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Abstract—This paper proposes a network architecture and
supporting optimization framework that allows Unmanned Aerial
Vehicles (UAVs) to perform city-scale video monitoring of a set of
Points of Interest (Pol). Our approach is systems-driven, relying
on experimental studies to identify the permissible number of
hops for multi-UAV video relaying in a noisy 3-D environment.
Our architecture itself is innovative in the sense that it defines
a mathematical framework for selecting the UAVs for periodic
re-charging by landing on public transportation buses, and then
‘riding’ the bus to the successive chosen Pol. Specifically, we show
that our UAV scheduler can be modeled as an instance of multi-
commodity flow problems, and mathematically solved through
Mixed Integer Linear Programming (MILP) techniques. Thus,
our centralized formulation identifies the UAYV, the next bus, and
the next Pol, given the information about energy thresholds, the
bus routes in the city and their next arrival times, to ensure
persistent and reliable video coverage of all Pols in the city.
Finally, our work is validated via emulation of a city environment
with live traffic updates from a real bus transportation network.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are being increasingly
deployed for next-generation surveillance of urban areas [2],
driven by availability of off-the-shelf devices and reducing
costs. High-resolution cameras, sensors and GPS can be
mounted on top of low-cost quadcopters, guaranteeing better
area monitoring than ground sensor networks [3] [5]. However,
most readily deployable solutions today are based on a single
UAV-ground station link, with limited flying time imposed by
the on-board battery. This challenges the notion that a city-
scale area can be effectively and persistently monitored by a
UAV network under rigid performance bounds. Our approach
addresses this important shortcoming through an innovative
architecture that involves UAVs using public transportation for
re-charging and traveling to the expected points of interest.

A. Challenges in city-scale monitoring

While major research efforts have focused on forming and
coordinating UAV fleets, very few experimental studies pro-
vide a systems-driven and quantitative performance values of
real-time video streaming involving multi-hop UAV communi-
cation [6] [7]. The urban channel introduces a harsh multipath
reflection and scattering environment, which is worsened by
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Fig. 1. Proposed architecture with UAVs filming city Point of Interests (POIs).

the continuous, albeit minor 3-D displacements of UAVs, even
if they hover at a stationary point. Under such situations,
we need to validate the number of intermediate hops that
permit video reception, without unacceptable jitter and re-
buffering. Furthermore, for persistent monitoring, the UAVs
must rely on well positioned ground charging stations, with
recent experimental results indicating the feasibility of this
technology [8] [9]. One option for the recharging process
is to use inductive coupling or simply swap batteries [10].
Accordingly, several recent studies have focused on scheduling
algorithms to maximize the UAV service persistence over time
and space, when they periodically visit static ground charging
stations [4] [9] [11] [12]. In our vision of sustainable and cost-
effective recharging solutions, we envision mobile charging
stations that do not require specialized vehicles or robots.
Instead, we assume that there is an underlying public trans-
portation network of a city-run fleet of buses with established
routes, where buses create the energy reserves during their
regular motion. While this reduces the cost of operation of
the UAVs, our proposed architecture complicates the problem
of persistent coverage. Finally, whether at all sufficient energy
can be transferred to the UAV in the short ‘riding’ time on a
bus needs to be demonstrated; these practical challenges are
spread across the topics of systems design, communications
and network formation, and must be jointly tackled.

B. Why should UAVs ride a bus?

We propose a solution to a specific problem: how to con-
tinuously collect and communicate video streams from a large



number of Points of Interest (Pol) that are spread across a large
urban city (see Figure 1). Our approach takes as inputs a set of
Pol coordinates within an urban city, the set of bus routes, with
the marked stops with the next arrival time of the bus at any
given instant. This data is readily accessible using published
API from most city-run transportation systems. We first create
multihop forwarding paths, based on experimental studies of
video quality degradation over multiple relaying UAVs. The
UAVs themselves are assigned to distinct Pols, till energy
considerations and bus arrival schedules require them to switch
to a charging mode. A given UAV z vacates its Pol, and lands
on the chosen bus upon its arrival to a nearby stop. A different,
charged UAV y, currently riding the bus, takes over its place
for monitoring. The UAV z now rides the bus, also utilizing the
time to re-charge using standard inductive coupling plates. It
travels to the next Pol that is close to the bus route, and where
a pre-existing UAV z is almost depleted of energy. The UAV
swap occurs again with the charged UAV x resuming flight
and video monitoring at the new Pol. This cycle continues as
the bus travels along the city, continuously swapping UAVs at
successive Pols. Our work mathematically identifies the best
time for a particular UAV to initiate the charging process, the
Pol at which it should resume operations, and which bus route
to select for maintaining persistent coverage, under constraints
of acceptable video degradation. Thus, our framework defines
the process of a UAV riding the bus, which serves the dual
purpose of charging the UAV as well as moving it to the
desired Pol in the city without energy overheads.

e Research Contributions. The following studies and math-
ematical formulations are the key contributions of this paper:

e We perform experimental studies on multihop video-
streaming on UAVs, investigating the impact of the aerial
relays on the video quality and on the service lifetime.
Based on our observations, we determine the maximum
number of hops that are feasible for such device-to-device
communications, and the average energy consumed by
the UAV components as a sum total of its motion, video-
recording, wireless communication cost.

o Using the experimentally observed energy costs, the bus
routes and time-tables for a target city scenario, we
demonstrate the feasibility of the charging opportunities
at random Pols spread across the city, and at different
times of the day.

e We derive a mathematical solution for UAV swapping
and charging operations, taking into account the tempo-
ral/spatial availability of the charging stations installed on
buses, so that the Pol is reliably monitored. Specifically,
we show that the UAV scheduler can be modeled as an
instance of multi-commodity flow problems, and mathe-
matically solved through Mixed Integer Linear Program-
ming (MILP) techniques. We also propose a heuristic and
compute its computational complexity.

« We validate the proposed solution via a comprehensive
emulation using real data from experimental studies,
and live transportation updates and routes from the city

of Bologna, Italy, providing insights on the impact of
different parameters.

The rest of the paper is structured as follows. In Section II,
we review the related work on multi-hop video-surveillance
with service persistence requirements. In Section III we pro-
vide experimental results motivating the proposed architecture.
In Section IV, we introduce the system model, the MILP-
formulation and the heuristic. Performance results are reported
in Section V. Conclusions follow in Section VI.

II. RELATED WORKS

Most existing deployments assume direct communication
between the UAVs and the ground sinks, with limited ex-
perimental studies conducted so far on real-time aerial video
streaming. The pioneering study in [16] studied path loss and
the small-scale fading in air-to-ground links. [6] demonstrated
empirically that the TDMA MAC protocol can better support
video-streaming applications than a CSMA MAC when UAV
relays are employed. An application-layer video-encoding rate
is considered in [7]. A video-streaming experiment where the
UAVs move according to a fixed circular pattern is described
in [17]. We differentiate our approach from these works based
on the need to guarantee continuous surveillance service with
energy constraints. Service persistence cannot be achieved via
battery-dependent video-encoding schemes or energy-efficient
communication protocols (such as the ones surveyed in [5]),
since their benefits are offset by the limited flying time. For
this reason, we believe incorporating ground-based infrastruc-
ture able to schedule the UAVs for battery replacement or
charging operations is needed [9] [11] [12] [13] [14].

The study in [10] describes an automated battery manage-
ment system that is able to sustain a three hours mission, using
three UAVs, each with ten minutes of flying time. In [18],
the authors propose an off-line path planning algorithm that
ensures each UAV is able to reach the ground BS and replace
its battery. In [9] [12] and [11], the authors address the problem
of providing continuous aerial coverage with energy schedul-
ing through a Mixed Linear Integer Programming (MILP)
model. The flexibility of mobile charging units is considered
by [13] and [14]. [13] proposes a scheduling algorithm which
minimizes the travel time of the UAVs and determines the
optimal flight path to the ground charging stations. In [14], the
path planning problem is transformed into a Travel Salesman
Problem (TSP) and solved via heuristics. Our work address
persistent UAV service via mobile charging stations, like [13]
and [14]. At the same time, it has differentiating novelties like
considering city-run mobile charging units (e.g. buses) with
fixed trajectories that are independent of the UAV positions.
We also include the bus waiting time and the charger-induced
UAV mobility to create a richer, practical model.

III. PRELIMINARY EXPERIMENTS AND MOTIVATION

This Section provides experimental results that study the
impact of multi-hop UAV relaying (Section III-A) and realistic
charging opportunities via a public bus transportation system
(Section III-B).
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Fig. 2. The PSNR for aerial video-streaming applications, with different number of UAV relays, is depicted in Figure 2(a). The Recharge Probability at
different hours of a work day and for different values of the visibility range are depicted in Figures 2(b) and 2(c) respectively.

Num Relays | Mean PLR (%) | Mean PSNR(db)
1 relay 18 32
2 relays 32 17
3 relays 38 6
TABLET

PSNR AND PLR METRICS

A. Video-streaming over multi-hop UAV links

Our testbed is composed of four Parrot AR 2.0 GPS Edition
UAVs equipped with a Raspberry PI 2.0 board, and a Wi-Fi
radio module. In all our tests, one UAV captures the video
feed and streams it toward a ground sink implemented on a
laptop. We vary the number of equally spaced UAVs (8m)
acting as static relays at the same uniform height between the
source UAV and destination sink. We measure the performance
of the multi-hop video communication, in terms of average
Packet Loss Rate (PLR) and resulting Peak Signal to Noise
Ratio (PSNR) using the well-known EvalVid tool-set for
video analysis [20]. Figure 2(a) shows a trace segment of the
PSNR values over time, while Table III-A reports the average
PSNR values and packet loss rates computed over the full
duration of the experiments. We see that one relay ensures
satisfactory video-quality performance, while the PSNR for
the configuration with two and three relays is 50% less. This
shows that despite the extended reach, using more than one
relay is unsuitable for practical surveillance applications.

B. Charging opportunities via public bus network

We consider the urban downtown area of Bologna, Italy,
that is approximatively 3 km?, which is served by around
40 bus lines. The experiments leverage on the real locations
of the bus stops, and the time-tables provided by the open-
data service of the Bologna Passenger Transportation company
(TPER). We model the scenario of a UAV recharging via an
inductive wireless energy transfer station mounted on top of
the buses (each bus is provided with one station). For 1000
random locations, we simulate the mobility of the UAV from
those locations towards a bus stop within R meters (called
as visibility range). If several choices are available, the UAV
selects the stop with minimal energy discharge, considering

(i) the energy lost in order to reach the bus stop, and (ii) the
energy cost of hovering over the stop before the bus arrives.
The UAV parameters (speed, initial battery, discharge factor
while flying) are modeled using the specifications of the Parrot
AR 2. Figure 2(b) depicts the Recharge Probability, i.e. the
percentage of times the UAV is able to recharge on the bus
without running out of battery before its arrival, at different
hours of the day (on the x-axis) and the initial residual energy
(shown by bars). The range R is set to 200 meters. We find
this probability is always higher than 70%, except for the
night when the frequency of bus rides considerably decreases.
Similarly, Figure 2(c) depicts the recharging probability when
varying the R size, at a time setting of 12am. When con-
sidering R=400 meters, the charging opportunities are always
guaranteed regardless of the initial position of the UAVs.

IV. BUS ROUTE OPTIMIZATION FOR UAV'S

First, we define the system model and its main objectives
for assigning UAVs to specific Pols and bus routes (Section
IV-A). Then, we address the problem via Mixed Integer Linear
Programming (MILP) (Section IV-B). Finally, we provide a
heuristic solution with complexity analysis (Section IV-C).

A. System Model

Video-streaming content is delivered by the UAVs to a
central controller via fixed terrestrial WiFi Access Points
(APs), scattered in the city. We consider a time slotted model
T=ty,t1,..., with constant slot length equal to ts,:. The
scenario can be defined as the tuple (U, A, P, F, BR), where:

o U={u1,us, ...,ujy|} represents the set of available UAVs.
Each UAV is equipped with GPS and WiFi modules, and
provided with an initial energy amount equal to ;.

o A={ay,ay,...,a)4} represents the set of WiFi APs.

o P={p1,p2,...,p|p|} is the set of POIs that must be
covered by the UAVs. We consider three categories of
Pol: (i) Pol where video-surveillance is needed (denoted
as Caty); (ii) Pol where a video-relay is needed (denoted
as Cat»), in order to connect a Cat; Pol to the closest
AP; (iii) Pol where the UAV must act both as relay and
video-streamer (denoted as Clatz). Let v(p;) indicate the




category of Pol p;. Based on the experimental results
provided in Section III-A, we limit the network topology
to a maximum of 2-hops (i.e., 1 intermediate UAV relay)
between Pol and APs, in order to guarantee a satisfactory
video quality (see Section III-A).

o F={f1, fo,..., fir|} is the set of bus-stops that can be
served by multiple bus routes.

o BR={b1,bs,...,b;gp|} is the set of bus routes defined by
the stops and arrival/departure times. Thus, each route
b is a couple {(fs,tr),(fp,ta)}, where fs,fp € F
represent the source/destination stops, respectively, and
tp,ta € T are the time slots of departure/arrival. Each
route b; is also associated with a cost ¢(b;)=ta — tg,
which represents the time required by the bus to cover
the end-to-end path from fg to f4.

We denote BR( I tr) C BR as the subset of routes that are
available at time ¢, from the source stop f;, i.e. BR(f;,tx) =
{b; € BR|b; = {(fj,tk),(f«,t«}}. For each Pol p;, let
FS(p;) be the feasible stops set of the f; reachable from
p; within a time-slot, i.e. F'S(p;) = {f; € F|d(pi, f;) < R},
where d(-, -) computes the Euclidean distance between two 3D
points, and R is the visibility range given in Section III-B. Let
P(f;) C P be the set of POIs reachable in a time-slot from
f;. Based on the previous definition we assume that an UAV
located in any f; € F'S(p;) can cover p;. At each time slot
ti, each UAV w; is in one of the following two states:

o flying, i.e. staying over a bus stop f; and draining a
constant per-slot amount of energy equal to 3 - t5,:. We
introduce the following binary position variable xffl 5, €
{0,1} Vu; €U, f; € F,t;, € T such that:

ty _
xumfj - {

o riding, i.e. recharging on top of a bus stop, and gaining
a constant per-slot amount of energy equal to 7 - t40¢.
We introduce the following binary movement variables
vk € {0,1} Vu; € Uty € T such that:

1 if UAV w; flies over f; in time ¢,
0 otherwise,

otk = 1 if UAV wu; “takes” a bus in time
i 0 otherwise,

Additionally, a UAV w; in flying state over f; can decide
to cover a specific Pol p; € P(f;). In such case, the UAV
will drain an additional per-slot amount of energy equal to
a[v(p;)]-tsior. where cf-] is the energy consumption depending
on the coverage mode (i.e. Caty, Caty or Cats), and whose
values are set according to the experimental results of Section
III-A. We introduce the following binary coverage variable
ik p, €10,1} Vu; € U,pj € Pty € T such that:

tr —
yui sPj - {

Let RE(u;,tx) be the residual energy of UAV w; at time
slot 5. Based on the state variables defined above, RE (u;, tx)

1 if UAV wu; covers Pol p; in time
0 otherwise,
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Fig. 3. Multiperiod directed multigraph for |F'|=5 and |P|=2.

is updated at each t, € T, Vu; € U,Vp; € P, as follows:
RE(u’Mtk) = RE(ui,tkfl)
Uiy - V(3] - tstor
- xtuli,fj : B “tslot
+ 0y sl (1)

Based on the RFE(u;,ty) values, we introduce the following
additional decision variables:
o binary UAV status-off variables z{}: € {0,1} Yu; €
U,t, € T such that:

te
. {

o binary global status-off variables w'* € {0,1} YVt €T
such that:

0 otherwise,

" 1 if any UAV is off in #
w'r =
0 otherwise,

The system lifetime L is defined as the maximal time slot
such that L < t;, -w?*. Informally, the problem can be defined
as: determine the variable states xi’“ y yi" T vf}i for each
UAV u; and time slot ¢, so that L is maximized, while each
Pol p; is continuously covered. In the following, we prove
that the problem is a special instance of multi-commodity flow
model, which is solved via MILP techniques.

B. MILP-based formulation

We devise a multiperiod directed multigraph G(V, A) in
order to model the movement of UAVs across the target
area containing Pols and bus stops. The set of nodes V is
composed by the couple (fj,tx), Vf; € F and Vi, € T. We
denote a generic travel path as a so called arc e; represented
by [(fj,tk), (f} ti)]i, where (f;,t) and (f},],) are, respec-
tively, the tail and the head of the arc. Each arc also has an
associated weight W (e;) and a subscript [ that denotes one of
three possibilities:

o Case 1. A single stop arc [(fj,tx), (fj, tk+1)|warr, which

models the behavior of an UAV which is flying over stop
f; at time t;, and will remain on the same stop also at

1 if UAV w; is off in t, i.e. RE(u;,t,) <0



ti+1 (but without covering any POI). Here, the weight is
given by the energy lost for flying, i.e., W(e;) = —0 -
Lsiot;

o Case 2. Any one selection from the set of coverage arcs
[(f3:tk); (fj> tk+1)]p, one for each p; € P(f;), modeling
the behavior of an UAV covering the Pol p; from stop
f; at time t, and will perform coverage of the same
POI also at £ ;. Here, the weight is given by the energy
lost for surveillance based on Pol type, i.e., W(e;)
7(()‘[”(1)]')] + ﬂ) : tslot;

e Case 3. Any one selection from a set of bus-charge
arcs [(fj,tk),(f,f)]REc, one for each b; = {f,t} €
BR(f;,t;), modeling the UAV taking a bus ride from
the stop f; at ¢, and charging on the top of the bus,
until the next stop f with arrival time 7. Here, the weight
is given by the energy recharged during the ride, i.e.,
W (e;) = c(b;) -7, where ¢(+) is the cost function defined
in Section IV-A.

For modeling ease, we add the following additional ele-
ments in the graph: (i) a sink node s, representing the desti-
nation of all flows, and (ii) a set of terminal arcs [(f;, L), s],
Vf; € F connecting each terminal node to the sink s. The
energy associated with such arcs is null, i.e. W([(f;, L), s]) =
0. Figure 3 shows an example of a multiperiod directed
multigraph built according to the rules defined above.

1) Persistent Video Coverage Problem (PVCP): We model
the action selection process of each UAV wu; through the
following non-splittable flow variables:

w; o 1, if u; uses arc [(fj7tk>7 (frats)]l
Pl it (et =)0, otherwise
Here, we want to determine the flow variables

[(fj.tk), (fr.ts)]; for all UAVs to maximize the lifetime
L € T so that L < tj - w'. Additionally, the following
constraints must be met:

Z Ubp, =1  Vp€PtLET )
u; €U
dowbg tub <1 VuieUteT 3)
fi€EF
Uiy < Z xfﬁ-,fz Vu; €U,pj € Pty €T (4)
fIEF(p;)

2.

[(¢,7),(f5,tr)iEA

D

[(fitr), (o, T)iEA

Cllor) (fiutn)li Pt ) (6]

= BAL(fj,tk)upv(ijtk) S V, u; € U (5)
Pty t)s(Frstdls — Fusnf
[(fjvtk):(f'l‘ats)}leA

Yu; € Ul # REC, f, € Fts €T (6)

> Pt tF = v,

~ [(fi:t0),(f:D]rEC Ui

[(fj:te),(fO)]rECERB(f),tK)

Vu, €U, f; € Fit, €T @)

RE(ui,Ifk) = RE(ui,tk,ﬂ +

Do WAt B ) - 0l 0 5,01)
[(fs;t5)7(fjatk)]leA

Yu; €Ut €T (8)
2hh <l w €Uty €T 9)

whe < qte+t t, €T (10)

2l < wh uw €Ut €T (11)
RE(uj, ty) + M - 2k >0 Vu; €Uty €T (12)

The constraints are explained as follows: (2) ensures that each
Pol p; is covered by exactly one UAV at any time ¢ € T
(3) says that at any ¢, € T, each UAV u; must either be in
flying state or in riding state; (4) ensures that a Pol p; € P
can be covered only by the UAV u,; located at a nearby bus
stop f; € F(p;). Constraint (5) captured the (fundamental)
flow conservation constraint. Here, the value of BAL £t us
depends on the considered node, i.e.:

1) for nodes (fj,t0) € V, BAL(y, t5)u, is equal to —1 if
the UAV u is in f; at time ¢y (such nodes represent the
sources of flows going through the network);

2) all nodes (f;,tx) € V such that ¢, > ty, have a null
balance (i.e., BAL(fj,tk)ui = 0), since they must be just
crossed by the UAVs;

3) the sink node s has the task of receiving all the flows
sent through the network and thus BAL, ,, = 1, Vu;.

(6) imposes the following constraint: if a UAV u; is flying over
stop f in ts (i.e., le = 1), then exactly one among the flow
variables of u; leadiﬁg to vertex (f,,ts) must be active, i.e.
equal to 1. (7) imposes a similar condition: if a UAV wu; takes
a bus from f; at t; (ie., vf} = 1), then exactly one among
the flow variables of u; associated with bus-charge arcs must
be active. (8) is the energy update function, in accordance
with (1). (9) states that any UAV wu;, which is unavailable
at some t; because it has drained all its residual energy, is
also unavailable at ;4. (10) imposes the same condition on
the system lifetime. (11) links the UAV and global status-off
variable wy,. Thus, variable wy, is activated only when any
UAV runs out of battery at time ¢j. Finally, (12) ensures that
the residual energy of each UAV is always greater than zero
at each ty, till the global status-off variable is activated (i.e.
the system lifetime is reached); here, M is an arbitrary integer
coefficient, much greater than FE;,;;.

C. Heuristic solution of the MILP

The PVCP problem represents a complicated variant of
an unsplittable multi-period multicommodity network design
problem with side constraints, which is known to be NP-Hard
(see e.g. [19]). In order to further reduce the computational
complexity, we propose an heuristic approach that determines
a polynomial time (though suboptimal) PVCP solution, and
we analyze its performance later in Section V. The heuristic
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Fig. 4. Example of execution of the heuristic, considering a scenario with
|P|=10 and |U| = 12.

implements the UAV replacement mechanism such that at each
time slot, each Pol is covered by exactly one UAV. The other
UAVs (in number equal to |U| — |P|) move among the Pols
via the bus network, following a circuit which visits each
Pol exactly once. Each time a UAV riding the bus reaches
a Pol, it swaps places with the incumbent UAV, and the latter
now moves to the next Pol of the circuit, using the bus-ride
to recharge. We define the Replacement Interval (RI) index
as the average amount of time which elapses between two
consecutive replacements at a given Pol; clearly, the smaller
RI index is, the lower is the the energy consumed by UAVs
for flying/coverage issues, and hence the higher is the system
lifetime. Maximizing the RI index is hence translated into the
dual problem of: (i) how to determine the optimal circuit; and
(if) where to initially place the non-covering UAVs within the
circuit. For this purpose we propose a three phases algorithm:
Stage 1. Graph transformation: First, we transform the
multi-period directed multigraph G(V, A) of Section IV-B into
a a new directed reduced graph G™(V'", A"), where the set of
nodes V7 is the set of Pol P, and A" is the set of arcs a =
[vf, v}] connecting two Pols. Each arc has a cost c"([v], v7])
which represents the average minimum time required to travel
from v; to v} using the bus transportation system. Figure 4.(a)
shows the output of this phase (Section IV-C1 clarifies the
operations enabling the graph transformation).

Stage 2. UAV path planning: Next, we compute the minimum
cost circuit visiting each Pol exactly once and returning to the
origin Pol using the Traveling Salesman Problem (TSP). Also
TSP being NP-hard, several greedy heuristics are well known.
We also allocate the non-covering UAVs at equal cost distance
within the circuit, so that the RI index is minimized (see Figure
4.(b) and Section IV-C2).

Stage 3. Graph partitioning and optimization: Finally,
we perform an optional optimization step, i.e. instead of
considering a single circuit, we verify whether the RI index
can be further improved by partitioning the graph G"(V", E")
into several sub-graphs G7, G, ... Gi. As before, we compute
the TSP circuit and allocate the non-covering UAVs on each
sub-graph (see Figure 4.(c)). The graph partitioning procedure
stops when the RI index stops decreasing, and in any case
has a fixed number of iterations, as explained in Section
IV-C3. Algorithm I'V-C shows the pseudo-code of the proposed

heuristic, including all the three stages which are further
explained below.

Algorithm 1 PVCP Heuristic algorithm
1: Step 1. Build graph G"(V", A") from G(V, A)
2: for all arcs a” = [v],vj] € A" do
3:  for all time slots tg in ts...ts4+n do

4: Set minTime=0

5: for all stops f; € FS(v;) do

6: Compute BFS over graph G from node (f;, tx)

7: if (meet node (fi,tm), fi € FIS(v})) and (tm — tr <
minVal) then

8: Set minTime=t,, — tg

9: end if

10: end for

11: Add minVal to MTDS(v;,vy)

12:  end for

13: Set ¢"([vf,v]]) = avg(MTDS (v;,v}))

14: end for

15: Step 2. TSP and UAV Allocation
16: Compute circuit L(G") via TSP greedy heuristic

17: Place one UAV at each Pol p € P

18: Place the other |U| — |P| UAVs on Pols at equal cost distance
19: Set worst(0) = C‘(UL‘(_G‘;)R

20: Set solution=L(G")

21: Step 3. Clustering optimization

22: for ¢ =1to |U| — |P| do

23:  Partition G" into Gy ... G through Kruskal clustering

24:  Allocate one UAV to each Pol p € P

25:  Allocate one UAV to each G V0 < j < ¢

26:  Set M(G5)=1Y0<j<gq

27: for all the remaining |U| — |P| — ¢ UAVs u; do

_c(L(G}))

29: Extract Gy, with j = argmazRI(L(G}) Y0 < j < g
30: Add u; to G, and place the UAVs at equal cost distance
31: Update M (G%) = M(G7) +1

32:  end for

33:  Compute worst(q) = max(RI(L(G}))V0 < j < q
34:  if worst(q) < worst(q — 1) then

35: Set solution={Gp ... Gg}
36: Update g=q+1

37: else

38: return solution

30: end if

40: end for

1) Stage 1. Graph transformation: Differently from graph
G(V, A), the reduced graph G"(V", A™) does not include the
notion of bus time-table, but only about the path between
Pols and their average costs. For this reason, we assume
that the reduced graph G" is computed at different time
segments of the day: each segment starts at t; and ends at
ts+n, and the frequency of buses at each stop is assumed
fixed or with minimum variations over each time segment.
We approximate the cost ¢"([v],v}]) as the average minimal
time required to travel from Pol v] to v;, at the target time
segment. The computation of such costs can be derived from
the original graph G with some elaborations. More specifically,
we consider a specific time slot tg, with s < k < s+ h.
We prune all the nodes (.,t;)) € V with [ > s + h, the
corresponding arcs, and all the non bus-charge arcs. Then,
a Breadth-First Search (BFS) over graph G is performed from



source node (f;,x), and the minimum time required to travel
from a feasible stop of Pol v] to a feasible stop of Pol v} j is
determined (lines 6 —10). The MT DS(v], v7) set keeps track
of all the minimum travel times from v; to v}, when varying
the starting time t; (line 11). Finally, the average value of
MTDS(vf,v}) is returned as ¢"([v},v7]) (line 13). In order
to determine the complexity of the procedure, we consider a
worst case scenario where F'S(v]) ~ F, VoI € V", In such
case, we can notice from the pseudo-code that the complexity
of the full procedure is: O (|A,|- |F|-h-|V]).

2) Stage 2. UAV path planning: This step computes an
approximated minimal circuit over the previously defined
reduced graph G". To this purpose, we employ a simple greedy
algorithm, which selects at each step the edge with minimal
cost, excluding those that lead to already visited Pol. The
complexity of such a procedure is O(| P|). Clearly, any higher
complexity TSP approximation procedure can be used for this
purpose, clearly increasing the solution optimality, but without
affecting the behavior of the PVCP algorithm. Let L(G") be
the circuit over the Pol computed by the greedy algorithm, and
¢(L(G")) its total cost in terms of travel time. Moreover, let
RI(L(G")) be the Replacement Interval index computed over
the circuit L(G"). The next operation consists in defining the
initial location of the UAVs, so that the R/ index is minimized.
First, one UAV is allocated to each Pol. If |U|=|P| + 1, then
the additional UAV is placed randomly among the Pol, and
hence RI(L(G")) = ¢(L(G")). In the general case with
(U] > |P| 4 1), the |U| — |P| additional UAVs are placed
at equal cost distance, and hence RI(L(G")) = C|(UL|(—G;2|)

3) Stage 3. Graph partitioning and optimization: V&}hen the
number of UAVs greatly exceeds the number of Pols, the
utilization of a single circuit may not be optimal in terms
of the RI metric, specially in those use-cases where the bus
network covers separate districts, each district is served by
specific buses, and the distances between the different districts
are significant. For this reason, a final optimization phase
iteratively splits the graph into multiple clusters and then
repeats Step 2 on each cluster. At each iteration ¢, the graph
G" is partitioned into ¢ disjoint sub-graphs G7, G5 ... G} by
using the Kruskal clustering algorithm, such that | J, G} = G".
The Kruskal algorithm ensures that the inter-cluster distance
is maximized, hence it places nearby Pol reachable via bus on
the same cluster. Then, the greedy TSP solution is computed
over each G, and the initial placement of the UAVs is decided
so that: (i) each Pol is covered by exactly one UAV; (ii) each
sub-graph G} contains at least one UAV; (iii) the minimum
RI index of the worst sub-graph is maximized (lines 27-32).
To this aim, we introduce the worst(q) variable as proxy
of the maximum RI index at iteration ¢ (line 33). If the
RI index decreases compared to the previous iteration ¢ — 1
(i.e. worst(q) < worst(q — 1) at line 34), then a further
partitioning into ¢ + 1 sub-graphs is performed. Otherwise,
the solution produced at iteration ¢ — 1 is returned. Note that
the maximum number of iterations is bounded and cannot
exceed |U| — |P|, since at least one UAV must be allocated
to each sub-graph. In order to compute the complexity of

this stage, at each iteration ¢, we note that the TSP greedy
algorithm is executed exactly ¢ times, with 1 < ¢ < |U|—|P).

Hence, the worst-case complexity of this procedure is equal
Ul=|PD((|U]=|P|+1
to: (Ul-| |)((2| [—|P|+1) -|P| NO(|U|2~ ‘PD

V. SIMULATION RESULTS

We evaluate the performance of our proposed PVCP heuris-
tic through a practical city-scale simulation framework im-
plemented in OMNeT++. All the characteristics of the sce-
nario described in Section III-B are incorporated, including
the video-surveillance application and the UAV operational
functions, modeling the four states of: charging, discharging,
waiting, and riding. The simulator accesses live transportation
data provided by the city using published web-API. We
implemented and compared the following algorithms:

o A basic no-charging policy -called NoRec (NR) in the
following- where no charging infrastructure is available
within the scenario. This scheme represents the lower
bound on the performance of the bus-enabled charging
policies, and is also the state-of-the art solution for most
of current UAV deployments.

o An energy-centered greedy policy -called WORSTUAV
(WU)- where the swap operations at a given Pol prioritize
the UAVs with lowest energy levels. Here, the UAV not
used for coverage selects as its destination the Pol served
by the UAV with lowest residual energy, and then rides
the bus network towards it.

o A distance-centered greedy policy -called BESTPoI
(BP)- that prioritizes the distances to the Pol. After each
swap operation at a given Pol, the UAV presently not
participating in video coverage selects a subsequent Pol
destination that is closest to its present location.

e A TSP-based policy -called TSP- that implements the
full heuristic from Section IV-C, including the graph
partitioning step.

We rigorously analyze the above policies using the following
performance metrics:

o System lifetime (SL), defined from Section IV-A as the
time instant when the first UAV runs out of battery captur-
ing the persistence of the video-surveillance application.

e Replacement counter (RC), defined as the total number of
UAV swap operations during the simulation. This metric
measures how well the UAVs utilize the bus routes in the
city, but also reflects the number of handovers that occur
at application layer during the filming operations.

o UAV state distribution (USD), defined as the mean per-
centage of time that a UAV spends on covering Pol,
waiting at the stop and riding the bus.

Unless specified otherwise, we used the following set-
ting of the system parameters related to the UAV energy
charge/discharge: F;,;:=130000J, 8=-100W, a[Cat;]=-120W,
a[Cata]=-150W, o[Cats]=-170W; y=25W.

Figures 5(a), 5(b) and 5(c) show respectively the SL, RC and
USD metrics when considering a number of Pol equal to 7
(i.e. |P|=7), and varying the number of UAVs, with |U| > |P].
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respectively.

We generate random locations of the Pol within the scenario
for each test, and then average the results. Figure 5(a) shows
that our solution outperforms the NR, WU and BP algorithms
in terms of SL metric for |U| > 8, with an average gain of
around +18% compared to the no-recharge case. Vice versa,
the WU algorithm produces almost the same results as the
basic NR policy, since the Pol selection prioritizes the energy
factor, but without considering the distance and the bus tables;
hence, a UAV willing to move toward a Pol where the current
UAV is running out of battery, might also completely drain
its battery while waiting at a bus stop. Figure 5(b) shows the
RC metric for the same scenario. We can notice that the BP
policy incurs an average number of UAV swaps much greater
than our solution. Each swap is an overhead from an end-user
application perspective, since interruptions during an handoff
degrade the video quality. Vice versa, the TSP solution limits
the number of UAV replacements, while still guaranteeing a
longer lifetime than the BP policy. Finally, Figure 5(c) shows
the USD metric, for three configurations of |U|. Here, we
report the average fraction of time spent by the UAV in each
of the three states: (i) covering a Pol (denoted with the Pol
label in the Figure), (ii) waiting at a bus stop (denoted with
the Stop label) or (iii) moving/recharging by riding on top
of a bus (denoted with the Bus label). When increasing the
number of available UAVs (e.g. from 8§ to 16), the average

time spent in the bus riding state increases significantly for the
TSP algorithm, since less UAVs are required for Pol coverage,
and the remaining ones travel using the ground transportation
system. This further justifies the SL improvement of the TSP
algorithm, when increasing the number of UAVs from 8 to 16.
Figures 6(a), 6(b) and 6(c) show respectively the SL, RC and
USD metrics for a fixed number of Pol (|P|=7) and UAVs
(|U|=14), but considering different hours of the day, with
consequential different temporal availability of the buses at
each stop. Again, Figure 6(a) shows that the TSP solution is
able to maximize the SL metric compared to the other policies.
It is slightly affected by the bus frequency, with an average
gain of +15% compared to the no-recharge case. Figure 6(b)
shows the RC metric over the same scenario. As before, the BP
policy incurs in much higher number of UAV replacements,
but without leading to an improvement in terms of lifetime and
adversely affecting the quality of video-streaming. Figure 6(c)
depicts the USD metric at three hours of the day. Comparing
the cases of 6am and 6pm for the TSP policy, we notice that
the UAVs increase the fraction of time in Bus riding state
compared to the Pol state: this further justifies the ability of
the proposed solution to adapt the UAV deployment to the
real-time bus schedules. Finally, we complete our study by
providing further insights about the performance of individual
stages of the proposed TSP heuristic. We consider an extended
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scenario of around 5 km?2, which includes the downtown
area (as is present in the simulations so far) as well as one
of the major suburban districts. This district is connected to
the downtown area via a limited number of inter-district bus
routes, but also has an additional number of buses that serve
exclusively the local area. Figure 7 compares the SL metric
for two different versions of the TSP algorithm, i.e. (i) the
No-partitioning case, where the stage 3 of the algorithm is
not executed (hence, only a single TSP circuit is completed),
or (if) the Partitioning-enabled case, where the stage 3 of the
algorithm is executed as described in Section IV-C3. We vary
the number of UAVs |U]|, again for a fixed number of random
Pol (equal to 7), considering the bus schedules at 6pm. We
notice that the graph partitioning stage becomes effective only
when the number of Pol is higher than a threshold, equal to
eight in this case (otherwise, the constraint of UAV allocation
at line 25 of Algorithm 1 is not satisfied). However, for
|U| > 8, the optimization provides an additional +10% gain
over the basic TSP algorithm.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we designed an innovative system architec-
ture for aerial video surveillance of city-wide Pol, which
copes with the energy-limited flight times of the UAVs with-
out requiring the installation of a fixed charging infrastruc-
ture. Through measurements and simulations with real city-
provided transportation maps and schedules, we demonstrated
the possibility for deploying mobile charging stations on
top of urban buses while incurring 30-50% fewer energy-
related UAV swap instances, when compared with schemes
that prioritize distance to the closest Pol. Our simulation and
analysis demonstrate that our proposed solution can be feasibly
applied over large-scale city scenarios, and can achieve 15-
20% lifetime extensions compared to the state-of-the-art solu-
tion, where UAVs are deployed without charging possibilities.
Future works include: a stochastic problem formulation taking
into account live traffic conditions and bus delays at each stop
accompanied by implementation on a real testbed.
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