vector InN =
Ln∑
l=1

|l|∑
i=1

αl||θi||22 + βl

6: FLOPs count vector Fn
N = Calculate_FLOPs(Nn).

7: Kn = False
8: if Fn

N < ThresFLOP then
9: Kn = True

10: end if
11: end for
12: RN = Rank the networks based on the importance vector IN .
13: n = argmaxRN for n ∈ {IQ, CSP, FN} and Kn == True
14: if n == NULL then
15: FBLN = Calculate_FLOPs(BLN , NumBL)
16: if FBLN < ThresFLOP then
17: PSelected = P1
18: else
19: n = argmaxRN for n ∈ {IQ, CSP, FN}
20: PSelected = Get_pipeline(n)
21: end if
22: else
23: PSelected = Get_pipeline(n)
24: end if

pipeline with the NN model of highest IN is selected. The
selected pipeline PSelected then can be used for inference.
Stage 2: At this stage, the inputs to Algo. 1 are
only Pipelines 2-4 and ThresFLOP . Here, NIQ=fIQ

θIQM
,

NCSP=fCSP
θCSPM

, and NFN=fFN
θFNM

. The Steps 14-24 are skipped.

V. DATASETS COLLECTED FOR VALIDATING ICARUS

A. Synthetic Dataset with MATLAB-generated Waveforms
We generate a dataset of synthetic LTE and DSSS wave-

forms using MATLAB R2021b and combine them in an
emulated channel environment. We generate the LTE signal
sLTE(t) in FDD mode for downlink communication using
MATLAB LTE Toolbox 3.6 and a pulse-shaped variable-
parameter DSSS signal sDSSS(t). We assume the background
noise to be Gaussian distributed with IID components having
zero mean and unit variance. We generate the received baseline
LTE signal rLTE(t) by adding the LTE signal and noise, and the
received anomalous baseline signal rLTE+DSSS(t) by also adding
the DSSS signal. We create 408 frames of duration 80 ms
each at sampling rates ∈ {7.68, 15.36, 30.72} MHz, such that
120 frames contain rLTE(t), while the remaining 288 frames
contain rLTE+DSSS(t). For LTE signals, we use bandwidth
BWLTE ∈ {5, 10, 15, 20} MHz. Without loss of generality,
we consider same center frequency for the DSSS and LTE
signals. However, we consider different percentages of overlap
({25, 50, 75, 100}%) of the DSSS signals with the baseline
LTE signal, i.e. setting OBWDSSS equal to (%overlap

100 ×OBWLTE),
where OBWDSSS and OBWLTE are occupied BWs of DSSS
and LTE signals, respectively. OBWLTE equals (0.9×BWLTE)



and OBWDSSS equals ((1 + γ)× BWDSSS), with roll-off factor
γ = 0.5 used for square-root raised-cosine pulse shaping
of the DSSS signals. Furthermore, for the DSSS signals,
we use BPSK and QPSK modulation with linear-feedback
shift register-based PN sequences of length 2M − 1, where
M ∈ {6, 7, 8, 9, 10} is the number of registers. We consider
signal to noise ratio of the LTE signal SNRLTE ∈ [0,10] dB
and the SIR ∈ [0,10] dB.
Remark 1. This dataset is generated with precise control
over SNR and SIR parameters of the signals since the sig-
nals/sources are synthetic.
B. Indoor OTA-PAWR Dataset with srsLTE Waveforms

We collect this dataset from the NSF POWDER testbed [27]
of PAWR platform using srslte-otalab profile [28],
which provides resources for performing over-the-air (OTA)
operation in their indoor lab. This collection emulates a private
LTE network. We use one USRP X310 operating at 3.56 GHz
center frequency as an srsLTE eNodeB for transmitting LTE
FDD downlink signals. We use two USRP B210s operating
at 3.56 GHz center frequency, one as an srsLTE UE and
another for collecting the IQ samples of the downlink srsLTE
signal. The range of SNRLTE is [10.57, 15.94] dB. For creating
the anomalous baseline signal, we generate a synthetic DSSS
signal at the sampling rate of the collected srsLTE signal and
add them together. The parameter values for this dataset are
provided in Table I.
Remark 2. This dataset is collected in an indoor environment
with network traffic only from a single UE. We observe that
the number of subcarriers in the captured srsLTE signal is
significantly less than that in a commercial LTE signal, which
is a representative case for private LTE networks.
C. OTA-Cellular Dataset w/ Commercial Cellular Waveforms

In this dataset, also referred to as the ‘OTA-Cellular’ dataset,
we capture ambient downlink OTA LTE signals present in the
cellular PCS bands using USRP X310, after which we add
either synthetic DSSS (BPSK/QPSK) or OTA-captured DSSS
BPSK signals having the same sampling rate as the captured
LTE. Parameter values are shown in Table I.
Remark 3. This dataset captures the channel effects and is
representative of general scenarios where cellular LTE signals
are present from commercial network operators.
The OTA-PAWR and OTA-Cellular datasets are realistic as
they capture the real wireless channel artifacts and hardware
impairments in the LTE signals.

VI. EXPERIMENTAL ANALYSIS

A. Performance of ICARUS Anomaly Detection
NN architectures. The details of NN models fIQ

θIQA
(.), fCSP

θCSPA
(.),

and fFN
θFNA

(.) (discussed in Section IV-B) for the Stage 1 of
the hierarchical classifier are shown in Fig. 6. We exploit
categorical cross-entropy loss for training with a batch size
of 32 for 100 epochs. We use Adam [29] as the optimizer
with decay rate of (0.9, 0.999), L2 penalty of 0.0001, and the
learning rate of 0.0001. We use 80/20 train/test ratio for all
the experiments using Pytorch.

Table I: The parameter settings for the different data collection setup.

Settings Synthetic OTA-PAWR OTA-Cellular
(Section V-A) (Section V-B) (Section V-C)

Platform MATLAB POWDER (Indoor USRPs
(LTE Toolbox) lab) + MATLAB (Indoor lab)

LTE Signal Type Synthetic srsLTE OTA Captured OTA (Live)

DSSS Signal Type Synthetic Synthetic Synthetic/Captured

BWLTE (MHz) {5, 10, 15, 20} {5, 10} {5, 10, 15, 20}

%Overlap of DSSS {25, 50, 75, 100} [8.60, 99.69]

Registers in LFSR (M) {6, 7, 8, 9, 10} {6, 7, 8, 9, 10, 11}

Roll-off Factor (γ) 0.5 [ 0.1, 1)

Sampling Rates (MHz) {7.68, 15.36, 30.72} {5.76, 11.52} {7.68, 15.36, 30.72}

Frame Duration (ms) 80 {79.21875, 80} {4.267, 8.533, 17.067,
34.133, 68.267}

(#FramesLTE, #FramesLTE+DSSS) (120, 288) (500, 2000) (2430, 2430)

SIR (dB) [0, 10] [−10, 10] [−10, 10]

Center freq. offset for DSSS (MHz) 0 [−3.3715, 3.3387] [−1.4816, 1.4994]
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Fig. 6. Different optimal neural network architectures used for the two
stages of hierarchical classifier using: (a) IQ samples (Pipeline
2), (b) CSP features (Pipeline 3), (c) both (Pipeline 4).

Table II: Performance of ICARUS Stage 1, anomaly detection.

Datasets Block Acc. (%) of Pipelines
Lengths 1 2 3 4

131072 61.38 99.81 99.81 99.81
Synthetic 262144 69.30 99.6 100 100

524288 80.19 92.38 99.1 99.1

131072 50.68 100 62.01 100
OTA-PAWR 262144 32.56 100 80.68 100

524288 22.32 100 83.33 100

131072 75.80 96.75 80.62 98.95
OTA-Cellular 262144 81.77 93.75 81.16 97.96

524288 83.22 97.5 84.7 98.25

Block lengths. As mentioned in Section IV-A, CSP features
are computed block-wise from the collected IQ samples. One
block represents the chunk of IQ samples of a fixed length.
In our experiment, we consider three block lengths BLN : (a)
131072, (b) 262144, and (c) 524288 captured within 4−68ms,
to generate representative CSP features of the signals.

1) Performance of Different Pipelines: In the first set of
experiments, we evaluate the Stage 1 of the hierarchical
classifier that detects DSSS anomalies. The performance of
all the pipelines across different datasets is shown in Table II.
Pipeline 1 gives comparatively lower accuracy of 22%-
83%, but does not require any prior training.
Observation 1. We observe that fusion of both CSP and IQ
features in the Pipeline 4 gives better (for OTA-Cellular
dataset) or equivalent (for Synthetic and OTA-PAWR datasets)
performance (98-100%) than other NN-based pipelines (80-
97%), across all datasets (see Table II).

2) In-depth Study on Pipelines 2-4: Here, we per-
form more in-depth analysis of the performance for changing
RF environment. We also study how the other existing ML
approaches perform compared to Pipeline 3 of ICARUS.



Table III: SIR-wise acc (%) of anomaly detection on the Synthetic
dataset with block length 131072 and SNRLTE ∈ {0, 5, 10} dB.

LTE to DSSS IQ data CSP Features Fusion
Interference P2 P3 Logistic Naïve SVM P4
Ratio (SIR) Regression Bayes

0dB 100 99.81 90.56 99.81 99.81 100
5dB 99.43 99.81 88.1 99.81 98.67 99.81
10dB 55.87 73.86 65.09 72.45 73.77 73.86

Table IV: SNR-wise accuracy (%) of anomaly detection for 10dB
SIR on the Synthetic dataset with block length 131072.

Baseline IQ data CSP Features Fusion
SNRLTE P2 P3 Logistic Naïve SVM P4

Regression Bayes

0dB 53 59.09 58.19 57.06 57.62 59.09
5dB 54 81.81 74.01 81.92 81.92 81.81

10dB 55.68 84.65 71.18 79.66 83.61 84.65

We use the Synthetic dataset to conduct our experiments in
different controlled SIR and SNRLTE settings.
•Varying SIR. In Table III, we analyze how both the
Pipelines 2 and 3 perform with increasing SIR, where
higher SIR values imply the signal strength for LTE is con-
siderably higher than DSSS. The performance of ICARUS
decreases with increasing SIR, because a stronger baseline
LTE signal makes it difficult to detect the relatively low-power
DSSS signal. Further, we compare our proposed NN based
model with other ML based methods, such as logistic regres-
sion, SVM [30] and Naïve Bayes. We use a non-linear kernel
radial basis function (RBF) for the SVM implementation to
capture the non-linear boundaries between the labels. We
observe that SVM and Naïve Bayes yield similar performance
to the NN used in Pipeline 3. However, these methods do not
infer the decision from the high dimensional IQ data.
Observation 2. If ICARUS must predict anomalies using only
CSP features, the SVM and Naïve Bayes suffice; they are as
effective as NNs with lower complexity (see Table III).
Observation 3. We observe a sudden drop in performance of
Pipelines 2-4 and ML methods on changing SIR from
5dB → 10dB SIR, compared to 0dB → 5dB. This is because,
on average, the DSSS power is less than the noise power for
10dB SIR, unlike the other SIR settings (see Table III).
•Varying SNR. Next, we show results from an SNR-based
study for all the pipelines and competing methods in Table IV.
Increasing SNRLTE while keeping SIR fixed implies decreasing
the strength of background noise relative to the LTE signal
strength, which in turn decreases it with respect to the DSSS
signal strength as well. Our intuition is that capturing discrim-
inative properties within DSSS signals through CSP features
becomes easier in such cases.
Observation 4. With increasing SNR at 10dB SIR, all the
pipelines and competing methods show monotonic improve-
ment (see Table IV).
• Comparison with the state-of-the-art. We compare the
performance of ICARUS with state-of-the-art techniques of
DSSS detection [1] and [18], with results shown in Table V.
We limit the comparison study to the above literature, as
the other techniques differ from ours with respect to either:
(a) spectrum of interest [14], [13], (b) anomaly (DSSS) of
interest [15], (c) focus on different performance metrics [7],

[17], [19]. It is evident that while state-of-the-art provides
∼ 100% accuracy for some studies, it is limited to synthetic
data or involves signal processing solutions without elapsed
time considerations. We note however that ICARUS returns
close to ∼ 100% accuracy when validated on real OTA-indoor
and cellular datasets with standard compliant waveforms.
Table V: Comparison of ICARUS with state-of-the-art techniques for
anomaly detection on different signals.

Methods Baseline Anomaly Architecture Acc (%) Datasets
Signal Signal

Ma et al. [1] FM DSSS Signal
Processing

55-98 Synthetic

Zhang et al. [18] - DSSS Signal
Processing

10-100 Synthetic

ICARUS LTE DSSS Fusion-based
ML (P4)

98-100 Synthetic, OTA-
indoor, OTA-cellular

(a) Synthetic (b) OTA-PAWR (c) OTA-Cellular
Fig. 7. Performance of ICARUS Stage 2, modulation recognition.

B. Performance of ICARUS Modulation Recognition

NN architectures. The details of the proposed NN models
fIQ

θIQM
(.), fCSP

θCSPM
(.), and fFN

θFNM
(.) (discussed in Section IV-C) for the

Stage 2 of the hierarchical classifier are also shown in Fig. 6.
We use similar train/test parameters as used for anomaly
detection in Section VI-A.
Performance of different pipelines. In this case, we only ap-
ply Pipelines 2-4 on different datasets, shown in Fig. 7.
Observation 5. We observe that fusion of both IQ and CSP
features in Pipeline 4 performs best (67%- 99%) across
all datasets for recognizing the DSSS modulation (see Fig. 7).

C. Analysis of ICARUS FLOP-efficient Pipeline Selection

We perform this set of experiments on OTA-Cellular dataset
as it captures the most challenging RF scenarios of real-world.
Impact of compute-hardware FLOPS-constraints on in-
ference time. We calculate the FLOPs count of the trained
models for Pipelines 2-4 by using ptflops python library.
However, the FLOPs count of Pipeline 1 is dominated
by the cost of the SSCA calculation. Recall, in Pipeline
1, the SSCA is followed by a cycle-frequency pattern rec-
ognizer, which does not impact significantly the total FLOPs
count [23], [24]. Overall, the required FLOPs counts for the
Pipelines 1-4 in Stage 1 are: 24.6 MFLOPs, 283.42
GFLOPs, 135.18 KFLOPs, and 283.43 GFLOPs, respectively.
Similarly, FLOP counts for the Pipelines 2-4 in Stage
2 are: 450 MFLOPs, 400 KFLOPs, and 1.5 GFLOPs, respec-
tively. In Table VI, we show the inference times of Stage 1
varies depending on the platform the pipeline is executed in,
due to the different supported FLOPS in them. We consider
three different computing platform for this study: (a) Intel(R)
Core(TM) i7-7820HQ CPU @2.90GHz (38.05 GFLOPS), (b)
NVIDIA 2080 Ti GPU (13.45 TFLOPS), and (c) NVIDIA
A100 GPU (312 TFLOPS).
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Fig. 8. The predicted best pipeline on a specific hardware from Algo. 1 (refer to (a) and (c)) has the best performance during the inference
time (refer to (b) and (d)) for OTA-Cellular dataset. The mean and variance of the accuracies over all the three considered block lengths
are presented in (b) and (d) in (X , Y ) format. Similarly, the mean (over block lengths) of the importance vector (Eq. 9) in (a) and (c) is
represented as InN , n ∈ {IQ, CSP, FN}. The inference times in (b) and (d) are also averaged over the three block lengths. The time constraint
is set to 1s.

Observation 6. In Table VI, the inference time does not
scale when the FLOPs requirement of a model is lower, e.g.,
Pipeline 3. However, we observe ∼ 1672× and ∼ 7.6× of
speed up for a A100 GPU as compute-hardware than i7 CPU
and 2080 Ti GPU, respectively, for Pipeline 4 at Stage 1.

Performance of pipeline selection Algo. 1. In this case,
we validate the proposed FLOP-efficient pipeline selection
Algo. 1 for both Stage 1 and Stage 2. For tractable analysis,
we consider only CPU (Intel i7) and GPU (NVIDIA A100) as
the compute-hardware platforms, which we refer to as CPU
and GPU regimes. In Fig. 8(a), we show the selected pipelines
from the Algo. 1 are Pipeline 3 and Pipeline 4 for the
CPU and GPU regimes, respectively, for Stage 1. However,
for Stage 2, the Algo. 1 chooses Pipeline 4 for both the
regimes as it satisfies both regimes’ FLOPS requirement with
highest importance vector, see Fig. 8(c). Next, in Figs. 8(b)
and 8(d), we run all the available pipelines in both the regimes
to test which one gives the best performance while satisfying a
timing threshold of 1s. In Algo. 1, we consider the machine’s
FLOPS configuration as ThresFLOP , and hence the time
constraint is taken as 1s. Note that when the FLOP-intensive
Pipelines 2 and 4 run in the CPU regime, they result in
longer inference time. Hence, the same Pipelines 3 and
4 are the best ones at Stage 1 for the CPU and GPU regimes,
respectively (see Fig. 8(b)). This demonstrates the efficacy of
Algo. 1 for selecting the optimum pipeline depending on the
FLOPS of the compute-hardware platform.

Observation 7. Pipeline 3 and 4 for Stage 1, and
Pipeline 4 for Stage 2 are selected through Algo. 1 as they
best perform under the imposed timing constraints. This result
is specific to the supported FLOPS of the compute-hardware
(CPU or GPU), see Figs. 8(a) and (c).

Observation 8. Pipeline 4 detects the anomaly within ∼
40ms and predicts the modulation scheme of it within ∼ 3ms
on an average in a GPU regime, while giving ∼ 98% and

∼ 70% accuracy, respectively (see Figs. 8(b) and (d)).
Table VI: Inference times (s) of Stage 1 on different computing
platforms for the OTA-Cellular dataset.

Block Intel i7 CPU 2080Ti GPU A100 GPU
Length (38.05 GFLOPS) (13.45 TFLOPS) (312 TFLOPS)

P1 P2 P3 P4 P2 P3 P4 P2 P3 P4

131072 0.97 68.80 0.0003 63.23 0.27 0.018 0.29 0.028 0.0004 0.035
262144 1.78 22.86 0.0003 20.97 0.28 0.036 0.28 0.025 0.00045 0.033
524288 3.96 11.99 0.0004 108.88 0.30 0.076 0.31 0.031 0.00047 0.05

VII. CONCLUSIONS

Underlay signals within a high-power baseline transmission
can carry information, and are difficult to detect. ICARUS
shows how detection of such hidden signals could be per-
formed, especially if these anomalies exhibit noise-like prop-
erties. ICARUS incorporates the idea of using both CSP
features and IQ samples to detect such anomalous transmis-
sion by using both signal processing and a ‘black box’ of
machine learning with information fusion. We also propose
an algorithm to dynamically select the appropriate pipeline
to detect an anomaly and recognize its modulation scheme,
under available hardware constraints. ICARUS is validated on
diverse datasets to demonstrate improvement over state-of-the-
art methods. Future scopes include the fusion of CSP features
with privacy preserving representation of signal such as spec-
trogram and extension towards other computing platforms. The
authors have provided public access to their data at [31].
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