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Abstract—Beam selection for millimeter-wave links in a vehic-
ular scenario is a challenging problem, as an exhaustive search
among all candidate beam pairs cannot be assuredly completed
within short contact times. We solve this problem via a novel ex-
pediting beam selection by leveraging multimodal data collected
from sensors like LiDAR, camera images, and GPS. We propose
individual modality and distributed fusion-based deep learning
(F-DL) architectures that can execute locally as well as at a
mobile edge computing center (MEC), with a study on associated
tradeoffs. We also formulate and solve an optimization problem
that considers practical beam-searching, MEC processing and
sensor-to-MEC data delivery latency overheads for determining
the output dimensions of the above F-DL architectures. Results
from extensive evaluations conducted on publicly available syn-
thetic and home-grown real-world datasets reveal 95% and 96%
improvement in beam selection speed over classical RF-only beam
sweeping, respectively. F-DL also outperforms the state-of-the-art
techniques by 20-22% in predicting top-10 best beam pairs.

Index Terms—mmWave, beam selection, multimodal data,
fusion, distributed inference, 5G.

I. INTRODUCTION

EMerging vehicular systems are equipped with a variety
of sensors that generate vast amounts of data and require

multi-Gbps transmission rates [1]. These sensor inputs may
be needed for safety-critical vehicle operation as well as for
gaining situational awareness while in motion, which needs
to be timely processed at a mobile edge computing (MEC)
center to generate driving directives. Such a large data transfer
volume at short contact times can quickly saturate the sub-
6 GHz band. Thus, the millimeter-wave (mmWave) band
is widely considered as the ideal candidate for vehicle-to-
everything (V2X) communications [2], given the promise
of 2 GHz wide channels and vast under-utilized spectrum
resources in the 57-72 GHz band. However, transmission in
the mmWave band has associated challenges related to severe
attenuation and penetration loss. Phased arrays with directional
beamforming can compensate these issues by focusing RF
energy at the receiver [3]. Hence, in the so called beam
selection process, the nodes on either end of the link attempt
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Fig. 1: Our fusion pipeline exploits GPS, camera and LiDAR sensor
data to restrict the beam selection to top-K beam pairs.

to converge to the optimal beam pairs, where each beam
pair is a tuple of transmitter and receiver beam indices, by
mutually exploring the available space uniformly partitioned
into discrete sectors [4]. However, exploring all possible beam
directions in the existing IEEE 802.11ad [5] and 5G New
Radio (5G-NR) [6] standards can consume up to tens of
milliseconds and must be repeated constantly during vehicular
mobility [7]. To address this problem, we propose to exploit
the side out-of-band information to restrict the searching to a
subset of most likely beam pair candidates. As shown in Tab. I,
reducing the number of beam pairs from 60 to 30 significantly
decreases the beam selection overhead by 50% and 80% for
IEEE 802.11ad and 5G-NR standards, respectively.

A. Use of Sensors to Aid the Beam Selection

Due to the directional transmissions at mmWave band,
the beam selection process can be interpreted as locating
the paired user or detecting the strongest reflection in the
case of line of sight (LOS) and non-line of sight (NLOS)
path, respectively. Hence, the location of the transmitter,
receiver, and potential obstacles are the key factors in beam
initialization. Interestingly, this information is also embed-
ded in the situational state of the environment that can be
acquired through monitoring sensor devices. Fig. 1 shows
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Standard Time (ms)
30 beam pairs 60 beam pairs

802.11ad 9.09 18.18
5G-NR 4.68 24.37

TABLE I: The reduction in beam selection time while reducing the
beam search space from 60 to 30 beam pairs.

our scenario of interest with a moving vehicle and a road-
side base station (BS) attempting to find the best beam pair
with multiple reflectors and blocking objects. We assume the
state of the environment is captured by a combination of
GPS (Global Positioning System) and LiDAR (Light Detection
and Ranging), which provides a 3-D representation of the
surroundings, sensors in the moving vehicle, and a camera at
the BS. We use a sub-6 GHz data channel for exchanging this
sensor data between the vehicle and MEC. We then propose to
use these non-RF sensor data to suggest a subset of “top-K”
beam pairs and speed up the beam selection, consequently. The
candidate set of selected beam pairs is communicated to both
the BS and the vehicle over the sub-6 GHz control channel.
After this, both the vehicle and the BS execute the standards-
defined beam-searching algorithms, but only on the subset of
top-K suggested beam pairs.

The Yole Dévelopment report anticipates that the global
market for GPS, radar, cameras, and LiDARs will increase
from $67.14 in 2020 to $159.6 in 2025 [8]. With the
widespread of IoT devices, multiple sensors are now available
as standard installations for the majority of electronic devices
as well as fixed roadside infrastructures [9], [10]. LiDAR
sensors are an indispensable part of modern vehicles that are
used for either automated driving or collision avoidance [11].
The GPS data are regularly collected and transmitted as part
of basic safety messages frame in V2X applications [12], and
surveillance cameras have been in use for decades with the
growth of smart cities [13].

B. Deep Learning on Multimodal Sensor Data

While using sensor data for out-of-band beam selection is
an exciting new approach there some challenges that need to
be addressed. First, since the physical environment influences
signal propagation in ways that are hard to computationally
model in real time, hand engineering features extracted from
such sensor data that could be discriminative is infeasible,
as there could be a vast multitude of reasons impacting the
signal propagation. Second, a systematic approach is required
to properly join the information from sensor modalities with
different properties to predict the optimality of each beam
pair. Note that while the beam pair can be inferred through
basic geometry under ideal LOS conditions, such an approach
fares poorly in scenarios with multiple reflections, such as in
NLOS situations. Third, since the sensors are not all available
at one site, both on the vehicle and BS, the secondary channels
are required to maintain the connectivity between the vehicle
and MEC. The communication constraints in these secondary
channels need to be fully accounted for: the relaying cost of
data exchange, especially massive LiDAR point cloud, might
undermine the performance with respect to end-to-end latency.
Finally, the beam search dimension K is a control parameter
that needs to set prior to starting the beam-searching process.

Hence, an algorithm is required to select the appropriate K to
fully determine the system design.

Our approach directly addresses these challenges. First,
we design a fusion-based deep learning (F-DL) framework
operating on all these different modalities to predict a subset
of top-K beam pairs that includes the globally optimal solution
with high probability. Additionally, we adopt a distributed
inference scheme to compress the raw data into high level
extracted features at the vehicle to reduce the overhead on the
wireless backchannel, accounting for end-to-end latency in the
selection of the optimal beam. Finally, we take into account
the prediction from our proposed F-DL framework along with
mmWave channel efficiency to properly adjust the beam search
space K, on a case-by-case basis.

C. Summary of Contributions

Our main contributions are as follows:

• We design deep learning architectures that predict the set
of top-K beam pairs using non-RF sensor data such as
GPS, camera, and LiDAR, wherein the processing steps
are split between the source sensor and the MEC. We
validate the improvement achieved by fusing available
modalities versus unimodal data on a simulation as well
as a home-grown real-world datatset. Our results show
that fusion improves the prediction accuracy by 3.32–
43.9%. The proposed fusion network exhibits 20–22%
improvement in top-10 accuracy with respect to the state-
of-the-art techniques.

• We formulate an optimization problem to appropriately
select the set of K candidate beam pairs, which takes
into account mmWave channel efficiency while trying to
maximizing the alignment probability, i.e. the case where
the optimum beam pair is included within the suggested
subset. Thus, the control variable K is not arbitrarily
chosen, but tightly coupled to scenario constraints.

• We rigorously analyze the end-to-end latency of our pro-
posed non-RF beam selection method and compare it with
the state-of-the-art standard for mmWave communication,
namely 5G-NR and demonstrate that the beam selection
time decreases by 95–96% on average while maintaining
97.95% of the throughput, considering all the overhead
of control/data signaling for both approaches.

II. RELATED WORK

Leveraging out-of-band data, both in RF and non-RF do-
mains, can speed up the beam selection. RF-based out-of-
band beam selection is possible via simultaneous multi-band
channel measurements, when there exists a mapping between
mmWave and the channel state information (CSI) from the
another band [14]. However, this method does not support
simultaneous beamforming at both the transmitter and receiver
ends. As opposed to the RF-only approach, non-RF out-of-
band beam selection leverages data from different sensors and
generates a mutual decision for both transmitter and receiver.
Fig. 2 summarises the emphasis of this paper and different
beam selection strategies.
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Fig. 2: Deterministic and ML-aided beam selection strategies.

A. Traditional

1) In-band RF: Yang et al. [15] adopt a hierarchical search
strategy where the mmWave channel is first tested with
comparatively wider beams by using a reduced number of
antenna elements. The beam width is then narrows until the
best beam is obtained. Wang et al. [16] show that mmWave
links preserve sparsity even across locations in mobile V2X
scenarios. Hence, they utilize the angle of departure (AoD)
to search for beams only within this range, thereby reducing
beam selection overhead.

2) Out-of-band RF: Steering with eyes closed [17] exploits
omni-directional transmissions within the legacy 2.4/5 GHz
band to infer the LOS direction between the communicating
devices to speed up the mmWave beam selection. González-
Prelcic et al. [18] exploit the side information derived from
RAdio Detection And Ranging (RADAR) data to adapt the
beams in a vehicle to infrastructure network, where a com-
pressive covariance estimation approach is used to establish a
mapping between RADAR and mmWave bands.

B. ML-based

1) RF-only: He et al. [19] design a deep learning based
channel estimation approach using iterative signal recovery,
wherein the channel matrix is regarded as a noisy 2D natural
image. Learnt denoising-based approximate message passing
(LDAMP) neural networks are applied on the input for channel
estimation. Hashemi et al. [20] model the mmWave beam
selection as a MAB (Multi-armed bandit) and use the re-
inforcement learning to maximize the directivity gain (i.e.,
received energy) of the beam alignment policy.

2) ML using single non-RF modality: Va et al. [21] con-
sider a setting where the location of all vehicles on the road,
including the target receiver, is used as input to a machine
learning algorithm to infer the best beam configuration. Vision-
aided mmWave beam tracking in [22] models a dynamic
outdoor mmWave communication setting where the sequence
of previous beams and visual images are used to predict future
best beam pairs.

3) ML with sensor fusion: The proposed setting by Klautau
et al. [23] and Dias et al. [24] comes closest to ours with
GPS and LiDAR being used as the side information for
LOS detection and also reducing the overhead in a vehicular
setting. On the other hand, Muns et al. [25] use GPS and
camera images to speed up the beam selection with a focus
on designing preprocessing step for images and fusion scheme.

The state-of-the-art does not consider the deep learning
based fusion for more than two non-RF modalities to fully
exploit the latent features within the data. The GPS coordi-
nates are only used in the preprocessing pipeline to identify

the target receiver. There also has not been any effort to
decouple the expert knowledge for dynamically reducing the
beam search space depending on specific user constraints. Our
proposed method exploits a customized deep learning fusion
approach that is carefully designed to maximize the beam
selection accuracy. Moreover, completed by an algorithm that
automatically chooses a dynamic subset of beam pairs, our
method can run end-to-end without any hand engineering.

III. SYSTEM MODEL AND OVERVIEW

In this section, we first review classical beam selection
and discuss it’s limitations. We then propose to use non-RF
data from multiple sensors to facilitate– and accelerate–beam
selection. Table II summarizes our notation.

A. Beam Selection Problem Formulation

We consider an analog beamforming scheme with fixed size
codebooks at transmitter and receiver radios as:

CTx = {t1, . . . , tM}, CRx = {r1, . . . , rN}, (1)

where M,N are the number of transmitter and receiver code-
book elements, respectively. Each element of the codebook
represents a particular beam orientation that can be utilized
by the radio. Thus, the set of all possible beam pairs B is:

B = {(tm, rn)|tm ∈ CTx, rn ∈ CRx}, (2)

with |B| = M × N . For a specific beam pair (tm, rn), the
normalized signal power is obtained as:

y(tm,rn) = |w
H
tm H wrn |2, (3)

where H ∈ RM×N is the channel matrix and H is the
conjugate transpose operator. The weights wtm and wrn
indicate the corresponding beam weight vectors associated
with the codebook element tm and rn, respectively (|wtm | =
M, |wrn | = N ). The goal of the beam selection process is to
identify the best beam configuration, (t∗, r∗), that maximizes
the normalized signal power, given by:

(t∗, r∗) = argmax
1≤m≤M,1≤n≤N

y(tm,rn). (4)

In classical beam selection, such as the approach defined in the
IEEE 802.11ad [26] and 5G-NR [27] standards, the transmitter
and receiver sweep all beam pairs (tm, rn) ∈ B sequentially
in order to select the best beam pair.

B. Subset Selection

While exhaustive searching through all candidate options
ensures the beam alignment, the typical time to complete
the entire procedure is in the order of ∼10 ms for IEEE
802.11ad [5] and ∼5 ms for 5G-NR [6] with only 30 beam
pairs, respectively. To address this, we propose a beam se-
lection framework that uses out-of-band multimodal data to
identify a subset of candidate beams, which are subsequently
swept to select the one that maximizes the normalized signal
power [28]. More specifically, the key algorithmic component
of our system amounts to proposing a means for identifying a
subset BK ⊆ B of K beam pairs such that (t∗, r∗) ∈ BK with
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high probability. Formally, assuming that we have a probability
distribution for the optimal pair (t∗, r∗), we wish to find:

BK = argmax
A⊆B,|A|=K

P((t∗, r∗) ∈ A). (5)

Having obtained BK , we then restrict the search for the
optimal pair to this set. Our solution uses a neural network
to leverage out-of-band data to determine the probability
distribution P. Parameter K establishes a trade-off between
throughput performance, obtained by the best beam in BK ,
and latency, as a larger K results in more processing time
to search through the candidate options. Thus, our end-to-
end design includes a means for appropriately determining K,
where the boundary condition of K = 1 represents selecting
the optimal beam pair. Overall, this auxiliary parameter K
enables the users to adjust the system according to their spe-
cific constraints on establishing a low-latency or ultra-reliable
communication. Moreover, it gives the flexibility to analyze
the adjacent beam patterns with relatively closer performance
or irregular radiation patterns under NLOS conditions.

C. System Overview

Overall our framework consists of three main components.

• Data Preprocessing: For the collected data to be effec-
tive, it is crucial to mark the transmitter, target receiver,
and blocking objects. Thus, we exploit the prepossessing
step described in Sec. IV for image and LiDAR.

• Beam Prediction using Fusion-based Deep Learning:
Given the multimodal sensor data, we design a F-DL
architecture that predicts the optimality of each beam
pair. Our approach consists of custom-designed feature
extractors for each sensor modality, followed by a fusion
network that joins the information for the final prediction.
Our proposed fusion approach is presented in Sec. V.

• Top-K Beam Pair Construction: We select, the beam
search space dimension, K by defining an optimiza-
tion problem (see Sec. VI) that takes into account the
mmWave channel efficiency and probability of including
the globally optimum beam pair.

In summary, our proposed beam selection approach runs in
four steps end-to-end. First, the sensors at the vehicle collect
GPS and LiDAR data, and the camera at the BS captures an
image. The collected raw data is then preprocessed on site.
Second, having the feature extractors of GPS and LiDAR being
deployed at the vehicle, the high level features are generated
and shared with the MEC over the sub-6 GHz data channel.
This approach avoids sharing unnecessary amounts of data
and helps mitigating potential privacy concerns. The high-level
features of the image are generated in parallel. Third, given the
extracted features of all three modalities at MEC, our method
suggest a set of top-K candidates for sweeping. The subset of
K beam pair is shared with the vehicle over the sub-6 GHz
control channel. Finally, the beam sweeping runs at mmWave
band (60 GHz) in a reduced search space of selected top-K
candidates to select the best beam pair and establish the link.

Notation Description
CTx The codebook of transmitter with M beams
CRx The codebook of receiver with N beams
B Set of all possible beam pairs

y(tm,rn) Normalized signal power for beam pair (tm, rn)
H Channel matrix
wtm Beam weight of codebook element tm at Tx
wrn Beam weight of codebook element rn at Rx

(t∗, r∗) Optimum beam pair
BK A subset of K beam pairs BK ⊆ B

XC, XL, XI Input samples from GPS, LiDAR and image
Nt, N

′
t Number of train and test samples

fC
θC
, fL
θL
, fI
θI

Feature extractors of GPS, LiDAR and image
zC, zL, zI Latent embedding of GPS, LiDAR and image
fF
θF

Fusion network
z Concatenated features of GPS, LiDAR and image
s Softmax score for all beam pairs

cK(s) Sum of the K largest scores for softmax score s
p(K; s) Probability of inclusion for softmax score s

sI Scores of a sample drawn from the training set
(t∗I , r

∗
I ) Optimum beam pair of sample sI from training set

µ(K) Latency as a function of the number of beam pairs
T dfbs (K) End-to-end latency of F-DL method
Ttotal Total time for which a certain beam pair is valid
α Control parameter between probability of

inclusion and latency
Tp, Tssb Periodicity and duration of SS bursts
RT Throughput ratio

TABLE II: Notation Summary

D. Sensor Modalities

The details of the three sensor modalities are given below:
• GPS: This sensor generates readings in the decimal

degrees (DD), where the separation between each line of
latitude or longitude is expressed as a float number with
5 digit precision and pinpoints the location on the earth’s
surface. We do not assume any satellite link outages due
to terrain or man-made structures.

• Image: This sensor captures still RBG images of the
environment. Although images allow comprehensive en-
vironmental assessment, they are impacted by low-light
conditions and obstructions (such as a different vehicle
in the LOS path)

• LiDAR: This sensor generates a 3-D representation of
the environment by emitting pulsed laser beams. The
distance of each object from the origin (i.e., the sensor
location) is calculated based on reflection times. The raw
LiDAR point clouds are data intensive (∼1.5 Mb for
sparse settings), necessitating processing at the vehicle.

IV. DATA PREPROCESSING

In this section, we describe our preprocessing pipeline for
image and LiDAR.

A. Processing Images

The raw images collected at the BS provide a snapshot of
the present objects in the scene. In this case, it is crucial to
detect the region of the target receiver among other vehicles
that correspond to the blocking objects. Hence, we design a
preprocessing step as follows. First, we employ a multi-object
detection approach that enables us to flexibly distinguish the
spatial boundaries of different vehicle types in the same frame.
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Fig. 3: The LiDAR preprocessing pipeline.

Second, given the type of target vehicle, we separate the region
of the target receiver and blocking vehicles. On the other hand,
the background with static walls and buildings is invariant over
different scenes and consequently does not affect the decision
and can be further removed. In summary, our approach (i)
detects multiple vehicle types present in the same scene, (ii)
separates the receiver and obstacle regions, and (i) removes
the static background. Since the focus of this paper is not
directly on image processing, we include details of our custom
designed approach in Appendix A. The output of this image
preprocessing step is the bit map of the raw input camera
image, and it serves as the input to our fusion pipeline.

B. Processing LiDAR Point Clouds

The raw LiDAR point cloud is a collection of (x, y, z)
points that correspond to the location of detected objects in
the environment. Directly exploiting the raw point cloud (with
varying number of points depending on traffic density) not
only comes with huge computational cost but also raises ML
architecture design challenges as the input to a neural network
must be preferably fixed in size. Hence, we use a preprocessing
step as shown in Fig. 3 first proposed in [23] that considers
a limited spatial zone for each axis. This space corresponds
to coverage range of BS and is denoted as (Xmin, Xmax),
(Ymin, Ymax), and (Zmin, Zmax). Then, we construct a 3-D
histogram that corresponds to a quantized 3-D representation
of the space. The histogram bin size along the three spatial
dimensions (bx, by, bz) can be set based on desired resolution.
The LiDAR point clouds lie in the corresponding bins of the
histogram based on their location. Since the BS is fixed in our
setting, it always occupies the same cell of the histogram with
indicator (−2). The corresponding cell of the target receiver
is also acquired with GPS data and indicated with (−1).
The remaining elements are mapped to the corresponding
histogram elements with (1), which implies the presence of
obstacles. This leads to a compact 3-D representation of the
environment that we use as input for our pipeline.

V. BEAM PREDICTION USING FUSION-BASED
DEEP LEARNING

In the second step of our proposed framework, we design
a multimodal data fusion pipeline to combine the available
sensing modalities together and predict the optimality of each
beam pair. First, we describe the methodology for training the
fusion pipeline, followed by the proposed distributed inference
approach as shown in Fig. 4.

A. Training Phase

We define the data matrices for GPS, LiDAR and images
as: XC ∈ RNt×2, XL ∈ RNt×dL0×dL1×dL2 , XI ∈ RNt×dI0×dI1 ,

respectively, where Nt is the number of training samples.
Furthermore, (dL0 × dL1 × dL2) and (dI0 × dI1) give the dimen-
sionality of preprocessed LiDAR and image data, while the
GPS coordinate has 2 elements. We consider the label matrix
Y ∈ {0, 1}Nt×|B| to represent the one-hot encoding of B beam
pairs, where the optimum beam pair is set to 1, and rest are 0 as
per Eq. (4). As mentioned in Sec. III-A, we have one optimal
beam pair per sample, so we opted for one-hot encoding which
enables having just one class per sample. Overall, we design
a fusion framework to combine different data modalities that
contains two main components: (i) base unimodal networks
and (ii) the fusion network.
• Base Unimodal Neural Network: We use the base unimodal
neural network to (i) benchmark the performance of our
fusion-based approach with respect to what can be achieved
using only a single sensor type, and (ii) extract latent features
from the penultimate (second last) layer of each that we use
as input to our fusion network.

A deep neural network (DNN) can be considered as a
combination of a non-linear feature extractor followed by a
softmax classifier, i.e., the first layer until the penultimate layer
of the DNN constitute the feature extractor [29]. The feature
extractor maps an input to a point in a multi-dimensional
space called as the latent embedding space. The dimension
of this high-level data representation is equal to the number
of neurons in the penultimate layer. Then, in the final layer, the
softmax activation function maps the high level representation
of input data to a probability distribution over classes. As a
result, the penultimate layer captures the unique properties of
input data through a latent embedding space that is the key to
making the final decision.

In this work, we propose to use the output of unimodal
feature extractors as the high level data representation of
each sensor modality. We assume that the penultimate layer
of all three unimodal networks has d neurons. As a result,
each sensor modality sample input maps to a vector with
dimension d after passing through the feature extractors. We
denote the feature extractor of each modality as fCθC , f

L
θL and

fIθI for coordinate, LiDAR, and image data, respectively, each
parametrized by weight vectors θm, for m ∈ {C, L, I}. We
refer to the output of these feature extractors as the latent
embedding of each modality. Formally,

zC = fCθC(XC), fCθC : R2 7→ Rd (6a)

zL = fLθL(XL), fLθL : Rd
L
0×d

L
1×d

L
2 7→ Rd (6b)

zI = fIθI(XI), fIθI : Rd
I
0×d

I
1 7→ Rd (6c)

where zC, zL and zI show the extracted latent embeddings
for input data XC, XL and XI, respectively. We then apply a
tanh activation on extracted latent features to regularize them
in a range [-1, 1]. Note that the input to the base unimodal
networks may contain negative values, which motivates the
choice of tanh as the regularization function.
• Fusion Neural Network: Each of the modalities capture
different aspects of the environment. For instance, the GPS co-
ordinates provide the precise location of the target receiver but
it is blind to the shifts in the other objects in the environment
and fails to provide any information about the dimensions of
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Fig. 4: Proposed fusion framework. In the training phase, the pipeline
is trained offline, and during the distributed inference, the trained
model is disseminated over the system.

the vehicles. The LiDAR accuracy degrades in bright sunshine
with many reflections [30]. Hence, fusing different modalities
can compensate for the partial or inaccurate information and
increase the robustness of the prediction.

Given the latent feature embedding of all modalities, we
propose a fusion approach as follows: We explore that feature
concatenation is an effective strategy for feature-level fusion in
machine learning [31]. Hence, our fusion method is comprised
of concatenation of latent feature embedding from each uni-
modal network to account for all sensor modalities, altogether.
Thus, given zC, zL and zI ∈ Rd, we first concatenate them and
generate the combined latent feature matrix z as:

z = [zC; zL : zI] ∈ R3×d. (7)

Moreover, using multiple layers after concatenation of ex-
tracted features allows our fusion architecture to learn about
the relevance of modalities, and therefore, it intelligently
assigns higher weights to the features of the more relevant
modalities. We pass the combined latent feature matrix z to
another convolutional neural network (CNN) that we refer as
fusion network to properly learn the relation of extracted latent
embedding and the corresponding optimum beam pair. We
denote the fusion network as fFθF(.). Finally, we use a softmax
activation function to predict the optimality of each beam pair
as:

s = σ(fFθF(z)), fFθF : R3×d 7→ R|B| (8)

where σ denotes the softmax activation function defined as
σ(x)i =

exi∑|B|
j=1 e

xj
, i ∈ B, and s = [si]i∈B ∈ R|B| indicates

the predicted score of each beam pair. Note that s forms a
probability distribution, with si = P((t∗, r∗) = i), i ∈ B. We
train this network offline using a cross-entropy penalty, over
data in which the optimal (t∗, r∗) pair is one-hot encoded.

B. Distributed Inference Phase

Unlike the training phase that occurs offline, the inference
needs to occur real-time. To that end, the MEC must receive
instantaneous data from three sensor modalities, which is
passed to the trained fusion pipeline for predicting the top-K
beam pairs. Since the sensors are not co-located, to accelerate
inference, we distribute the ML architecture taking account the
limitations of the control channel delivering the sensor data

to the MEC. Our distributed inference scheme is illustrated
in Fig. 1. The trained base unimodal networks for GPS
coordinates and LiDAR are deployed at the vehicle to locally
generate the high level latent embeddings zC and zL. The
extracted features are then concatenated as zCL = [zC; zL] ∈
R2×d and sent over the sub-6 GHz data channel. Similarly, the
base unimodal network of the image generates the features for
this modality at the BS, which is then combined with zCL at
the MEC as z = [zCL; zI] ∈ R3×d. Note that this methodology
results in the same combined latent feature matrix z as Eq.
(7), we analyze the improvement in end-to-end latency with
this distributed inference approach in Sec. VIII. Finally, given
the latent feature embedding of all modalities available at
the MEC, we use the fusion network, fFθF(·), followed by
a softmax activation to predict the score of each beam pair
according to Eq. (8). Fig. 4 depicts the dissemination of the
fusion pipeline over the system.

VI. TOP-K BEAM PAIR CONSTRUCTION

The proposed fusion pipeline outputs a softmax score for
each of the possible beam pairs given the different sensor
modalities. Recall that our goal is to identify a subset of beam
pairs BK such that (t∗, r∗) ∈ BK with high probability. We
describe in this section how the neural network outputs are
used for that purpose, as well as how we select parameter K.

A. K Selection Problem Formulation

Consider the softmax score vector s = [si]i∈B ∈ R|B|
outputed by the neural network via Eq. (8). Recalling that
s provides a probability distribution for (t∗, r∗) over B, the
top-K beam configurations Eq. (5) becomes:

BK(s) = argmax
A⊂B,|A|=K

∑
i∈A

si. (9)

Hence, given scores s and parameter K, BK can be easily
constructed by sorting s and identifying the top-K elements.

B. Selecting K

Parameter K establishes a tradeoff between the probability
that the optimal beam pair is in BK and the time it takes
to determine the best (but possibly sub-optimal) beam within
BK . This suggests selecting K by optimizing an objective of
the form:

max
K

P ((t∗, r∗) ∈ BK) + µ(K)

where µ : N → R+ is a penalty increasing with the latency
incurred by the choice of K. We discuss how to set these
terms, and additional constraints we introduce, in this section.
Modeling Probability of Inclusion. A simple way to model
the probability of the event (t∗, r∗) ∈ BK is via the softmax
scores s, as in Eq. (9). We observed however that this tends
to overestimate the probability of this event in practice: even
if softmax scores are good for selecting the set BK quickly
and efficiently, a more careful approach is warranted when
selecting K.
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Algorithm 1: Top-K Beam Pair Selection
Inputs: softmax score s generated by F-DL framework
in Sec. V, Ttotal;

Output: BK
1. Compute probability of inclusion Eq. (13)
2: Compute channel efficiency Eq. (14)
3: K ← max

K
p(K; s) + αµ(K);

4. Construct BK according to Eq. (9)

To that end, we leverage the empirical distribution of scores
in our training set. In particular, given a score vector s =
[si]i∈B ∈ R|B| and K ∈ N let

cK(s) = max
A⊂B,|A|=K

∑
i∈A

si (10)

be the sum of the K largest scores in s. Let I ∈ {1, . . . , Nt} be
a sample index selected uniformly at random from our training
set. Let also sI be the corresponding softmax output layer
associated with I , and (t∗I , r

∗
I ) ∈ B the optimal pair associated

with this sample. Then, given a score vector s generated at
runtime and the corresponding BK , we estimate the probability
of the event (t∗, r∗) ∈ BK via:

p(K) = P ((t∗I , r
∗
I ) ∈ BK(sI)) (11)

p(K; s) = P ((t∗I , r
∗
I ) ∈ BK(sI) | cK(sI) ≤ cK(s)) , (12)

where the probability is w.r.t the random sample I in the
dataset. Intuitively, this captures the empirical probability that
(t∗, r∗) is in a random set BK constructed in the training set,
conditioned on the fact that our choice of K restricts these
sets by bounding the quantity cK to be at most cK(s). In some
sense, this allows us to link softmax scores to the variability
of confidence in the construction of BK , itself depending upon
different LOS/NLOS conditions, vehicular traffic patterns, etc.
The training set is used to statistically quantify this variability.

We note that Eq. (12) can be computed efficiently via Bayes
rule, without the need to access the training set at runtime. In
particular, for c = cK(s) ∈ R+, p(K; s) is equal to:

P(cK(sI)≤c|(t∗I ,r
∗
I )∈BK(sI))P((t∗I ,r

∗
I )∈BK(sI))

P(cK(sI)≤c) .
(13)

The constituent cumulative density functions can be computed
directly from the dataset for each K ≤ |B|, and then used at
runtime.
Incorporating Latency. Since the transmitter and receiver
sweep all suggested beam pairs in BK , we include a second
term mmWave channel efficiency in the objective defined as:

µ(K) =
Ttotal − T dfbs (K)

Ttotal
, (14)

with Ttotal and T dfbs (K) being the total time for which a certain
beam pair is valid and the end-to-end latency imposed by our
proposed fusion based beam selection approach, respectively.
We precisely analyze the end-to-end latency of our proposed
beam selection approach in Sec. VIII. Note that the T dfbs is

dataset # of Samples LOS NLOS NLOS Percentage
S008 11194 6482 4712 42%
S009 9638 1473 8165 85%

TABLE III: Statistics of S008 and S009 datasets.

(a) S008 (b) S009

Fig. 5: Distribution of S008 and S009 datasets.

an increasing function of K. Hence, the mmWave channel
efficiency is a decreasing function with respect to K.
Optimization. Combining the above terms, the final optimiza-
tion problem we solve to determine K given a run-time score
vector s is (see Algorithm 1):

max
K

p(K; s) + αµ(K), (15a)

s.t. T dfbs (K) < Ttotal, (15b)
α > 0. (15c)

In Eq. (15), the first term in objective enforces the algorithm
to select higher values of K and ensure the alignment, when
the optimum beam pair is included in the K suggested beams.
On the contrary, the second item avoids selecting unnecessarily
high K values. The control parameter α in Eq. (15) weights the
importance between the two terms in the objective function.

VII. DATASET DESCRIPTION AND DNN ARCHITECTURES

In this section, we introduce two datasets which we use to
evaluate the F-DL framework. The Raymobtime dataset [32]
is one of the widely used comprehensive multimodal dataset
which has been basis of many state-of-the-art techniques.
However, to give more perspective on applicability of the pro-
posed F-DL architecture, we collect our own “real-world” mul-
timodal data, which includes real sensors, urban environment,
and RF ground-truth. Further, we detail the preprocessing and
implementation steps used in the proposed framework.

A. Datasets:

1) Simulation Dataset: The Raymobtime multimodal
dataset captures virtually with high fidelity V2X deployment
in the urban canyon region of Rosslyn, Virginia for different
types of traffic. A static roadside BS is placed at a height
of 4 meters, alongside moving buses, cars, and trucks. The
traffic is generated using the Simulator for Urban MObil-
ity (SUMO) software [33], which allows flexibility in changing
the vehicular movement patterns. The image and LiDAR
sensor data are collected by Blender [34], a 3D computer
graphics software toolkit, and Blender Sensor Simulation
(BlenSor) [35] software, respectively. For a so called scene, the
framework designates one active receiver out of three possible
vehicle types i.e. car, bus and truck. For each scene, (i) the
receiver vehicle collects the LiDAR point clouds and the GPS
coordinates, (ii) a camera at the BS takes a picture, and (iii) the
combined channel quality of different beam pairs are generated
using Remcom’ Wireless Insite ray-tracing software [36]. The
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Day Temperature (F) Humidity Max Wind
Speed (mph)

Atmospheric
Pressure (Hg)

Precipitation
(Inches)

1 53-75 48-74% 17 30.13 2.90
2 59-67 75-87% 13 30 3
3 56-68 54-84% 8 30.37 3.10

TABLE IV: Weather forecast on three days of data collection.

BS and receiver vehicle have uniform linear arrays (ULAs)
with element spacing of λ/2, where λ denotes the signal
wavelength. The number of codebook elements for BS and the
receiver is 32 and 8, respectively, leading to 256 beam pairs.
The gap between two consecutive scenes is 30 seconds which
corresponds to sampling rate of 2 samples/minute. A python
orchestrator is responsible for data flow across the system to
ensure the different software operations are synchronized.

The simulation is repeated for the same scenario with two
different traffic rates. We refer to these datasets as S008
and S009, which correspond to regular and rush-hour traffic,
respectively. Since there are more vehicles in S009, the number
of NLOS cases is higher. Tab. III denotes the number of LOS
and NLOS cases for both datasets. We use the S008 dataset
for training and validation and S009 as the testing set. Fig. 5
illustrates the distribution of the classes over S008 and S009.
We observe that the dataset is highly imbalanced, i.e., there is
a huge variation in the number of different classes, a property
that is expected due to the sparsity of mmWave links.

2) Real-world NEU Dataset: This dataset contains multi-
modal sensor observations collected in the greater metropolitan
area of Boston. The experiment setting is an outdoor urban
road with two-way traffic surrounded by high-rising buildings
on both sides. An autonomous vehicle equipped with GPS
(sampling rate 1Hz) and Velodyne LiDAR (sampling rate
10Hz) sensors establishes connection with a mmWave base
station located at a road-side cart. The RF grand-truth is
acquired using Talon AD7200 60 GHz mmWave routers with
a codebook of 64 beam configurations [37]. Each dataset
sample includes the synchronized recordings of GPS and
LiDAR sensors along with the grand-truth RF measurements.
The data collection vehicle maintains speeds between 10-
20 mph following the speed-limit of inner-city roads. The
dataset setting spans a variety of four categories, including the
LOS passing, blockage by pedestrian, static, and moving car
with 10853 samples (116.7 GB) overall (see Tab. V). Fig. 6
denotes a diagram of the experiment setting top view. The
dataset is collected during three days with different levels
of humidity and weather conditions. The weather forecast
information during data collection days is presented in Tab. IV.
In particular, the humidity and maximum wind speed change
between 53–75% and 8–17 mph, respectively, resulting in a
rich representation of weather in the dataset.

The NEU dataset is collected to expand the feasibility study
of the F-DL architecture. However, to resemble the futuristic
V2X architecture, the considered framework requires tower-
mounted base stations equipped with a camera. As we did not
have access to such infrastructure, we collect the NEU dataset
with LiDAR and GPS sensors deployed in a car. This fact
does not diminish the applicability of the collected dataset,
as the processed fused features from LiDAR and GPS are
transmitted from car to mmWave base station following the

Fig. 6: NEU dataset collection environment includes for categories
as: LOS passing, NLOS by pedestrian, NLOS by static car and NLOS
by moving car.

Category Speed (mph) Scenarios Samples
LOS passing 10 – 1568

NLOS by pedstrain 15
standing

walk right to left
walk left to right

4791

NLOS by static car 15 in front 1506

NLOS by moving car 20 15mph same lane
15mph opposite lane 2988

TABLE V: Summary of different categories of NEU dataset.

same architecture as mentioned in Fig. 1. Hence, we argue
that the NEU dataset can be considered as a solid reference
dataset for the beam selection task, considering the scarcity of
real datasets for mmWave experiments. The real-world NEU
dataset is released online in our public dataset repository [38].

B. Preprocessing

1) Image: To construct the dataset for the image prepro-
cessing classifier, we manually identify and close in bounding
boxes samples of bus, car, truck and background and quantize
them by following the steps mentioned in Appendix A. We
label these as background (0), bus (1), car (2), truck (3).
The constructed dataset contains 22482 samples per class on
average. We then train a classifier as follows. The input crops
are first passed to a convolutional layer with 20 filters of kernel
size (15, 15) followed by a max-pooling layer with the pool
size of (3, 3) and stride size of (2, 2). The output is fed to
two consecutive dense layers with 128 and 4 neurons (number
of classes). Our trained classifier achieves 84% accuracy in
separating the samples of each class. In the Raymobtime
dataset, the camera generates (540, 960, 3) RGB images. We
empirically choose the window size of 40 and stride size 3 for
our task that results in the output bit map of size (101, 185).
Fig. 7 shows a sample from the dataset and the generated
bit map. Note that the multi-object detection algorithm can be
easily extended to any type of vehicle by including the samples
from new vehicles in the training set [39]. We evaluate the
delay cost of image preprocessing in Sec. VIII-A.

2) LiDAR: The maximum distance for LiDAR is 100
meters in the Raymobtime dataset, and the zone of space
is limited in each axis as, (Xmin, Xmax) = (744, 767),
(Ymin, Ymax) = (429, 679), (Zmin, Zmax) = (0, 10), where
the static BS is located at [746, 560, 4] within this Cartesian
coordinate system. Moreover, the histogram bin size along the
three spatial dimensions is set as (1.15, 1.25, 1), respectively.
Following the steps mentioned in Sec. IV-B, we generate a
compact (20, 200, 10) representation of the environment where
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(a) Raw image (b) Generated bit map

Fig. 7: An example of input and output of image preprocessing.

the BS, target vehicle, and obstacles are marked with different
indicators. For NEU dataset, we use the maximum LiDAR
distance of 80 meters and map the LiDAR point clouds to a
compact (20, 20, 20) representation in each axis.

C. Implementation Details

Our proposed fusion pipeline consists of three unimodal
networks per modality followed by a fusion network as
presented in Fig. 4. We first design each unimodal network
tuned to each dataset which takes either raw (for coordinate)
or preprocessed (LiDAR and image) data as input and generate
the latent embeddings to be fed to the fusion network. For
GPS unimodal network, we design a model that uses 1-D
convolutional layers (see Fig. 8a). This enables capturing the
correlation between the latitude and longitude, simultaneously.
Our custom designed model for the preprocessed images (see
Sec. IV-A) is inspired by ResNet [40] that uses identity con-
nections to avoid the gradient vanishing problem commonly
seen in deep architectures, by creating a direct path for the
gradient during backpropagation. Each such identity block
contains 2 convolutional layers and an identity shortcut that
skips these 2 layers, followed by a max-pooling layer, as
shown in Fig. 8e. For LiDAR input, we also design a model
structure similar to ResNet (see Fig. 8c). Note that while
the input to image and LiDAR models are 2D and 3D, the
majority of elements are zero due to filtering the irrelevant data
during preprocessing. We also use max-pooling layers after
convolutional layers for feature down-sampling and dropout
of 0.25 after fully-connected layers to avoid overfitting.

The representation capacity of each network including latent
embedding generators scales with the number of classes |B|
in each dataset, 256 and 64 for Raymobtime and NEU, re-
spectively. Though increasing the number of neurons generally
improves the representation capacity of base unimodal archi-
tectures, we find having neurons equal to the number of classes
to be sufficient for our task. We design a fusion network as
depicted in Fig. 8d that takes as input the concatenated latent
embedding of each modality. Ultimately, the last dense layer
with the number of classes outputs the predicted score of
each beam pair. For all models, we exploit categorical cross-
entropy loss with batch size of 32 and training epochs of 100
and 400 for Raymobtime and NEU dataset with an earlier
stopping point of patience 10. Moreover, we apply `1 and
`2 kernel regularizers on dense layers with parameters 10−5

and 10−4, respectively. We use Adam [41] as optimizer with
β = (0.9, 0.999) and initialize the learning rate to 0.0001.

(a) GPS (b) Image (c) LiDAR (d) Fusion (e) Identity

Fig. 8: Proposed architectures for unimodal and fusion networks.

VIII. END-TO-END LATENCY ANALYSIS WITH
DISTRIBUTED INFERENCE

In this section, we explore the design details and perfor-
mance trade-offs related to centralized/distributed inference.
Moreover, we answer the following question: What is the end-
to-end latency of beam selection with our proposed method?

A. Data Collection and Preprocessing

Current LiDAR sensors support pulse rate, i.e., the number
of discrete laser “shots” per second that the LiDAR is firing,
of 50,000 to 150,000 pulses per second, while 35 cm precision
can be achieved with 8 pulses/m2 [42]. The GPS sensor data
does not require any preprocessing and the LiDAR prepro-
cessing has a negligible latency that can be further reduced
by exploiting parallel processing. For image sensor data, we
measure the delay of our proposed object detection algorithm
described in Appendix. A by passing a single sample 100
times and calculating the average required time for generating
bit maps. Accordingly, our proposed image preprocessing
pipeline generates the bit maps in 1.30ms on average. As a
result, our preprocessing pipeline runs in 1.30 ms on average
(Tprocess = 1.30ms). Note that image preprocessing is applied
on Raymobtime dataset only.

B. Sharing Features between Vehicle and MEC

Data collected at vehicular locations can incur different
relaying costs to the MEC, depending upon the sensor modal-
ity. For GPS coordinates, both latitude and longitude, can
be expressed in 6 Bytes, while the raw LiDAR point cloud
requires ∼1-1.5 MBytes for complete transfer. One possible
approach is to relay the GPS measurements as is while
subjecting the LiDAR data to additional preprocessing step as
discussed in Sec. IV-B. This step maps the raw LiDAR point
clouds to a ridge representation with size (20, 200, 10) that can
be shown with ∼320 KBytes (78% less than raw LiDAR point
clouds) for Raymobtime dataset. Using the aforementioned
prepossessing reduces the data from 0.9 MByte to 64 KByte
for NEU dataset as well. We can further improve the data
transmission speed from vehicle to the MEC by sending the
fused high level latent embeddings of LiDAR and GPS. Recall
that we extract this information at an intermediate layer of the
neural network (see Sec. V-A). With our proposed distributed
inference design, the raw coordinates and LiDAR data is
translated to an array with 2× |B| elements that is expressed
with only ∼4 KBytes and ∼1 KBytes for Raymobtime and
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Raymobtime NEU

Method # Bytes
Min Reqd. time (ms) Max Reqd. time (ms)

# Bytes
Min Reqd. time (ms) Max Reqd. time (ms)

802.11p LTE 802.11p LTE 802.11p LTE 802.11p LTE
Preprocessed 326 KB 12.07 4.34 108.66 74.09 64 KB 2.37 0.85 21.33 14.55

High-level
fused features 4 KB 0.148 0.053 1.332 0.90 1 KB 0.037 0.013 0.33 0.225

TABLE VI: The required time for sharing the data with MEC (Tdata) for three data sharing strategies for Raymobtime and NEU datasets.

NEU datasets, respectively (∼ 99% reduction in size than
raw data), which is even more compressed and requires less
bandwidth within the sub-6 GHz control channel.

Tab. VI illustrates the number of bytes and the mini-
mum/maximum experienced delay while transmitting the com-
pressed extracted features of coordinate and LiDAR over
the sub-6 GHz data channel. The achievable throughput is
assumed to be 3-27 Mbs and 4.4-75 Mbs for 802.11p [43]
and single input single output (SISO) LTE [44], respectively.

Additionally, the fused features are difficult to interpret by
third parties and provide a level of abstraction to the raw
data. From Tab. VI, we observe that the data channel delay
reduces drastically with the distributed inference. Without loss
of generality, we use the maximum imposed delay of control
signaling from vehicle to MEC being (Tdata = 1.332ms)
for Raymobtime and (Tdata = 0.33ms) for NEU datasets to
calculate the overall end-to-end latency.

C. Inference and Sharing Selected Beams with Vehicle

In order to evaluate the inference delay, we pass input
data, i.e., the latent embedding of all modalities, through our
pipeline and measure the prediction time by setting a timer
and subtracting the timestamp before and after prediction. We
note that the average inference time of our proposed fusion
approach is 0.37ms. On the other hand, sending the selected
K beams from MEC to vehicle over the sub-6 GHz control
channel requires at most 2KB (256 elements) and 0.5KB (64
elements) for Raymobtime and NEU datasets, respectively.
That takes 0.66ms and 0.16ms as maximum required time,
and results in a cumulative delay (Tcontrol) of 1.03ms and
0.53ms for each dataset, respectively. Similar to the previous
section, we consider the highest imposed delay related to using
IEEE 802.11p standard as our reference.

D. Impact on Beam-sweeping Latency: Case Study in 5G-NR

We first discuss the time requirement of exhaustive beam
search in 5G-NR standard. Next, we calculate the required
time for sweeping only the selected K beam pairs by following
the same norms as 5G-NR standard.

1) Beam Selection Latency in 5G-NR: For evaluating a
5G-NR standard compliant beam selection process in the
mmWave band, we consider a transmitter-receiver pair with
the codebook sizes M and N , respectively. With analog
beamforming, we have a total of |B| =M ×N combinations
(see Sec. III). During the initial access, the gNodeB and user
exchange a number of messages to find the best beam pair. In
particular, the gNodeB sequentially transmits synchronization
signals (SS) in each codebook element tm ∈ CTx. Meanwhile,
the receiver also tunes its array to receive in different codebook
elements rn ∈ CRx until all possible beam configurations are

swept. The SS transmitted in a certain beam configuration
is referred as the SS block, with multiple SS blocks from
different beam configurations grouped into one SS burst. The
NR standard defines that the SS burst duration (Tssb) is
fixed to 5ms, which is transmitted with a periodicity (Tp)
of 20ms [45]. In the mmWave band, a maximum of 32 SS
blocks fit within a SS burst, which allows for 32 different beam
pairs to be explored within one SS burst. Hence, in order to
explore all beam pair combinations, a total of |B| SS blocks
are required to be transmitted. Given the limit on SS blocks
within a SS burst, the total time to explore all beam pairs
(Tnrbs ) can be expressed as:

Tnrbs (|B|) = Tp ×
⌊
|B| − 1

32

⌋
+ Tssb, (16)

where Tp = 20ms and Tssb = 5ms correspond to periodicity
and SS burst duration, respectively. Note that if a certain
number of beam pairs are not explored within the first SS burst
(|B| > 32), there is an increasing delay given the separation
Tp between SS bursts. On the other hand, exploring a number
of pairs smaller than 32 will introduce the same overhead as
if a total of 32 options were searched, given that Tssb has a
fixed duration of 5ms. Similarly, this can be extended to any
number |B| that is not a multiple of 32.

2) Improvement in Latency through Proposed Approach:
Our proposed approach reduces the beam search space from
|B| to a subset of K � |B| most likely beam candidates,
derived from Algorithm 1. We recall that the NR standard
assumes that up to 32 can be swept within 5ms. Thus, we
define the time to explore one single beam as Tb = 5ms/32 =
156ns. Then, the required time for sweeping the selected top-
K beam pairs can be expressed as:

Tsweep(K) = Tp

⌊
K − 1

32

⌋
+Tb (1+(K−1) mod 32). (17)

E. End-to-end Latency Calculation

Considering the aforementioned four steps, the overall beam
selection overhead following our proposed data fusion ap-
proach (T dfbs ) with distributed inference is expressed as:

T dfbs (K) = Tprocess + Tdata + Tcontrol + Tsweep(K), (18)

where the first three terms can be approximated by 3.662ms
and 0.86ms for Raymobtime and NEU datasets, respectively.
Note that the distributed inference play a pivotal role in
reducing the overhead associated with sharing the situational
state of the vehicle with the MEC (Tdata). We validate
the improvement in overall beam selection time using the
proposed distributed inference (Eq. 18) approach rather than
the traditional brute-force approach offered by the state-of-the-
art 5G-NR (Eq. 16) standard in Sec. IX-E.
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IX. RESULTS AND DISCUSSIONS

In this section, we provide the results of our proposed
method using the datasets described in Sec. VII-A. We use
Keras 2.1.6 with Tensorflow backend (version 1.9.0) for im-
plementation. To judge the efficiency of proposed beam selec-
tion approach on multi-class, highly-imbalanced, multimodal
Raymobtime [32] and NEU datasets, we use four evaluation
metrics that capture the performance from different aspects,
including top-K accuracy, weighted F-1 score, KL divergence
and throughput ratio. We provide the detailed definitions of
these metrics in Appendix B. We first analyze the performance
of proposed fusion deep learning method on Raymobtime
dataset, and then further justify the performance on real-world
NEU dataset in Sec. IX-F.

A. Performance of Base Unimodal Architectures

We assess the performance of beam selection by only rely-
ing on unimodal data. The experimental results of predicting
top-K beam pairs are presented in Tab. VII, for each proposed
unimodal architectures. In the table, we report the top-K
(K=1, 2, 5, 10, 25, 50) accuracy along with weighted recall,
precision and F1 score and the KL divergence of the predicted
labels and true labels on Raymobtime dataset. We observe that
the LiDAR outperforms coordinate and image in all metrics
with 46.23% top-1 accuracy, which makes it the best single
modality. Moreover, to justify the improvement achieved by
using the image preprocessing step described in Appendix A,
we compare the weighted recall on raw and preprocessed
image data. Interestingly, we observed that by using the raw
images, the model always predicts the class with the highest
occurrence in the training set that results in the weighted recall
of 0.01%. Intuitively, in the case of using raw images, the
model cannot find a relation between the input image and the
labels since from a raw image perspective any vehicle captured
in the image can be the target receiver. On the other hand,
using the image preprocessing step increases the weighted
recall to 7% as presented in Tab. VII.

B. Performance of Fusion Framework

The results of fusion on different combinations of unimodal
data are presented in Tab. VII for Raymobtime dataset. We
observe that the fusion increases the beam prediction accuracy
in all combinations. Moreover, the best result is achieved when
all modalities are fused together with 9.99% improvement in
top-1 accuracy in comparison with the best unimodal data i.e.,
LiDAR. The improvement with fusion can be also justified
by the validation accuracy during training. Fig. 9 compares
the top-1 validation accuracy of fusion of all three modalities
with LiDAR-only (best single modality). We observe that
although the top-1 validation accuracy of fusion is lower in
early epochs, it outperforms the LiDAR after five epochs.

Since the dataset is highly imbalanced, we report results
using metrics like weighted precision, recall, and F1 score to
confirm the improvement. Furthermore, we use KL divergence
metric to measure the overall performance of the fusion
pipeline. The lower the divergence, the more is the similarity
between true and predicted labels. We also use KL divergence

Fig. 9: Comparing top-1 validation accuracies of LiDAR-only and
fusion with all three modalities on the Raymobtime dataset.

to show the relative entropy between train (S008) and test
(S009) data labels (Shown in Fig. 5). We get KL divergence
of 0.57 signifying high relative entropy between the train/test
label distributions. From Tab. VII, we observe that the fusion
with all unimodal data leads to the lowest KL scores. Hence,
we deduce that fusion among all three modalities is the most
successful scheme to capture the label distribution in the test
set. Hence, we choose the proposed fusion-based approach
comprising of all three modalities as beam selector for the
rest of the performance evaluation.

C. Studying the Impact of K

To analyze the impact of different K values in the overall
performance, we point out that failure in selecting the optimum
beam pair within the suggested subset ((t∗, r∗) /∈ Bk) results
in the drop in the received signal power. Hence, we choose
the throughput ratio (see Appendix B) as our metric to assess
the QoS of the system. Intuitively, the throughput ratio depicts
the ratio of average throughput when sweeping only K beam
pairs predicted by the model with reference to what could
be achieved with exhaustive search. Fig. 10a compares the
throughput ratio and normalized beam selection accuracy with
K varying from 1 to 30 for Raymobtime dataset. As expected,
both increase with K since it is more likely to include the
optimum beam pair with higher K. We observe the gap
between the accuracy and throughput ratio starts with 16.90%
for K=1, and it decreases as K increases. We do not observe
significant improvement in throughput ratio after K = 10;
however, the accuracy keeps on improving until K = 25. Note
that while increasing K improves the quality of service (QoS),
it results in higher beam selection overhead. Hence, it is
crucial to balance the tradeoff between the two as proposed in
dynamic selection of top-K beam pairs algorithm in Sec. VI.

D. Impact of LOS and NLOS

The presence of obstacles leads to massive drops in channel
quality given the high attenuation in the mmWave band. Ad-
ditionally, users might experience a considerable reduction in
their QoS to tens of Gbps. In LOS scenario, the corresponding
best beam pair distinctively outperforms the others. However,
the presence of blockage in LOS path causes unexpected
beams to achieve the highest signal strength through multiple
reflections. We show this in Fig. 10b, which compares the ac-
curacy of our proposed fusion where the sample of test data are
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Modalities Top-1 Top-2 Top-5 Top-10 Top-25 Top-50 Weighted Weighted Weighted KL
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Recall Precision F1 score divergence

Coordinates 12.32% 31.51% 55.61% 77.93% 88.5% 95.14% 2% 12% 3% 3.02
Image 12.39% 26.84% 55.38% 71.65% 88.05% 95.01% 7% 12% 3% 2.9051
LiDAR 46.23% 64.67% 82.43% 89.95% 96.11% 98.13% 47% 46% 45% 0.1738

Coordinates, Image 25.76% 44.88% 74.18% 86.29% 94.78% 97.89% 21% 26% 22% 0.5432
Coordinates, LiDAR 55.42% 74.54% 85.51% 91.41% 96.75% 98.56% 55% 55% 54% 0.1357

Image, LiDAR 54.52% 73.08% 84.83% 91.23% 96.78% 98.50% 55% 55% 54% 0.1428
Coordinate, Image, LiDAR 56.22% 74.08% 85.53% 91.11% 96.56% 98.60% 55% 56% 55% 0.1314

TABLE VII: Performance of proposed unimodal and fusion when trained on S008 and tested on S009 Raymobtime dataset.

(a) (b) (c)

Fig. 10: (a) Comparison of throughput ratio and beam selection accuracy with varying K (b) LOS/NLOS accuracy for K = 0, 1, ..., 20 (c)
Analysis of throughput ratio, accuracy and average selected K for different α values in Eq. (15).

separated based LOS/NLOS scenario in Raymobtime dataset.
As expected, prediction in the case of complex reflections of
NLOS links is more challenging, showing a maximum drop
of 8.3% in beam selection accuracy against LOS scenarios.

E. Impact on Beam Selection Speed

As discussed in Sec. VIII-D1, the 5G-NR standard define a
brute-force beam sweeping process that sequentially explores
all possible directions. In addition, according to Eq. (16), only
up to 32 directions can be explored within one SS burst, which
creates additional waiting time within one beam selection
process. In order to decrease such overhead, we propose a
solution that selects a reduced set of K beam pairs and
performs a brute-force search only on those ones. Also, given
the different confidence levels of our prediction model due
to potential scenario variations, we propose an algorithm that
selects K flexibly to avoid unnecessary overhead.

In the Raymobtime dataset, the road length is 200 meters
and the BS is located in the middle. On the other hand,
the 3-dB beam width of an uniform linear array antenna
with N elements is approximately equal to 2/N radians [46]
that results in span of 3.58◦ and 14.32◦ for each beam of
transmitter and receiver codebooks, respectively. Hence, the
overall BS coverage angle is equal to φBS = 114.56◦ and the
contact time, i.e., the time that the vehicle remains in the span

of one beam, is equal to Ttotal =
2h tan(

φBS
2 )

vl
with h and vl

being the height of the BS and the velocity of the vehicle [47].
Consequently, the vehicle remains in the coverage region of
each beam pair for ∼ 807ms while moving with the velocity
of 32 km/h (average speed in urban roads). Therefore, the
beam selection process needs to be repeated every 807ms
(Ttotal). In Fig. 10c, we analyze the impact of α in Eq. (15)
on the throughput ratio (RT ), the accuracy and the average
selected K. We observe how the triplet RT , accuracy and
average selected K decreases with α, the control parameter

in Eq. (15). Intuitively, increasing α gives more weight to
the second term in Eq. (15) that forces the algorithm to be
faster and choose lower K which results in lower QoS and
beam selection accuracy. Interestingly, we observe that for
α = 0 the maximum average selected K is equal to 87. In
this scenario, the objective in Eq. (15) aims to maximize the
alignment probability and increasing the K and yet it does not
exceeds 87 out of 256. We conclude that our proposed fusion
method achieves to ∼100% top-87 accuracy.

The control parameter in Eq. (15) enables us to slide
between different accuracy and overhead conditions. Fig. 11
shows that the dynamic K selection approach achieves an av-
erage throughput ratio of 95.37% and 97.95% while targeting
90% and 95% accuracy, respectively. This implies that the
capacity of the proposed F-DL approach is only 4.63% lower
than the 5G-NR standard, while targeting the accuracy of 90%
for instance. Moreover, the dynamic K selection approach
offers the corresponding beam sweeping overhead of 0.94ms
and 2.04ms, Eq. (17) and the overall beam selection delay
of 4.6ms and 5.71ms. Note that the beam selection delay
of our proposed dynamic K selection method in Fig. 11
corresponds to the end-to-end latency of the proposed F-
DL method presented in Eq. (18). In contrast, the 5G-NR
standard beam selection procedure requires 145ms. Therefore,
we notice 96% reduction in overall beam selection overhead
while retaining 97.95% relative throughput associated with
95% accuracy. Furthermore, we compare the performance of
proposed algorithm for constructing the subset BK , Algo-
rithm 1, that is generated dynamically per case, with the fixed
K one (Fig. 10a). Note, that fixed K selection is a posterior
probability derived after observing all test samples; however,
the dynamic K selection selects the K for each sample of
test set, independently. From this figure, we observe that the
proposed dynamic K selection approach outperforms the fixed
K one, providing faster beam selection with close competing
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Fig. 11: Comparison of relative throughput and end-to-end beam
selection time (Eq. (18)) of proposed approaches, Dynamic K (Al-
gorithm 1) and Fixed K (Eq. (9)), with 5G-NR standard. The actual
beam selection time of 145ms for 5G-NR is scaled here, for better
visibility and comparison purpose.

relative throughput while targeting the same accuracy. We
use the same standard, i.e., 5G-NR for fair comparison (see
Fig. 11). Note that our algorithm can be trivially extended
to any other exhaustive beam search standards, such as IEEE
802.11ad by modifying Eq. (17), yet it does not negate the
improvement achieved by restricting the beam selection to a
lower dimension space.

F. Real-world Implementation

We validate the performance of the proposed fusion deep
learning method on the home-grown NEU dataset. As men-
tioned in Sec. VII-A2, due to the infrastructural limitation,
we use only LiDAR and GPS branch of the proposed F-
DL (presented in Sec. V, Fig. 4) for this set of experiment.
Tab. VIII compares the beam selection accuracy while using
individual sensor inputs in contrast to the case where the
information from GPS and LiDAR sensor are fused together.
We observe that fusion improves the Top-1 prediction accuracy
from 74.86% for the best modality, i.e., LiDAR to 78.18% for
the fusion of GPS and LiDAR sensors. The weighted F1 score
also increases by 3.6% denoting better handling of imbalances
in ground-truth, which is common in mmWave beams.

G. Accuracy and End-to-End Latency Analysis:

The Raymobtime and NEU datasets have 256 and 64
possible beam pairs each; hence, sweeping the entire codebook
elements requires, 145ms and 25ms, respectively, according
to 5G-NR standard (see Sec. VIII-D1). On the other hand,
the proposed beam selection method restricts the beam search
space to a subset of K beam pairs. We study the trade-off
between the accuracy and end-to-end beam selection time
versus K in Fig. 12 for both datasets. Note that the 5G-NR
standard defines 20ms waiting window between SS bursts,
where each SS burst includes 32 SS blocks for sweeping 32
beam pairs (see Eq. (17)). This results in sudden increments in
beam selection time at intervals of every 32 beams, observed
in Fig. 12. We also notice that for the Raymobtime dataset the
accuracy is > 99% for K > 87 while the end-to-end latency

(a) (b)

Fig. 12: Beam selection accuracy and end-to-end beam selection time
versus K on the (a) Raymobtime and (b) NEU datasets.

Modalities Top-1 Top-2 Top-5 Weighted
Accuracy Accuracy Accuracy F1 score

Coordinates 39.94% 54.39% 81.05% 33.63%
LiDAR 74.86% 89.04% 97.57% 75.02%

Coordinates, LiDAR 78.18% 91.02% 98.02% 78.62%

TABLE VIII: Performance of proposed unimodal and fusion method
on real-world NEU dataset.

is still increasing. On the other hand, for the NEU dataset,
the accuracy and end-to-end beam selection time starts with
78.18% and 3.818ms for K = 1. The accuracy saturates at
K = 7 and reaches ∼ 100% for K > 12 while the beam
selection time keeps on increasing and becomes 25.86ms for
K = 64. Specifically, Fig. 12 highlights the importance of the
K selection method to choose the appropriate K and avoid
unnecessary overhead imposed on the system.

H. Comparison with the State-of-the-art

In Tab. IX, we compare the performance of our proposed
models to the state-of-the-art DL based approaches by Klautau
et al. [23] and Dias et al. [24], both evaluated on the
Raymobtime dataset. To the best of our knowledge, these
are the only methods that include equivalent scenarios to the
ones considered in this paper. In particular, LiDAR sensor
data collected on vehicles is used for beam prediction under
both LOS and NLOS conditions. Other works that consider
different evaluation metrics ([21], [48]), camera images under
LOS-only scenarios ([22], [49]) or RF data [50] have been
kept out of the comparison. As we show in Tab. IX, the
proposed LiDAR model and the F-DL architecture outperform
the state-of-the-art ([23], [24]) by 18.95-20.45% and 20.11-
21.61% respectively in top-10 accuracy.

I. Discussion

We summarize below interesting observations from the
experimental results:
• When LiDAR and GPS sensors are deployed over the

vehicle and features are transmitted to the BS through
sub-6 GHz data channel, the wireless control channel may
impact the actual delivery at the MEC. On the other hand,
cameras at the BS may have a reliable fiber connectivity
to the MEC. Hence, in case of unreliable channel con-
ditions or faulty sensors, our fusion framework is still
able to make predictions based on any available sensor
modality. This robustness to unreliable channel conditions
is essential, even if there is no immediate gain from fusing
a specific type of modality.
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Methods Dataset # Beams Modalities Inference Top-1 Top-2 Top-5 Top-10
Dias et al. [24] Raymobtime (S007) 264 LiDAR Centralized 20.5± 1% 25.5± 1% 54.5± 1% 68.5± 1%

Klautau et al. [23] Raymobtime (S008) 240 LiDAR Centralized 30.5± 1% 43.5± 1% 57.5± 1% 70± 1%

Proposed LiDAR Network Raymobtime (S008) 256 LiDAR Centralized 46.23% 64.67% 82.43% 89.95%
Proposed F-DL Raymobtime (S008) 256 GPS, Image, LiDAR Distributed 56.22% 74.08% 85.53% 91.11%

NEU 64 GPS, LiDAR Distributed 78.18% 91.02% 98.02% 99.37%

TABLE IX: Comparison of proposed best performing unimodal and F-DL architectures with two benchmark DL based approaches on
Raymobtime dataset [32] and results on the real-world NEU dataset.

• Proposed beam selection technique with dynamically
chosen K automatically selects the top-K best beam
pairs, with performance closed to a fixed K when the lat-
ter is identified via expert knowledge. Thus our approach
eliminates the need to include expert domain knowledge
(know what K is needed to achieve certain amount of
accuracy), by automating the beam selection process.

• We show that it is possible to reduce the beam-selection
overhead in a practical and emerging 5G-NR standard by
95–96%, while maintaining 97.95% relative throughput.

X. CONCLUSIONS

Increasing softwarization and ability to automatically con-
figure parameters [51] within 5G and beyond networks will
necessitate the use of ML-based methods distributed at the
MEC. In this paper, we propose an approach for ML-aided fast
beam selection technique, where multimodal non-RF sensor
data is exploited to reduce the search space for identifying
best performing mmWave beam. Our proposed fusion method
exploits the latent embeddings from each unimodal feature
representation and the overall framework is evaluated in real-
istic emulated settings. We observe around 20-22% increase in
performance for top-10 accuracy than the state-of-the-art using
the proposed F-DL architecture. We also achieve 95–96%
decrease in beam selection time compared to the exhaustive
search defined by the 5G-NR standard in the high-mobility
urban scenarios. We propose to extend this framework ahead to
multiple-receiver scenarios [52], incorporate federated learning
among the sensors [53], and handle different codebook sizes.

APPENDIX A
OBJECT DETECTION ALGORITHM

Our proposed image preprocessing step is a combination
of a standard multi-object detection approach followed by a
refinement step where each detected object is denoted by a
unique indicator according to their role, i.e., target receiver
or obstacle. It is constituted of a classifier that is capable to
predict the presence of objects in the small bounding boxes. In
the training phase, we separately label the examples from the
valid items in the environment. We then quantize the samples
by filtering the images with a moving square-shaped window
of size W ×W pixels. Starting from the top left side of the
image, and after generating the first crop, we move the window
by X pixels. This process results in a dataset of cropped
samples from each of possible items in the environment. Since
the dimensions of items vary, we end up with different number
of samples for each class. To achieve a balanced dataset,
we augment the minority classes by applying different light
conditions, until we reach the same number of samples per
class. We split the final balanced dataset in (70%,15%,15%)
proportion, and train the classifier.

Similarly, in testing phase, we quantize the image by
sweeping it with a window of dimension W×W and step size
X . Next, we feed each crop to the trained classifier and arrange
the predictions in the same order as the crop generation. This
process leads to a quantized representation of the image, where
each element gives the prediction of the classifier for the
object in the corresponding W ×W window. We refer to this
representation as the bit map of the raw input camera images.
Given an input image with dimension H × L, the shape of
generated bit map will be bH−WX + 1c × bL−WX + 1c.

We can refine our bit map further if the specific vehicle
type is also transmitted directly by the receiver, as part of the
basic safety message in IEEE 802.11p standard for instance.
Therefore, given the generated bit map and the reported type of
the target vehicle, we (i) keep the label of legitimate receiver
vehicle type, (ii) map other vehicles to obstacles. This process
designates the potential location of the target receiver as well
as the location of obstacles with much more information
than the raw images. Finally, to address the concern that
the image preprocessing may introduce significant delay as
it requires multiple forward passes, we convert the trained
model to an equivalent fully convolutional network. We have
previously explored such an approach in [54], which enables
us to generate the entire bit map in a single forward pass.

APPENDIX B
EVALUATION METRICS

Top-K accuracy calculates the percentage of times that
the model includes the correct prediction among the top-K
probabilities. Given ground-truth beam pair (t∗, r∗) and the
prediction score S ∈ R|B|, top-K accuracy is defined as:

Acc@K = 1
N
′
t

∑N
′
t

l=1 1((t∗,r∗)∈A′| argmax
A′⊂{1,...,|B|},|A′|=K

∑
j∈A′ sj)

.

(19)
where N

′

t denotes the number of test samples and φ is a
Boolean predicate, with 1φ to be 1 if φ is true, and 0 otherwise.
For K = 1 we get the conventional top-1 accuracy that only
the highest probability prediction is taken into account.

The F1 score measures a model’s ability to perform with
imbalanced class distribution and defined as the harmonic
mean of precision and recall given as F1 = 2× precision×recall

precision+recall .
Precision denotes how many of the predicted true labels are
actually in the ground-truth, while recall denotes how many
of the actual labels are predicted. To combine the per-class
F1 scores into a multi-class version, we weight the F1-score,
precision and recall of each class by the number of samples
from that class. The KL divergence measures the divergence of
the predicted probability distribution from the true one. Given
the one-hot encoding y ∈ R|B| of the ground-truth labels and
the prediction ŷ, KL divergence is defined as KL(ŷ||y) =
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∑|B|
i=1{ŷi log

ŷi
yi
}. Finally, we evaluate the performance of our

fusion based beam selector with respect to achieved throughput

ratio that is defined as RT = 1
N
′
t

∑N
′
t

n=1

log2[1+y ̂(t∗,r∗)(n)]

log2[1+y(t∗,r∗)(n)]
,

where (t∗, r∗) and (̂t∗, r∗) show the best beam pair in B and
Bk (as defined in Sec. III-A and III-B), respectively, and N

′

t

is the total number of test samples.
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