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Abstract—Network densification through the deployment of
WiFi access points (APs) is a promising solution towards achiev-
ing high connectivity rates required for emerging applications.
A critical first step is to discover an AP before an active
association between the client and the AP can be established.
Legacy AP discovery procedures initiated by the client result in
high latency in the order of a few 100 ms and waste spectrum,
especially when clients need to frequently switch between multiple
APs. We propose CSIscan that exploits the broadcast nature
of WiFi channels by embedding discovery related information
within an AP’s ongoing regular transmissions. The AP does
this by intelligently distorting the transmitted OFDM frame by
inducing perturbations in the preamble, and these injected ‘bits’
of information are detected via changes in the perceived channel
state information (CSI). A deep learning framework allocates
the optimal level of distortion on a per-subcarrier basis that
keeps the resulting packet error rate to less than 1%. Existing
clients perceive no changes in their ongoing communication, while
potential new clients quickly obtain discovery information at the
same time. We experimentally demonstrate that CSIscan reduces
the overall WiFi latency from 150 ms to 10 ms and improves
spectrum utilization with ∼ 72% reduction in the probe traffic.
We show that CSIscan delivers up to 40 discovery information
bits in the outgoing WiFi packet in an indoor environment.

I. INTRODUCTION

Given the growth of multimedia applications, data traffic
is poised to increase annually at an unprecedented rate. Cisco
predicts the majority of the total IP traffic by 2022 will be over
WiFi [1], thus making it the dominant wireless technology of
the future. To support this traffic, total public WiFi hotspots
will grow globally to 549 million by 2022, suggesting that
network densification is inevitable. While upcoming standards,
such as 802.11ax [2] improve spectrum utilization through effi-
cient time/frequency resource allocation via OFDMA, higher-
order modulation schemes like 1024-QAM, spatial reuse via
multi-user(MU) MIMO, and interference management via
basic service set coloring, a crucial first step involved in
discovering APs has not evolved over a decade. Relying on
costly and legacy handshake of standard management packets,
such as beacons and probes for the discovery of APs, will
not scale with network densification in the coming years.
For example, in passive discovery, an AP broadcasts beacons
typically in 100 ms intervals that quickly adds up in hot spots
with hundreds of APs. In active discovery the AP must respond
to every probe request sent by potential clients, creating
a management traffic flooding situation [3]. The problem

Figure 1: Overview of CSIscan: A WiFi network with APs and
clients operating on channel X. AP embeds discovery information
by controlled perturbation of the legacy preamble (L-LTF) through
an FIR filter. Clients that wish to discover and associate with an AP
analyze CSI to extract discovery information.

exacerbates in crowded or ultra-dense environments, such as
sports arenas and large conferences. As reported in [4]–[6],
excessive attempts to discover APs not only lead to severe
energy wastage in client devices but also reduce the overall
WiFi throughput.Thus, a fundamental change is needed in
the way clients discover APs. The proposed CSIscan takes
a step towards this direction by addressing the problems of
low spectrum utilization and WiFi latency.

A. Spectrum Utilization, WiFi Latency

A measurement campaign in our university campus (Sec. II)
showed that up to ∼19% of the spectrum airtime is occupied
by management traffic; of which ∼80% are merely redundant
AP discovery packets. To increases the discovery likelihood
at distant locations, these packets are sent at the lowest
modulation thereby reducing the effective bit rate. As the
discovery traffic grows over time, the efficiency of spectrum
utilization is considerably reduced. Despite tremendous growth
in PHY data rates, high WiFi latency for a client to reach AP
remains a bottleneck for emerging standards. Recent studies
show 25 ms of WiFi latency causes 2.5 seconds delay in
page load time for popular websites such as, Google and
Facebook [7], which is unacceptable to most users [8].
Therefore, we examine the impact of active discovery, an
inevitable precursor to establish a WiFi connection, on the
WiFi latency. Legacy AP discovery methods are shown to
be time-consuming [9], [10]. This problem further worsens
in standards, such as 802.11ad/ay, that increase the number978-1-7281-6992-7/20/$31.00 ©2020 IEEE



of channels to be scanned in tri-band (2.4/5/60 GHz) APs
or require beamforming with precise mapping of Tx and Rx
antenna sectors during the beam-searching algorithm. Thus,
triggering discovery during ongoing communication results
in spikes in latency, affecting the QoS of existing applica-
tions [11]. A simple experimental setup in Sec. II-B shows the
problems faced by clients in sub-6GHz dual-band operation.
WiFi latency increases by up to 30x when the client triggers
active discovery. This shows that legacy AP discovery will
not scale as new unlicensed or shared spectrum gets added to
existing WiFi bands; worsening the problem for high-density
network deployments with a large number of APs present in
close proximity, and where several thousands of WiFi clients
keep switching APs to get better connectivity.

B. Proposed Solution

We propose CSIscan, wherein the AP encodes information
by introducing subtle perturbations within the preamble at
the PHY layer for all outgoing packets. These modifications
are achieved by introducing phase shifts [−φmax, φmax] in
symbols of the maximum number of OFDM subcarriers Nmax
(see Fig. 1) The connection of already associated clients is
not impacted with packet error rate (PER) staying within
1%. However, new clients do not need to rely on discovery
packets, as any outgoing packet from AP has relevant dis-
covery information encoded. Following this, the client sends a
targeted discovery request in a specific channel, after analyzing
all the discovery information in modified packet preambles.
While the proposed CSIscan is suitable for AP discovery,
we envision that embedding information in the preamble
has a wide range of applications that have stringent timing
constraints on latency. For example, CSIscan can deliver time-
critical emergency messages to industrial robots in the domain
of Industrial IoT with latency constraints of < 10ms.
•Research Challenges in CSIscan: CSIscan introduces mod-
ifications to the long training field (L-LTF) portion of the
preamble, available in the latest as well as legacy standards,
at the AP-side by passing corresponding IQ samples through
a finite impulse response (FIR) filter. At the client side, these
changes are observed in the estimated CSI, i.e., information
is decoded by analyzing the locations and height of CSI
phase patterns. The first research question we tackle is how
to map the location (index of the modified subcarrier) and
height (giving the phase shift by which the preamble symbol
is distorted) in the CSI phase pattern reliably to specific filter
coefficients used by the AP. Secondly, modifications to the
legacy preambles through FIR filtering has a similar effect to
impairments caused by the wireless fading channel. CSIscan
does not alter traditional channel equalization algorithms used
by the client that compensate the combined effect of both
natural and synthetic impairments. Therefore, we need to
distort IQ samples in a principled manner, such that these
changes are not mistaken for random channel effects, and yet
adequately compensated through equalization. For an ideal,
static channel, CSIscan finds a deterministic bound (i.e., pre-

set φmax and Nmax) on the permissible modification to the
IQ samples to guarantee the PER constraint of 1%.
•Role of Learning in CSIscan: To address these challenges,
CSIscan leverages a Convolutional Neural Network (CNN)
that exploits spatial and temporal shift-invariant features to
learn the channel and provides as an output the optimal combi-
nation of Nmax and φmax. This ensures the maximum number
of bits are encoded without impacting the PER of transmis-
sions. CSIscan trains the CNN with CSI measurements of
ongoing transmissions to select Nmax and φmax at the AP.
This allows the AP to automatically adapt its information
overlay rate that benefits the discovery process. Deploying
CSIscan in the real world network requires retraining of
the CNN, which is a time-consuming and resource-hungry
process. It is often impractical to collect and store vast amounts
of CSI measurements to use them as training data on-site. We
overcome this issue through supervised domain adaptation, a
sub-discipline of machine learning that deals with scenarios
in which a model trained on a source distribution is used in
a different (but related) target distribution [12]. We first train
the CNN using the CSI measurements by passing the data
transmissions through a rich set of channels simulated using
indoor channel models. In the actual network deployment, we
fine-tune the CNN model through domain adaptation using the
model trained with simulated data and partially retrain it.

C. Summary of Contributions

1) We present CSIscan, a spectrum-efficient and low-latency
AP discovery method for WiFi clients. The key innovation
behind CSIscan is to overlay discovery information by
inducing synthetic IQ variations into the legacy preambles
of ongoing transmissions from APs without impacting its
PER beyond the pre-set threshold. We develop an encoding
scheme to map discovery information into the coefficients
of an FIR filter used by the AP. (Section III)

2) We design a CNN to determine the optimal selection of
Nmax and φmax under varying channel conditions. For
a realistic network deployment, we train the CNN model
using supervised domain adaptation. This reduces average
training time by 64 ms and achieves 93% prediction accu-
racy, even with limited available training data. (Section IV)

3) We implement a proof-of-concept testbed to demonstrate
and evaluate CSIscan using a USRP based AP and client
in realistic indoor environments. CSIscan improves the
spectrum utilization of the network by reducing 72% of the
discovery traffic. The long-tail (99th percentile) WiFi la-
tency at the client is reduced by 95%. CSIscan successfully
delivers up to 40 bits in each outgoing packet to clients as
distant as 16 ft from the AP without reducing PER beyond
1%. (Section V)

II. STUDY OF AP-CLIENT DISCOVERY

We conduct a measurement study to provide real-world
evidence of problems due to active discovery and how CSIscan
tackles them.
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Figure 2: Demonstrating Active Discovery and CSIscan. a) In 2.4 GHz, probe responses are received at the client after MaxCT, most of
which are retried. b) In 5 GHz, most probe responses arrive within MinCT at the client, resulting in unnecessary wait times. c) In CSIscan,
the client decodes CSI from preambles of all packets, to choose one strong channel, and sends a single probe request on that channel only.

A. Active Discovery

Fig. 2a and 2b show the process of active discovery in 2.4
and 5 GHz, respectively. The client sends a probe request on
a particular channel and waits for at least MinChannelTime
(MinCT) to detect any channel activity. If the client senses
any activity during MinCT, it waits until MaxChannelTime
(MaxCT) to potentially receive probe responses from oper-
ational APs. After MaxCT, the client switches to the next
channel and sends a new probe request. MinCT and MaxCT
are timing parameters set in the client device that directly
impacts its AP discovery time and number of discovered
APs. Many prior works propose strategies to find optimal
bounds on MinCT and MaxCT [13], [14]. These strategies
are client-centric to expedite the discovery and do not reduce
low bit rate probe traffic in the network. Further, the optimal
selection of these parameters is application dependent as well
as dynamics of the network including the deployment and
load [15]. Stationary clients have been shown to trigger active
discovery frequently resulting in fake handovers and injecting
unnecessary probe traffic in the network [4], [16]. Next, we
study the impact of active discovery from two perspectives:
(i) the spectrum wastage and (ii) the latency at the client.

B. Impact of Active Discovery

1) Spectrum Wastage: We collect network traffic traces in a
university building that has 35 WiFi APs and ≈ 200 students
at any given time. We use a laptop with Ubuntu 16.04 OS
and Atheros AR9464 WiFi chipset in monitor mode, and
without loss of generality, we capture traffic on channel 6
(2.4 GHz) and channel 128 (5 GHz). Overall, we observe an
average of 3917 and 992 probe packets per minute, in 2.4 GHz
and 5 GHz, respectively. We delve deeper to understand the
significance of these numbers by studying the collected traffic
in sub-traces of 22ms duration each. We choose this duration
empirically to determine the statistic for the probe traffic and
metrics such as inter-packet arrival time, by processing traffic
files with minimal computational time. We observe:

At 2.4 GHz – 62% of the probe responses reach a client
after MaxCT. This shows that in a network with high conges-
tion or dense deployment, the AP may not find transmission
opportunities before MaxCT, despite hearing probe request
from the client. Since after MaxCT, the client moves on to the

next channel, probe responses sent by APs waste spectrum.
Next, 75% of the total probe responses are retry packets.
In a highly congested network, either the probe response or
the corresponding acknowledgment (ACK) may be lost as
shown in Fig. 2a. Without an ACK, AP retransmits the probe
response, further congesting the network. During an active
discovery, a probe request from the client on one channel
can be unintentionally decoded in adjacent channels. Upon
hearing such requests, not only APs operating on the client’s
chosen channel but, also others in adjacent channels reply
with probe responses; thereby, exaggerating the amount of
probe traffic. These problems in 2.4 GHz reduce the overall
spectrum utilization. Standards operating in 5 GHz bands may
circumvent this issue partly by using fully non-overlapping
channels. However, future standards like 802.11ax support 2.4
GHz as well. Therefore, the problem needs to be addressed.

At 5 GHz – Interestingly, we observe that 72% probe
responses from APs were transmitted within MinCT after the
client triggers the probe request, as shown in Fig. 2b. This is
because most of 5 GHz clients use 6 Mbps rate to transmit
these probe packets. However, here the client continues to
listen on the channel for MaxCT despite receiving most of
the probe response within MinCT. Thus, the client wastes a
significant amount of airtime in waiting for probe responses.

2) WiFi Latency at the client: Consider a client and an AP,
where the former triggers active discovery every 2 minutes.
We study the impact of the interleaved discovery initiation
on the latency observed at the client to reach the AP. We
disable all background traffic as well as the default network
managers to obtain an accurate measurement. We use the
Ping [17] utility to record latency [11]. Fig. 3 plots CDF of
the WiFi latency at the client when active discovery is – i) not
triggered, ii) triggered periodically. With no active discovery,
the latency remains at a median value of ∼5.5 ms; whereas
with periodic active discovery, it is ∼ 5.7 ms. However, the
97th percentile and 99th percentile are around 35 ms and 125
ms, respectively with the latter. The zoomed-in inset shows
that the latency shoots up from 20 ms to 150 ms immediately
after active discovery is triggered. Unfortunately, we observe
increased latency for the next few seconds as well. This is due
to momentary deferring of discovery packets, because kernel
transmit/receive queues are filled-up with ping packets. The
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Figure 3: WiFi latency at the client to reach the AP. In the absence of
active discovery, the latency remains within 15 ms; however, when
the discovery is triggered it shoots up to 150 ms.

long tail of latency caused by the active discovery is critical
because it can lead to multiple seconds of application-level
delays resulting in longer page loads, disrupt real-time, or
time-critical services like VoIP, ultimately degrading the users’
quality of experience [18].

C. Motivation for CSIscan for WiFi AP Discovery

As opposed to receiving a beacon every 100 ms, or sending
a probe request every 15 seconds [19], a client in densely
populated WiFi network receives any MAC layer packet every
250 µs. Irrespective of the packet type, a WiFi client performs
preamble detection and CSI estimation for decoding every
transmitted packet. Then, it extracts MAC layer information
from the PHY layer payload to decide if the packet is destined
for the client. If not, then the client discards the packet.
CSI estimation is performed to negate the channel distortions
caused by multipath and fading. CSIscan exploits the broadcast
nature of WiFi channels with a simple idea – Since every WiFi
client decodes the preamble of every packet transmission, the
client no longer needs to wait for a beacon or probe if the
AP embeds discovery information in these preambles. This ap-
proach makes discovery packets redundant, instead it leverages
packets of any type that are anyways transmitted. The subtle
perturbations to the preamble at the PHY introduced by the
APs cause variations in CSI, which are estimated by the client
and used to extract discovery-related information. Of course,
any distortion of the regular packet preamble must not impact
the packet-error-rate of the ongoing communication.

The client listens on each channel for CSIscan channel
time (CSIscanCT) and obtains discovery-related information
by passively processing CSI of incoming packets on that
channel (see Fig. 2c). The value of CSIscanCT is derived
from measuring the median of the inter-packet arrival time of
traffic at an AP and broadcast in its beacons. After processing
the discovery information from all the channels, the client
selects an appropriate channel to transmit a single probe
request to discover a viable AP on that channel; thereby,
limiting the number of probe responses. Thus, CSIscan reduces
spectrum wastage due to excessive probe traffic by eliminating
redundant probe traffic on other channels, and enabling a client
to spend time considerably lower than MaxCT.

III. DESIGN OF CSISCAN

In this section, we discuss how CSIscan modifies the
outgoing packets, the challenges associated with implementing
CSIscan, and how learning helps to solve them.

A. Encoding and Decoding with CSIscan

1) Intentional modifications at AP using FIR filtering:
A WiFi transmitter includes a known LTF sequence in the
preamble that is leveraged at a receiver to estimate CSI
using channel estimation methods [20]. CSI estimation is a
prerequisite step for data decoding that quantifies the dis-
tortions encountered by wireless signals due to fading and
shadowing. Since Legacy LTF (L-LTF) is a mandatory field
in all outgoing packets irrespective of standards, CSIscan
leverages L-LTF towards developing a standard-independent
information embedding technique.

CSIscan modifies L-LTF in real-time using discrete causal
FIR filters. These filters are advantageous because they – i)
do not depend on future inputs, only on past and present
ones, ii) are represented as a weighted and finite term sum
enabling accurate prediction of the output for any given input.
CSIscan designs FIR filter in the frequency-domain that is
described as a finite sequence of M complex filter coefficients.
As L-LTF is composed of two time-domain OFDM symbols,
we first convert the filter into the time-domain using inverse
FFT to create its impulse response and then apply it through
convolution with L-LTF symbols. The filter coefficients only
distort the phase of L-LTF symbols at the subcarrier level and
not their amplitude. This is required, as amplitude distortion
changes the average power of the transmitted signal that
adversely affects ongoing communication.

2) Mapping discovery information into FIR filter coeffi-
cients: We define the FIR filter φ̄ with 64 complex coefficients,
i.e., φ̄ = [φ−32, · · · , φ−1, φ0, φ1, · · · , φ31], where φk = e

jπθk
180

and θk is the phase shift (in degrees) introduced in kth sub-
carrier of observed CSI post-filtering. We match the indexing
scheme {−32, · · · , 31} to that of 802.11 OFDM subcarrier
mapping. We choose 64 coefficients, since the legacy preamble
in 802.11ax/ac is always constructed using 64 subcarriers in
20 MHz of OFDM channel.

Each L-LTF OFDM symbol is constructed by mapping
a known sequence of ±1 into 52 out of 64 subcarriers
during IFFT operation, whereas the remaining 12 are null
subcarriers. CSIscan intentionally injects phase distortions in
this sequence at the subcarrier level by carefully choosing
coefficients of φ̄. CSIscan treats 12 indexes as null subcarriers
({−32, · · · ,−27, 0, 27, · · · , 31}) as don’t care. This implies
that information bits are mapped in the remaining 52 sub-
carriers with indexes {−26, · · · ,−1, 1, · · · , 26}. We divide
52 subcarriers into two fields a) discovery-rate and b)
discovery-data. The discovery-rate conveys cho-
sen bounds for phase shifts and the number of subcarriers
that are essential to design the FIR filter at the AP and
decode embedded bits at clients. These bounds ultimately
determine the total number of embedded discovery bits,
henceforth referred to as rate of discovery information. The



Figure 4: Illustration of CSIscan encoding scheme. Discovery bits
01000100 are mapped in subcarriers with indexes from −22 to −15.
The first 4 bits 0100 indicate locations of subcarriers, i.e., 0 and 5
within the group of 8 subcarriers (refer mapping table for Nmax =

13). Subsequent bits 01 represents the phase shift of −20◦ while
00 represents the phase shift of −40◦ at 0th and 5th subcarriers,
respectively (see table for θmax = 40◦).

discovery-rate field spans first 4 subcarriers with in-
dexes {−26,−25,−24,−23}. The discovery-data field
spans the remaining subsequent 48 subcarriers with indexes
{−22, · · · , 26}. CSIscan selects a subset of subcarriers from
this field to encode discovery bits. Some examples of informa-
tion that can be embedded in the discovery bits are AP load
and channel utilization.

We further divide discovery-data field into 6 groups
sequentially, with each group consisting of 8 subcarriers. This
is done to reduce the computational complexity of decoding
operation at clients. Consider, Nmax and θmax are the upper
bounds selected while designing the FIR filter to keep the
PER of ongoing communication under control. Out of the total
number of subcarriers Nmax, we reserve one subcarrier in
discovery-rate field. We divide the remaining Nmax−1
subcarriers into 6 groups, i.e, L = bNmax−1

6 c subcarriers in
each group. Consider, θθθ = {θ1, θ2, · · · , θM} is the set of
feasible phase shifts, such that |θi| ≤ θmax for i ∈ 1, · · · ,M .
We define separate mapping tables for Nmax and θmax. The
table for Nmax maps a block of bits to the position of sub-
carriers within a group, whereas the table for θmax maps bits
to a phase shift from the feasible set. CSIscan maps a block
of ‘k’ information bits into different phase shifts in various
subcarrier locations within a group of 8 subcarriers using the
mapping table of Nmax and θmax, where k = blog2

(8
L

)
c +

L × blog2

(M
1

)
c, and M is the cardinality of the set θθθ. Thus,

CSIscan transmits R = 6∗k = 6∗
(
blog2

(8
L

)
c + L×blog2

(M
1

)
c
)

discovery bits over each filtered packet.

In Fig. 4, we illustrate the encoding scheme by choosing
Nmax = 13 and θmax = 40◦. Now, we have L = b 13−1

6 c = 2
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Figure 5: CSI phases estimated using filtered L-LTF. These phases
represent the phase shifts (red markers) in L-LTF symbols at subcar-
riers introduced with FIR filter.

subcarriers in each group. Let θθθ = {−40◦,−20◦, 20◦, 40◦} is
the feasible set. Using mapping table for Nmax = 13, θmax =

40◦, CSIscan maps the block of k = blog2

(8
2

)
c + 2 ×

blog2

(4
1

)
c = 8 discovery information bits into subcarrier

indexes and phase shifts. First, blog2

(8
2

)
c = 4 bits decide the

indexes of L = 2 subcarriers. For each selected subcarrier,
we choose the next blog2

(4
1

)
c = 2 bits to select the phase

shifts to be introduced into a sequence of ±1. For the
illustrative example shown in Fig. 4, FIR filter coefficients
for corresponding ‘0th’ and ‘5th’ subcarriers from the first
group are selected as φ−22 = e

jπ(−20◦)
180 and φ−17 = e

jπ(−40◦)
180 .

We select 0◦ phase shifts for the remaining subcarriers.
3) Decoding using CSI phases: For decoding the packet,

recall that a WiFi client first estimates CSI using filtered L-
LTF signal and extracts embedded information in the phases
of the subcarriers by processing CSI phases. While raw CSI
phases change periodically between [−π, π], unwrapped CSI
phases for a stable wireless channel are nearly linear. The
client performs a statistical detrending operation on CSI phases
without impacting phase shifts caused by FIR filtering. The
detrending operation first identifies a linear trend in CSI phases
by approximating into a best straight-fit line using the least
square method and later subtracts it from original CSI phases.

Fig. 5 shows unwrapped CSI phases after the detrending
operation, where we observe the jumps in CSI phases at certain
subcarriers. To decode the information, the client uses the
same groups of the subcarriers that are used while encoding. In
each group of 8 subcarriers, the client estimates phase shifts at
each subcarrier using thresholds. The presence of phase shifts
indicates the indexes of the subcarriers within the group where
L-LTF symbol is intentionally distorted. The client demaps the
estimated phase shifts and the indexes of subcarriers to recover
information bits using the same mapping table used during
encoding. If any mismatch is found between the subcarrier
indexes and their corresponding phase shifts with the entries
in the mapping table, the discovery information is discarded.

In Fig. 5, using threshold of ±10◦, ±30◦ , we segregate the
phase shift in each subcarrier into −40◦, −20◦, 0◦, 20◦, 40◦.
We show phase shifts other than 0◦ with red markers in the
figure. For example, the marker with the label (−22◦,−17.5◦),
indicates the phase shift of −17.5◦ introduced at the −22nd

subcarrier index. This phase shift −17.5◦ is approximated to
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Figure 6: a) PER is directly proportional to the increase in θ and
number of subcarriers for a fixed MCS value. b) PER also increases
with increase in MCS value for a fixed θ.

−20◦ using thresholds. We observe exact −20◦ phase shifts
at −22nd subcarrier in Fig. 4. Thus, WiFi clients extract
discovery information by processing CSI phase information.

Next, we discuss the challenges and the solution to enhance
the reliability of CSIscan under varying channel conditions.

B. Effective CSI Decoding via Learning

Off-the-shelf WiFi receivers are incapable of fully compen-
sating the channel distortions. Synthetic distortions in pilot
subcarriers disturb the tracking of phase noise, which is caused
by oscillator irregularities and compensated using tracking
algorithms [21]. These two factors ultimately impact PER ob-
served at the receiver, defined as the ratio between the number
of packets in error to the total number of transmitted pack-
ets.CSIscan must find an upper bound on synthetic distortions
caused by FIR filtering to keep PER in control. We consider
a single bit error as a packet error to study the worst-case
performance of varying number of subcarriers Nmax, phases
θmax, and modulation and coding schemes (MCS) on PER
using simulated dataset. A transmitter generates PHY layer
packets of fixed MCS index value containing legacy preamble,
VHT preamble, and MAC layer data. We consider an average
signal-to-noise ratio (SNR) of 30 dB at the receiver for each
transmission. The receiver decodes all received packets and
compares the decoded bits in each packet with the transmitted
bits to determine the PER. We iterate this experiment for
1 million channel realizations for different configurations of
Nmax and θmax.

1) Impact of varying Nmax, θmax, MCS on PER: Fig. 6a
shows the average PER for a fixed MCS = 2 (QPSK, 3/4
coding rate) with respect to the number of subcarriers Nmax
for different phase shifts θmax. For a fixed θmax, we observe
increase in PER with respect to Nmax. Further, for a fixed
Nmax, PER also increases with θmax. For a given PER
constraint, this plot presents an upper bound on Nmax and
θmax to be used by AP while encoding discovery information.
We repeat above experiment by a varying MCS index of the
generated PHY packets and the number of subcarriers, while
introducing the constant phase shift of θmax = 40◦. Fig. 6b
shows the results. As expected, the PER increases as the MCS
increases. However, the dependency of PER on MCS imposes
CSIscan to take MCS also into account while determining the
upper bounds on Nmax and θmax. Further, the PER also varies

with respect to the average SNR at the receiver, implying that
it too must be considered while choosing Nmax and θmax.

For a static wireless channel, CSIscan can find deterministic
bounds on Nmax and θmax to maintain PER at a WiFi client
within a permissible range. However, these bounds are diffi-
cult to estimate under time-varying channels. The pessimistic
approach of embedding the least number of discovery bits
by choosing the least supported values of Nmax and θmax
is undesirable. For instance, using bounds Nmax = 1 and
θmax = 10◦, CSIscan can convey just 3 bits of discovery
information in each packet. However, it misses the opportunity
of embedding > 3 bits of discovery information in more than
99% packets (PER < 1% for Nmax = 1 and θmax = 10◦ as
shown in Fig. 6a). On the other hand, an overly optimistic
approach of always transmitting the maximum number of dis-
covery bits could severely hamper the ongoing communication
of the client. For instance, the choice of bounds Nmax = 17
and θmax = 60 will severely degrade the communication of
the client with the PER > 30% as shown in Fig. 6a.

2) Leveraging Learning: In order to maximize the oppor-
tunity of embedding discovery bits with the preamble, we
need to find an optimal combination of Nmax, θmax. While
various throughput maximization strategies are proposed in
the wireless domain [22], [23], they are ill-suited for more
practical and dense WiFi deployments. Most of these ap-
proaches consider statistical models of the environment, such
as fading channel that are close approximations at best, but
not quite accurate. Moreover, noisy inputs such as inaccurate
CSI further affect the performance.Another challenge is that
satisfying PER constraint of the client requires to consider
not only the combinations of Nmax and θmax, but also MCS
value chosen for the ongoing transmission and the channel
quality. The ensuing large number of possible permutations is
beyond the computational capability of AP to meet stringent
time constraints. Therefore, we propose to solve the problem
by leveraging machine learning. Our objective of learning is
to enable CSIscan to find optimal bounds for Nmax and θmax
for a given value of MCS.

IV. CNN BASED PREAMBLE MODIFICATION

In this section, we describe the design of CSIscan, the CNN
classifier, its training, and architecture.

A. Overall System Design of CSIscan

CSIscan leverages the previous transmission from an al-
ready connected client to infer at the AP whether or not to
embed discovery information in the next outgoing transmission
(See Fig. 7a).With 802.11ax/ac, the AP regularly acquires
the latest CSI of the client through sounding frames for
MIMO/beamforming operation. The AP also estimates SNR
using RSSI measurements and the value of the noise floor.
The combined knowledge of CSI and SNR is sufficient to
accurately determine the quality of a wireless channel between
the AP and client. CSIscan feeds CSI and SNR information
obtained from the previous transmission in conjunction with
a data rate (specified through MCS index value) opted for



Figure 7: a) Operation of CSIscan b) Proposed CNN architecture

the next transmission to a trained CNN classifier. The CNN
classifier infers the optimal bound on Nmax and θmax that
are leveraged by the CSIscan encoding module to embed
discovery information into the coefficients of the FIR filter.
The clients that wish to discover an AP exploit these modifi-
cations to extract discovery information embedded within the
estimated CSI. After unwrapping and detrending operation, the
client recovers discovery bits using CSIscan decoding.

B. CNN Classifier
1) Data collection for training CNN classifier: Gener-

ating a massive amount of labeled data to improve CNN
accuracy [24] from a large number of WiFi devices in real
networks not only raises concerns for privacy violation, but
is also time-consuming. Instead,we leverage a simulation en-
vironment that closely matches a real WiFi deployment. Our
training dataset consists of simulated 802.11ac traffic using a
MATLAB WLAN toolbox. CSIscan uses domain adaptation
to seamlessly transition from a pure simulation environment
to actual deployment.

We define three filter configurations each with a distinct
bound of Nmax and θmax (see Table 1 in Fig. 7). A sim-
ulated AP transmits four packets (three filtered packets and
a non-filtered packet) sequentially over the same instance
of the wireless channel, defined by wlanTGacChannel.
The simulated client receives these packets at average SNR
randomly selected between 0 to 35 dB. After packet detec-
tion, the client estimates CSI and then recovers information
bits. It compares the decoded bits in each packet with the
transmitted bits to determine the packet error. We repeat this
experiment for 1 million distinct channel realizations. For each
kth realization, we record the CSI

(k)

φ0
computed from the

non-filtered packet. This CSI simulates the explicit CSI of
the client obtained by AP through the exchange of channel
sounding packets. We measure PER – PER(k)

φ1
, PER(k)

φ2
, and

PER
(k)

φ3
from three filtered packets. Using these PER values

and the rules defined in Table 2 of Fig. 7, we generate four
output class labels C(k)

0 , C
(k)
1 , C

(k)
2 , C

(k)
3 . We store CSI(k)

φ0
,

MCS(k) and SNR(k) as input labels along with output class
labels C(k)

0 , C
(k)
1 , C

(k)
2 , C

(k)
3 into dataset.

2) Classifier Architecture: We use CNN architecture de-
picted in Fig. 7b that consists two 2D convolution layers
and two fully connected layers. Inputs to CNN are – (a) an

estimated CSI represented as a two dimensional real-valued
tensor of size 2×52 and (b) a tuple of SNR and MCS values.
Input (a) is fed to the first convolutional layer (Conv2D)
that has 50 filters each of size 1 × 7. Each filter learns a 7-
sample variation in time over the I or Q dimension separately,
to generate 50 distinct feature maps. Similarly, the second
Conv2D layer has 50 filters each of size 2 × 7, where each
filter learns variations, again of 7 activation values, over both
I and Q dimensions of the 50-dimensional activation volume
obtained after the first Conv2D layer. Each Conv2D layer is
followed by a Rectified Linear Unit (ReLU) activation. The
output of second Conv2D layer is flattened and concatenated
with the input (b). The concatenated layer is then fed to
the first fully connected (FC256) layer with 256 neurons. A
second fully connected layer (FC80) is added to extract non-
linear combinations high level features extracted from previous
layers, that are finally passed to a Softmax classifier layer.
We use cross validation to find hyperparameters of CNN,
including the number of Conv2D filters, size, and depth of
the model to ensure its generalization. We train the model
with Adam optimizer with a learning rate of lr = 0.0001.

• Domain adaptation for real network deployment: Even
though advantageous, the training of our CNN model with
millions of simulated channel realizations is insufficient to
learn and generalize for the infinite possibilities of channel
variations in real environments. Fortunately, initial convolution
layers of CNN are able to extract and retain necessary features
to classify different bounds. We exploit these learned features
to perform well in a completely new environment using a
technique called domain adaptation – wherein a classifier
trained in a source distribution is used to solve the same task in
different (but related) target distribution [25], [26]. Although
wireless channels in simulated and real environments follow
a different distribution, our task of selecting optimum bounds
remains the same, enabling us to transfer the knowledge from
simulated to the real environment. We use a popular supervised
fine-tuning approach for domain adaptation where we freeze
first ‘l’ layers of the model trained with source data and
retrain the same model with target data to fine-tune its last
few layers using backpropagation. In our case, after training
the classifier with a large amount of simulated data, we freeze
two convolution layers of the classifier and then fine-tune other
layers by retraining with real data.



(a) (b)
Figure 8: a) Experiment setup; b) Indoor environment with a station-
ary WiFi AP, associated, and discovery clients, either stationary or
mobile. The devices are placed at different locations in the floor map.

V. PERFORMANCE EVALUATION

We first demonstrate the performance enhancement achieved
with CSIscan compared to active discovery. Next, we establish
the practical usage of CSIscan in different stationary and
mobility scenarios.

A. Experimental Setup

• Device Configuration: The experiment setup consists of
a stationary WiFi AP, sniffer, two clients – associated and
discovery client that can be stationary or mobile (see Fig. 8a).
We consider three scenarios – i) stationary, LOS (Case-I): the
associated client and discovery client #1 are both stationary
and are placed at a distance of ∼16 ft in LOS of the AP; b)
stationary, NLOS (Case-II): the associated client and discovery
client #2 are both stationary and are placed in NLOS of AP at
a distance of ∼18 ft; and c) mobile (Case-III): the associated
and discovery client #3 are both mobile and are moving at
a brisk walking pace of ∼4 miles per hour. All three cases
are evaluated in the live WiFi network of the university with
∼30 COTS clients present in lab rooms with 3 APs per lab,
typically representing the indoor environment. While Case-I is
evaluated to establish the advantages of CSIscan in stationary
LOS, Case-II and Case-III establish that CSIscan is capable
of serving NLOS and mobile clients as well.

We set up the AP using USRP X310 software-defined radio
(SDR) with the output power set at 20 dBm, similar to COTS
WiFi APs. The AP transmits 802.11ac compliant WiFi MAC
layer packets. We configure associated and discovery clients
using USRP B210 SDRs, where the discovery client follows
either active or CSIscan discovery protocol. For the CSIscan
client, the challenge is to trigger the discovery process, once it
successfully decodes discovery bits embedded within CSI of
the received packet. We rely on the default wireless interface
card of the laptop to execute the scanning procedure. The ac-
tive discovery client simply relies on the onboard wireless card
to trigger a scan. Although we use a USRP-based platform
to evaluate CSIscan in this paper, its practical integration in
COTS WiFi devices is feasible with firmware level modifica-
tions using tools like Nexmon [27]. It enables firmware mod-
ification for Broadcom/Cypress WiFi chips through a custom-
built C-based firmware patching framework. In particular,
the firmware should include the logic for CSI decoding and
modify the existing logic for best channel selection in kernel

drivers and network managers. Further, we envision next-
generation COTS APs to be AI-powered with an integrated
machine learning engine to perform various learning tasks.
Major AP vendors have already introduced AI-empowered
devices in the market [28]–[30]. When the packet reaches
the client host through the USRP, our program interrupts the
discovery code in the userspace that triggers a scan with the
Linux iw utility [31].
• Discovery Initiation: The exact time instant when to trigger
discovery procedure is decided by sophisticated algorithms at
the client that reside in applications such as Network Managers
and Kernel drivers. Since, when to initiate the process is out-
of-the-scope for this work, we take a conservative approach
here by disabling all such network management applications.
We instruct the client to trigger the discovery process, active
or CSIscan, whenever a packet from the AP is received by
the client. The AP is programmed to embed information in
any outgoing packet every 100 ms. Packets from AP are
transmitted generally in the order of few µ seconds. Since this
embedding interval of 100 ms is several order of magnitude
higher than µ seconds, we choose this value to demonstrate
the worst-case performance of CSIscan.

B. Experiments

• Probe Responses and Latency: Once the client receives
a packet via the USRP, it sends probe request(s). With active
discovery, the client sends a probe request on all supported
39 WiFi channels. With CSIscan, the client sends a targeted
probe request on AP’s channel x after successful decoding. If
decoding fails, it follows active discovery. Here we make an
assumption that the client has obtained discovery information
across all channels and decided to discover AP on channel x ;
since the logic of choosing the best channel is already present
in kernel drivers and network managers. We record the probe
responses for each probe request generated by the client. The
client measures the latency using the ping utility.
• CNN Accuracy: We evaluate the classification accuracy
of the proposed CNN model and its accuracy after domain
adaptation. This is needed because the model is trained in a
simulated environment, while it is actually used in the live
environment. We verify the performance of the CNN model
with data collected in MATLAB simulations. Our dataset
consists of ∼ 80K training and 10K validation examples.
We use other 10K examples to test the performance of the
trained model. For realistic channel conditions, we collect
over-the-air data with USRP-based AP and clients. Similar to
data collection process described in Sec. IV-B for simulations,
AP sequentially transmits four packets (three filtered and
a non-filtered packet). These packets are transmitted within
coherence time, and therefore, the channel is assumed to be
constant. After receiving the packet, the client first extracts
CSI and then decodes the packet. We record the CSI estimated
from the non-filtered packet, along with MCS and SNR as
input labels, while PERs of filtered packets are used to create
output labels following rules defined in Table 2 of Fig. 7.
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Figure 9: a) CSIscan reduces probe responses by 72% and b) tail
latency from 150 ms to mere 10 ms.

• Bit stuffing efficiency and PER: We define bit stuffing
efficiency as the number of discovery bits successfully trans-
mitted per packet. We evaluate it for various MCS rates with
the selection of – i) a fixed bound or ii) adaptive bound,
as chosen by the trained CNN. The client extracts discovery
bits by decoding estimated CSI from received packets. We
measure the #successfully decoded discovery bits embedded
per packet, averaging over 10000 collected packets. These
packets are originally filtered at the AP with three bounds,
i) Nmax = 7, θmax = 20 ii) Nmax = 13, θmax = 20, and iii)
Nmax = 13, θmax = 40. With CSIscan, the AP dynamically
selects the bounds based on the channel condition. Next, we
analyze the impact on the client’s ability to compensate phase
noise with and without FIR filtering of L-LTF. Typically, the
distortion caused by phase noise is characterized by a common
phase error (CPE) that represents the common rotation of
all constellation points of equalized symbols in the complex
plane. We track CPE over several OFDM symbols using the
algorithm proposed in [21].Further, we measure PER at the
associated client to quantify the impact on its communication
due these bounds.

C. Results

• Probe Responses and Latency: Fig. 9a plots the CDF
of the number of probe responses received by the client
for every probe request sent either with active discovery
or CSIscan. We observe 22 (median) probe responses with
active discovery, whereas only 6 are present for CSIscan.
Thus, CSIscan reduces probe traffic by ∼72%. The reduc-
tion in probe responses reduces discovery traffic, thereby
improving spectrum utilization. Fig. 9b compares the WiFi
latency experienced by the client with active discovery and
CSIscan. While median WiFi latency for active discovery
is as low as ∼4 ms, its 99th percentile is ∼132 ms. This
long-tail distribution is not visible with CSIscan. The 99th

percentile is ∼6 ms. Thus, CSIscan alleviates the problem
of long-tail latency caused by frequent discovery process.
• CNN Accuracy: For the simulation environment, the CNN
model has an accuracy of 95.20% for correctly selecting one
out of four bounds (see confusion matrix in Fig. 10a). Post
domain adaptation the CNN model, fine-tuned with real data,
has classification accuracy of 93.87% (see confusion matrix
in Fig. 10b). For fine-tuning, we use nearly 12K examples
of real data, as compared to 80K of simulation data, thus
requiring only 15% of the total training data for training of the
CNN model. This reduction in training data also shortens the

(a) (b)
Figure 10: Confusion matrices for a) Simulation and b) Live environ-
ment. In simulation, CNN achieves accuracy of 95.20%. Post domain
adaptation, it achieves accuracy of 93.87% in live environment.
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Figure 11: Case-I – Stationary discovery client and associated client
placed in LOS of AP. a) Bit stuffing efficiency of the discovery client
(#1), and b) PER of the associated client. CSIscan chooses optimal
combination of N, θ, while inducing ∼0 PER at associated client.

training time by 64 ms on average. For the sake of simplicity,
we train the CNN model offline in a centralized manner to
find the dynamic bound on data collected at clients. However,
this approach raises privacy concerns in the sharing of data
used to train the CNN model. Federated learning [32] can be
a promising solution here, wherein the model is trained at the
clients without sharing the raw data and then disseminated.
• Bit stuffing efficiency and Packet Error Rate: Fig.11-
13 plot bit stuffing efficiency for the discovery client and
corresponding PER of the associated client for various MCS
values with fixed bound or adaptive bound in three deployment
scenarios. The overly pessimistic approach of always choosing
lower bound Nmax = 7 and θmax = 20 reduces the bit
stuffing efficiency to approximately average 22 discovery bits
for the stationary client #1 (Fig. 11a), 20 discovery bits for
the stationary client #2 (Fig. 12a), and 21 discovery bits for
the mobile client #3 per each packet (Fig. 13a). On the other
hand, the selection of higher bound Nmax = 13 and θmax = 40
severely impacts PER of the client at higher MCS rate. At
MCS= 6, PER is > 75% for client #1 (Fig. 11b) as well
as client #3 (Fig. 13b), whereas PER is > 95% for client
#2 (Fig. 12b). At MCS= 6, even the moderate bound of
Nmax = 13 and θmax = 20 results in > 50% PER for clients
#2 and #3 (see Fig. 12b and Fig. 13b respectively). CSIscan
dynamically adjusts its bound to embed maximum discovery
information while guaranteeing the increase in PER at the
associated client is < 1%, as compared to PER with no filter-
ing. Especially at a higher MCS, CSIscan avoids embedding
information if the channel is not good enough; whereas if the
channel condition permits, it transmits maximum information.
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Figure 12: Case-II – Stationary discovery client and associated client,
placed in NLOS of AP. a) Bit stuffing efficiency of the discovery
client (#2), and b) PER of the associated client.
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Figure 13: Case-III – Mobile discovery client and associated client. a)
Bit stuffing efficiency of the discovery client (#3), and b) PER of the
associated client. CSIscan delivers discovery information to mobile
client without significant impact on PER of the associated client.
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Figure 14: Tracking the compensation of phase noise quantified via
common phase error (CPE). The associated client tracks CPE despite
reception of L-LTF filtered packets from AP with any chosen bounds.

Despite L-LTF filtering, the associated clients compensate
phase noise successfully for any chosen bounds. We confirm
this by evaluating CPE over several OFDM symbols with and
without filtering for the associated client in Case-II (Fig. 14).
We observe a similar trend for the client in Case-I and Case-
III. While CPE for lower bound of Nmax = 7 and θmax = 20
closely matches with that of without filtering, the client tracks
CPE after few OFDM symbols for higher bounds showing
offsets in initial symbols. Thus, CSIscan does not adversely
affect the client’s phase tracking functionality.

VI. RELATED WORK
Since the last decade, there have been significant efforts in

quantifying the cost of excessive discovery traffic [33]–[36]
and proposing protocols for a faster network discovery [37]–
[40]. The IEEE 802.11ai is an upcoming fast initial link
setup (FILS) amendment that improves the way APs are
discovered by clients [41], [42]. FILS clients follow the Probe
Deferral and Suppression mechanism that mandates the client
to listen for broadcast beacons or probe responses for up to

20 ms before sending probe requests. This is an additional
wait time over and above discovery latency, and is critical
for URLLC and TSN services. Prior to 802.11ai, the IEEE
802.11k standard attempted to reduce AP discovery time
for roaming clients [43], [44], where the client requests for
Neighbor Report containing a list of neighbor APs with their
channel numbers. Unfortunately, with this approach, the client
(a) needs to be associated with the AP, (b) still has to scan all
the channels reported in the Neighbor Report, and (c) needs
periodic updates for a fresh Neighbor Report. This leads to
an optimization problem– a longer period may result in a lost
connection, while a shorter period increases network overhead.

Deep learning [45], particularly through the use of CNNs,
has shown remarkable performance in image and speech
applications [46], [47], and is steadily gaining traction in ap-
plications within wireless the domain [48]–[52]. More specific
use cases of CNN in the PHY layer of wireless communica-
tions has been seen in Modulation Classification [53]–[55],
Protocol Identification [56] and RF Fingerprinting [57]–[61].
The versatility of the CNN motivates us to adapt it in our work
for the discovery problem within dense networks.

CSI has been widely used for various sensing applica-
tions [62] such as localization [63], [64]. Further, authors in
[65] show how malicious users can infer CSI of clients by
overhearing sounding frames. More related to our work is [66]
that modifies symbols in short training field to embed infor-
mation. However, this approach is very sensitive to changing
frequency offsets in practical radios. Further, it embeds fixed
number of bits irrespective of channel conditions. In contrast,
CSIscan demonstrates a practical application of AP discovery
by embedding discovery information in L-LTF field of the
preamble. It dynamically adjusts the number of discovery bits
by learning the channel and quickly becomes operational in a
real network deployment with domain adaptation.

VII. CONCLUSION
We presented a novel technique, CSIscan, to embed relevant

information in CSI of ongoing WiFi transmissions using
CNNs. With the help of a prototype developed with USRP-
based SDR, we demonstrate the feasibility of CSIscan-based
WiFi discovery in a live network. CSIscan reduces probe
responses by 72% and latency from 150 ms to 10 ms. The
selection of optimal bounds for subcarriers and phases results
in embedding upto 40 bits in the preamble while keeping the
PER below 1%. Our robust CNN architecture with domain
adaptation achieves an accuracy of 93.87% for unseen wireless
environments. While we have demonstrated the feasibility of
embedding information in CSI, our next step is to implement
the solution in a mobile device like a COTS smartphone.
Although we have considered AP discovery as an application
of the proposed technique of embedding information, the
technique can be extended to many other applications in
the wireless domain. The dataset pertaining to this study is
available at the authors’ website [67].
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