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Abstract—Fast sector-steering in the mmWave band for ve-
hicular mobility scenarios remains an open challenge. This
is because standard-defined exhaustive search over predefined
antenna sectors cannot be assuredly completed within short
contact times. This paper proposes machine learning to speed up
sector selection using data from multiple non-RF sensors, such as
LiDAR, GPS, and camera images. The contributions in this paper
are threefold: First, a multimodal deep learning architecture is
proposed that fuses the inputs from these data sources and locally
predicts the sectors for best alignment at a vehicle. Second, it
studies the impact of missing data (e.g., missing LiDAR/images)
during inference, which is possible due to unreliable control
channels or hardware malfunction. Third, it describes the first-of-
its-kind multimodal federated learning framework that combines
model weights from multiple vehicles and then disseminates the
final fusion architecture back to them, thus incorporating private
sharing of information and reducing their individual training
times. We validate the proposed architectures on a live dataset
collected from an autonomous car equipped with multiple sensors
(GPS, LiDAR, and camera) and roof-mounted Talon AD7200
60GHz mmWave radios. We observe 52.75% decrease in sector
selection time than 802.11ad standard while maintaining 89.32%
throughput with the globally optimal solution.

Index Terms—sector selection, mmWave, multimodal data,
federated learning, non-RF data, fusion.

I. INTRODUCTION

Autonomous cars are equipped with multiple sensors that
stream high volumes of locally recorded data to a central
cloud, which requires multi-Gbps transmission rates [1]. This
data is needed for safety-critical tasks such as enhanced situa-
tional awareness, driving directives generation, and pedestrian
safety, and may involve further processing at a mobile edge
computing (MEC). Given the limited bandwidth in the sub-
6 GHz band, the millimeter-wave (mmWave) band is an
ideal candidate for vehicle-to-everything (V2X) communica-
tions [2]. As an example, emerging standards offer up to
2 GHz wide channels within the untapped spectrum resources
available in the 57-72 GHz frequency range.

To fully unlock the potential of mmWave-band operation,
directional antennas are used to address the severe attenuation
and penetration loss that is characteristic of high frequency
transmissions [3]. Such antenna arrays manipulate steering
directivity during runtime by changing the gain and phase of
each antenna element. An exhaustive search of all possible
configurations results in a large overhead. Hence, current
standards, such as IEEE 802.11ad, prescribe a set of predefined
patterns, referred to as sectors [4], with a deterministic sweep-

Fig. 1: The schematic of proposed FLASH framework for mmWave
vehicular networks, where each vehicle is equipped with GPS, LiDAR
and camera sensors.

ing algorithm that selects the optimal sector with the strongest
mmWave link between transmitter (Tx) and receiver (Rx). The
802.11ad standard, in particular, proposes an exhaustive search
of all sectors. This process is time-consuming as it involves
probing each sector through a bi-directional packet exchange,
especially for mobility scenarios where the optimal sectors
may dynamically change.

A. Sector Selection using Multimodal Data

Due to the quasi-optical behavior of propagation in the
mmWave band, the sector selection process solves the problem
of locating the strongest signal for line of sight (LOS) paths,
or detecting the strongest reflection for non-line of sight
(NLOS) paths. Thus, the locations of the Tx, Rx, and potential
obstacles play an important role in the sector selection process.
Interestingly, all of this information is also embedded in the
situational state of the environment that is acquired through
monitoring sensor devices such as GPS (Global Positioning
System), cameras, and LiDAR (Light Detection and Ranging),
which provides a 3-D mapping of the surroundings. These
sensors are present in autonomous vehicles to aid in driving [5]
but can also be re-purposed to optimize communication links.
Furthermore, with regard to mapping, using multiple modali-
ties increases resilience, wherein missing information from a



particular sensor type can be compensated by utilizing data
from the others, with graceful degradation of performance.

Fig. 1 shows our scenario of interest with multiple moving
vehicles and a roadside base station (BS) attempting to find
the best sector for the downlink transmission from the BS
to the vehicle. We propose a deep learning (DL) framework
that uses non-RF sensor data to select the best sector to
probe without attempting an exhaustive search. Once the best
sector is determined, the BS starts the multi-Gbps downlink
transmission to the vehicle, instantaneously. The proposed DL-
based inference engine in each vehicle is resilient to missing
data; even if some data modalities are missing at any given
time, the engine is capable of generating remarkably accurate
predictions of the best sector. We note that multiple sensors
are now included as standard installations both in modern cars
and roadside infrastructures [5]: LiDAR and camera sensors
are already indispensable parts of modern vehicles, used for
driving corrections and collision avoidance [6]; GPS data is
regularly collected and transmitted as part of basic safety
messages in V2X applications [7].

B. Federated Learning on Multiple Modalities

DL architectures benefit from the availability of large
amounts of data. When data is collected by an individual
vehicle for local training, the accuracy of the model, a Deep
Neural Network (DNN), may be impacted due to a limited
training dataset that may not capture the diversity of other
practical deployment scenarios [8]. The vehicles must have
the latest trained models available on-board when entering the
network, which is difficult to accomplish without a framework
for model sharing.

A federated learning (FL) architecture is one candidate
solution to mitigate these issues. In this form of learning, local
network models are collected from the vehicles, aggregated to
a global shared model at the MEC, and then disseminated back
to the vehicles for local inference; this is also shown in Fig. 1.
Thus, vehicles collaboratively participate in learning the shared
prediction model while keeping the raw training data in the
vehicles instead of requiring the data to be uploaded and stored
on a central server. This process is important for high-speed
vehicular scenarios, as locally trained models can be updated
on hidden obstacles and the unseen environment previously
detected by other vehicles. Such a distributed FL architecture
also allows the most updated models to be available to new
vehicles that are entering the network environment. We assume
that each vehicle has the necessary computation power to train
and infer local machine learning (ML) models, and refer to
such vehicles as semi-autonomous edge nodes, distinguishing
them from the centralized MEC. Moreover, we use a sub-6
GHz control channel to relay model weight updates.

Note that using a multitude of sensor modalities improves
the prediction performance by providing a comprehensive
representation of the environment. Moreover, it gives the
flexibility to adjust the contribution of each modality to
the federated aggregation iterations according to their per-
formance optimality on a case-by-case basis. For example,

GPS works reliably in LOS-dominant environments, such as
open freeways, while LiDAR, giving a 3-D representation,
is more effective in an NLOS-heavy environment such as
an urban canyon, where buildings flank the road on both
sides. Besides, LiDAR and camera performances are prone
to errors in the presence of strong sunlight reflections [9] and
low light conditions, respectively. Hence, a selective approach
may improve the overall performance by being biased towards
situationally-favored modalities.

C. Our Contributions

Our main contributions are as follows:
• We design robust DL architectures that predict the best

sector using non-RF sensor data from devices such as
GPS, camera, and LiDAR, wherein the processing steps
are contained within the semi-autonomous edges (ve-
hicles). We show that adding more viewpoints in the
training data enhances the performance of sector selection
and analyze the resulting control overhead.

• We propose FLASH, a multimodal FL framework, where
local DL model weights are globally optimized by fusing
them at the MEC. So far, the state-of-the-art in FL has
focused on unimodal data, which suggests that FLASH
may be suitable for other generalized problems involving
multiple data types (beyond mmWave beamforming).

• We describe a multimodal data adaptation technique that
is executed in the individual vehicles, making FLASH re-
silient to missing sensor information. We observe 67.59%
top-1 accuracy even when all sensors are missing for 10
consecutive samples.

• We rigorously analyze the end-to-end latency of FLASH
and compare it with IEEE 802.11ad standard and demon-
strate that sector selection time decreases by 52.75% on
average while maintaining 89.32% of the throughput. Due
to lack of access to programmable cellular 5G mmWave
BS and clients, we use two 802.11ad-enabled mmWave
Talon routers to evaluate FLASH on real-world scenarios.
Without loss of generality, FLASH can be applied to other
bands and wireless standards.

• We publish the first (to the best of our knowledge)
dataset collected by an autonomous vehicle mounted with
multimodal sensors and mmWave radios for community
use in [10]. The dataset includes comprehensive settings
of LOS and NLOS scenarios for the urban canyon region.

II. RELATED WORKS

We survey the most relevant articles that use auxiliary infor-
mation to reduce the sector selection overhead. Steinmetzer et
al. [4] propose a compressive path tracking algorithm where
the measurements on a random subset of sectors are used to
estimate the optimum sector. In [11], Palacios et al. leverage
the coarse received signal strength to extract full channel
state information (CSI) and account for the overhead imposed
by sector training. Saha et al. [12] present a comprehensive
analysis of practical measurements on two commercial off-
the-shelf (COTS) devices and explore the trade-off between



training overhead and sector selection accuracy. Sur et al. [13]
propose to exploit the CSI at sub-6 GHz band to infer the
optimum sector at mmWave band, though it does not support
simultaneous beamforming at both the Tx and Rx. With regard
to ML-based approaches, Va et al. [14] use the location of
all nearby vehicles, including the target Rx, as the input for
their sector inference algorithm, while Alrabeiah et al. [15]
combine both camera images and a recorded sequence of
previous sectors to model dynamic mmWave communication
in outdoor scenarios. Klautau et al. [16] and Dias et al. [17]
propose to reduce the sector search space using GPS and
LiDAR sensors in vehicular settings. On the other hand, Muns
et al. [18] use GPS and camera images to speed up the
beam selection. Nevertheless, none of this literature considers
real-world experiments on live sensor data. Moreover, all of
the above techniques focus on a centralized system with the
challenge of high bandwidth data transfer through a control
channel, which is susceptible to saturation and malicious
degradation. Although FL provides frameworks to overcome
the security risks with a reduced overhead [8], recent works
attempt to reduce such overheads further [19].

III. FLASH SYSTEM ARCHITECTURE

In this section, we first review classical sector initialization
methods and then propose a distributed system architecture
that uses non-RF data from multiple sensors.

A. Traditional Beam Initialization

The IEEE 802.11ad standard sector initialization steps con-
sist of two stages that starts with a mandatory sector level
sweep (SLS) and follows with an optional beam refinement
process (BRP). During SLS, two end-nodes referred to as
the initiator and responder jointly explore different sectors
in order to detect the best one. First, the initiator transmits
a probe frame from each sector, while the responder listens
to these frames in a quasi-omni-directional antenna setting.
This process is then repeated with the initiator and responder
roles reversed. In the SLS phase, a complete frame must be
transmitted at each sector in the lowest PHY rate, incurring a
time cost of ∼1.27ms for only 34 sectors [4]. The BRP is used
to fine-tune the sectors detected in the SLS phase. As it uses
only one frame, the BRP imposes much less overhead. Hence,
we focus on SLS phase, as it generates the largest overhead.
B. Problem Statement

Consider a Tx and Rx pair equipped with phased an-
tenna arrays with a predefined codebook defined by CTx =
{t1, . . . , tM}, CRx = {r1, . . . , rN} consisting of M and N
elements, respectively. A total of M +N probe frames must
be transmitted to complete the SLS and the sector that returns
the maximum received signal strength is then selected as the
optimum sector. For example, the optimum sector at Tx is
derived by:

t∗ = argmax
1≤m≤M

ytm (1)

with ytm being the observed received signal strength at the Rx
side when the transmitter is configured at sector tm.

C. FLASH with Multimodal Learning

From Sec. III-B, we note that the training time scales
linearly with the number of sectors in the codebook and
this can not be timely completed for a vehicular network
with a high number of sectors. Thus, we propose a learning
framework to exploit multiple sensor measurements that can
directly estimate the best sector t∗ in one shot and then
immediately start the transmission. Our proposed solution
consists of the following four components:

• Data Acquisition and Preprocessing: The collected
sensor data first passes through the preprocessing phase.
For LiDAR, we employ a quantization technique that
incorporates the BS and vehicle position to mark the
transmitter and target Rx in point clouds and the remain-
ing detected objects as obstacles; see Sec. IV-A. We also
define a new coordinate system to effectively merge the
decimal degree GPS and metric LiDAR measurements.

• Local Training at the Semi-autonomous Edge: Given
preprocessed multimodal sensor data, we design a fusion
architecture that is trained over local data (i.e., the data
available at a given vehicle or each semi-autonomous
edge). We design a novel fusion network that combines
all the modalities for the local training; refer to Sec. IV-B.

• Multimodal Federated Training: Given the locally
trained models for each unimodal and fusion network, we
propose a multimodal FL-based architecture as a global
optimization technique; see Sec. IV-C

• Resilient Inference: Finally, we include measures to
make the inference through the trained and optimized
fusion architecture adaptive to the unavailable sensor data
at the edge; refer to Sec. IV-D.

IV. FLASH FRAMEWORK DESIGN

A. Data Acquisition and Preprocessing

Multimodal data from GPS, camera, and LiDAR sensors is
collected and passed through preprocessing steps as follows.

1) LiDAR Preprocessing: To process the LiDAR data, we
first construct a quantized view of the spatial extent of the
surroundings. This data structure resembles a stack of cuboid
regions placed adjacent to each other. The LiDAR point
clouds reside in the cuboid regions according to their relative
distances as measured from a shared origin as in [17]. We
mark the cuboids that contain blocking obstacles using label
1. Since we know the coordinates of the Tx and Rx, we label
the cuboids containing them as -1 and -2, respectively.

2) GPS Coordinate System: The raw GPS coordinates
recorded at the vehicle are in Decimal Degree; however, the
LiDAR data are in meters. We consider a fixed-origin and
calculate absolute distances from that origin to define a Carte-
sian coordinate system [20]. In regard to the LiDAR system,
points are measured with respect to the sensor location, i.e.,
the vehicle position. Thus, we adjust the LiDAR point clouds
by the difference between two origins pertaining to the GPS
and LiDAR coordinate systems.



Algorithm 1: Multimodal federated training
Input: Initial parameters θFN(0)ν = θFN(0) ∀ν ∈ V (at vehicles)
P = {α, β, γ, δ},where α+ β + γ + δ = 1 (at MEC)
Output: Trained global model weights θB(i)ν

for each i = 1 . . .N do
θ
FN(i)
ν = local training for ξ ephs on θFN(i−1)

ν (at vehicles)
Each participating vehicle ν shares θFN(i)ν to MEC
Assign four branches B(i)

C , B(i)
I , B(i)

L , B(i)
IN within θFN(i)ν

B(i) = PP(B(i)
C ,B(i)

I ,B(i)
L ,B(i)

IN ) (at MEC)

MEC computes θB(i) =
1

|V |
∑V
v=1 θ

B(i)
ν

MEC distributes θB(i) such that θB(i)ν = θB(i) ∀ν ∈ V
end

B. Local Training at Semi-autonomous Edge

Consider a number of vehicles V that are in the cov-
erage range of the BS and are trying to establish a link
with the latter. Each vehicle is equipped with GPS, camera,
and LiDAR sensors and collects the local dataset Dν =
{XC,ν , XI,ν , XL,ν}Vν=1. We denote the data matrices for GPS,
image, and LiDAR at the vehicle ν as XC,ν ∈ RNt×2, XI,ν ∈
RNt×dI0×d

I
1 , XL,ν ∈ RNt×dL0×d

L
1×d

L
2 , respectively, where Nt

is the number of training samples. Furthermore, (dI0 × dI1)
and (dL0 × dL1 × dL2) give the dimensionality of image and
preprocessed LiDAR data, while the GPS has 2 elements,
latitude and longitude. The label matrix Yν ∈ {0, 1}Nt×M

represents the one-hot encoding of M sectors, where the
optimum sector is set to 1, and rest are set to 0 as per
Eq. (1). Each vehicle uses its local dataset Dν to initiate a
supervised learning task. In the simplest case, the vehicles can
use a DNN-based unimodal network to extract discriminative
features from the input and infer the optimum sector. Each
unimodal network makes a probabilistic prediction of the best
sector through softmax layer σ defined as:

uνC = σ(fνθC(XC,ν)), fνθC : R2 7→ RM (2a)

uνI = σ(fνθI(XI,ν)), fνθI : Rd
I
0×d

I
1 7→ RM (2b)

uνL = σ(fνθL(XL,ν)), fνθL : Rd
L
0×d

L
1×d

L
2 7→ RM (2c)

where fνC (.), f
ν
I (.), f

ν
L (.) denotes the unimodal network for

each vehicle ν parameterized by θCν , θIν , θLν . On the other
hand, using the data from all sensing modalities can boost the
prediction performance. Hence, we design a fusion network
that consists of four DNNs, three unimodal networks (Eq. 2),
and an integration network fνIN(.) parameterized by θINν , as
presented in Fig. 1. Formally,

fνθFN(.) = fνθIN(f
ν
θC(.), f

ν
θI(.), f

ν
θL(.)) (3a)

uνFN = fνθFN(XC,ν , XI,ν , XL,ν) (3b)

where fνFN(.) is the fusion model parameterized by θFNν . Finally,
the prediction happens at the output of fusion network through
the computation of s = σ(uνFN). The sector that has highest
score is chosen as the predicted sector. We refer to each
component of the fusion network as branches; i.e., (a) GPS
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Fig. 2: In FLASH, multimodal FL training, orchestration, aggrega-
tion, and reporting occupy specific time windows in each iteration.

branch (BC), fνθC(.); (b) image branch (BI), fνθI(.); (c) LiDAR
branch (BL), fνθL(.); and (d) integration branch (BIN), fνθIN(.).

C. Multimodal Federated Training

The federated training architecture is composed by the
local model training at the edge and federated aggregation
deployed at the MEC. The global optimization of the local
models requires the vehicles to periodically exchange and
synchronize the model parameters θFNν . However, these pa-
rameter exchanges and synchronizations impose overhead in
both the uplink and downlink control channels, calculated as:
õul =

∑N
i=1 Vi × (|θFNν |), and õdl = N × (|θFNν |) float32

variables, where |θFNν | = |θCν | + |θIν | + |θLν | + |θINν |, N is the
total number of federated iterations, and Vi is the number of
participating vehicles in the ith iteration.

Given the depth of the DNNs, sharing all the locally trained
weights for the three different unimodal and one integration
models to the MEC occupies approximately 320 Mb of uplink
and downlink channels. To address this problem, FLASH
transmits the fusion network to the MEC in the uplink control
channel with overhead of õul = |θFNν | float32 variables. We
design a multimodal orchestrator at the MEC, which retrieves
four branches (BC, BI, BL, BIN,) from the received network
and stochastically selects one branch to be aggregated. The
updated branch is then sent back through the downlink trans-
mission. This lowers the overhead in the downlink channel to
õdl = N × (|θBb(i)

ν |) float32 variables, b ∈ {C, I, L, IN}.
•Algorithm for multimodal federated training: In Alg. 1,
we initialize the overall fusion network with the weights from
the previous iteration at each vehicle (random initialization is
used at first iteration). We define update rate for GPS coordi-
nates, image, LiDAR, and integration branches according to a
probability distribution P = {α, β, γ, δ}, α+ β + γ + δ = 1,
where the parameters α, β, γ, δ denote the probability of
selecting the GPS, Image, LiDAR and integration branches
for aggregation, respectively. For each federated iteration i,
ranging from 1 to N , we perform local training using the
model with the weights from earlier iteration, θFN(i−1)ν , for
ζ epochs, and generate updated model weights θFN(i)ν . Next,
the MEC assigns four different branches within the current
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model weights θFN(i)ν and chooses one of them B(i) using the
stochastic function PP(.). The weights of the selected branch
B(i) of each received model are averaged and sent back to the
participating vehicles. We use straightforward averaging of the
weights as our federated aggregation method [8]. The vehicles
update the selected branch of their local models and execute
the local training for the next federated iteration. The problem
of sector selection is restricted to a fixed candidate set, making
the local data independent and identically distributed (IID).
•FL protocol in FLASH: In general, the federated training
consists of local training, aggregation, and reporting. How-
ever, for handling multimodal data, an orchestration module
is added between the local training and aggregation steps of
the FL protocol flow. In this orchestration step, we perform
the stochastic selection of a specific branch as discussed in
Alg. 1. Our overall operation over consecutive iterations is
shown in Fig. 2, with the time windows for the local training,
multimodal orchestration, federated aggregation, and reporting
displayed. The time window for each step is defined based on
the application requirements.
•FL training in FLASH: An overview of the proposed
multimodal FL training is presented in Fig. 3. The initial
model retrieval block is used to download the most updated
global model from the MEC to the new vehicle as it comes
within the coverage of the BS associated with the MEC. Each
vehicle performs local training on the local multimodal data
for a few epochs and determines whether to participate in the
global optimization. If a vehicle decides to participate, the
vehicle broadcasts the model weights for the overall fusion
network (encapsulating four branches, GPS, image, LiDAR,
and integration) to the MEC. Meanwhile, the orchestrator
at the MEC selects one of the branches as a candidate for
federated averaging and transmits back the aggregated weights
of the selected branch to the participating vehicles.

D. Resilient Inference

In FLASH, a vehicle receives the globally updated multi-
modal fusion architecture from the MEC. This model requires
inputs from all sensor modalities at any given time. How-
ever, this may not be possible due to hardware or software
malfunctions that may impair data availability from a specific
sensor at a given time. A classical neural network may fail
to handle such situations with missing input. Thus, we design
a multimodal data adaptation technique that compensates the
missing data from a given sensor with time-shifted copies of
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Fig. 4: The inference pipeline for sector prediction at each vehicle.
The proposed inference engine enhances the trained neural network
models with the added feature of adaptation to missing information.

earlier data from the same sensor. By using historical informa-
tion, we enable resilient inference, with graceful performance
degradation. We present the pipeline of the proposed data
adaptation method in Fig. 4. If a sensor data type is unavailable
at a particular time instance, the ‘loop-back’ block finds the
last available historical data for that sensor and uses that for
inference.

V. FLASH TESTBED SETUP

We validate FLASH with experimental data (published
in [10]) collected from an actual autonomous car with
multimodal sensors, and mounted with programmable IEEE
802.11ad Talon Routers that operate in the 60 GHz band.

A. Testbed Environment and Sensors

We demonstrate FLASH in a scenario that resembles an
urban canyon. We set up our testbed on days with dry,
low humidity weather conditions in a metropolitan city on a
two-way paved alleyway between two high-rise buildings, as
presented in Fig. 5 (a). The exteriors of the buildings, which
are made of brick, metal, and glass, are located at least 4 ft
(1.2 m) from either side of the road. There are a few small trees
and shrubs planted between the buildings on the sidewalk.

(a) (b)

Fig. 5: (a) Top view of location; (b) experimental setup.

1) Choice of Sensors: The sensor suite consists of a camera,
LiDAR, and GPS, which are all attached to a 2017 Lincoln
MKZ Hybrid autonomous car. The camera system consists of
one GoPro Hero4 with a field-of-view (FOV) of 130 degrees.
The LiDAR system consists of two Velodyne VLP 16 LiDARs
with a FOV of 360 degrees. The car is equipped with an on-
board computer connected to the LiDAR and GPS sensors, as
shown in Fig. 5 (b). The data is captured at the following rates:
1 Hz for GPS, 30 frames per second (fps) for the camera, 10
Hz for LiDAR, and 1-1.5 Hz for the RF ground truth. Possible
errors in GPS accuracy do not affect our system as long as the
relative positions of the vehicle during trials are maintained.



Fig. 6: Schematics of data collection environment for: A) Category
1: LOS passing, B) Category 2: NLOS pedestrian, C) Category 3:
NLOS static car, D) Category 4: NLOS moving car.

Cat. Spd. (mph) Lane Featuring Scenarios # Eps. # Smpl.

1 10, 15, 20 same
opposite - – 60 9729

2 15 opposite pedestrian

standing
walk right to left
walk left to right

walk back to front
walk front to back

50 7968

3 15, 20 opposite static car
on right
on left
in front

60 8174

4 15, 20 opposite moving car

10mph same lane
20mph same lane

10mph opposite lane
20mph opposite lane

40 6052

TABLE I: Summary of different categories of collected dataset.

2) mmWave Radios: We use TP-Link Talon AD7200 tri-
band routers, which use Qualcomm QCA9500 IEEE 802.11ad
Wi-Fi chips with an antenna array to work as both the BS
and Rx at the 60 GHz frequency [4]. The default codebook
includes sector IDs from 1 to 31 and 61-63 for a total of
34 sectors; the sectors with IDs of 32 to 60 are undefined.
We gain access to PHY-layer characteristics of AP and RX
using the open-source Linux Embedded Development Envi-
ronment (LEDE) and Nexmon firmware patching released by
[4], [11]. We record the time-synchronized RF ground truth
data as data transmission rate and received signal strength
indication (RSSI) at each sector.

B. Testbed Settings

We define four different categories as: (a) LOS passing,
(b) NLOS with a pedestrian in front of the BS, (c) NLOS
with a static car in front of the BS, and (d) NLOS with a car
moving between the Rx and the BS (see Fig. 6) with additional
variations as shown in Tab. I. For each scenario, we collect
10 episodes, or trials, with episode durations of approximately
15 seconds. We limit the vehicle’s speed to 20 mph, which is
typical for inner-city roads.

1) Image Extraction from Videos: For each of the videos
collected with the GoPro we use the OpenCV python library
and split up each video into its individual frames and save each
frame as an image with corresponding system timestamps. As
an example, for a 15 second video with a frame rate of 30
fps, we obtain around 450 images.

2) Synchronization: We note that among the mounted sen-
sors, the camera has the highest sampling rate at 30 fps,
whereas LiDAR and GPS have 10 Hz and 1 Hz rates, respec-
tively. According to the 802.11ad standard, sector sweeping
is repeated whenever a drop in the received signal power

Fig. 7: Synchronization scheme.

is observed at the Rx, which is an indication of a sector
misalignment. As the optimum sector does not change between
two consecutive RF measurements, we up-sample our ground
truth RF data measurements by associating the same optimum
sector to non-RF data between two consecutive RF samples.
In particular, our synchronization scheme has three steps
as shown in Fig. 7: for each time slot between two RF
samples; a) detect the LiDAR and image sensor data within
the corresponding time slot; b) pair each LiDAR sensor data
with the closest image and record the timestamp; c) for each
timestamp, interpolate the GPS coordinates and record the RF
ground truth data. For GPS interpolation, assuming that the
car is moving at a constant speed, we first estimate the GPS
coordinates at the time that RF samples are recorded for the
target time slot. We then detect the GPS coordinates of the
two closest points, say, (lat1, lon1), (lat2, lon2), and estimate
the coordinates at the RF sample timestamp (latx, lonx) as:

latx =

{
n lat1+m lat2

n+m if lat1 < latx < lat2
n lat1−m lat2

n−m o.w.
(4)

where m = |tlat1 − tlatx | and n = |tlat2 − tlatx |. The same
equations are used to estimate the longitude.

VI. EXPERIMENTAL ANALYSIS

In this section, we validate our proposed federated ar-
chitecture on the FLASH dataset. For experiments, we use
Keras 2.1.6 with Tensorflow backend (version 2.2.0).

A. Experiment setting

1) Dataset: To evaluate the FLASH framework, we use
the entire FLASH dataset with 4 different categories and
21 scenarios (inclusive of LOS and NLOS). Each scenario
consists of 10 episodes or trials of data collection and can be
interpreted as having different vehicles. In this way, we have
10 different vehicles, each having a total of 21 different sce-
narios as their local dataset. During the collection of FLASH
dataset, different episodes of the same scenario are designed
to be different, making each local dataset (per vehicle) unique.
To replicate real-world situations, we create local training
and validation datasets for each vehicle by separating 80%
and 10% of the overall local dataset. However, to expose the
trained models to the unseen environment detected by other
vehicles, we create a global test dataset, where we combine the
leftover 10% of each vehicle’s local data. The overall dataset
contains 25456 and 3180 local training and validation and
3287 global test samples, respectively.
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Fig. 8: Proposed network architectures for (a) GPS, (b) image, (c)
LiDAR, and (d) integration networks. We use multiple convolutional
and fully connected (FC) layers. The integration model is designed
by concatenating the highlighted layers from each unimodal model.

2) Implementation Details: For all models (see Fig. 8),
we exploit categorical cross-entropy loss for training with a
batch size of 32 for 100 epochs. We use Adam [21] as our
optimizer with β = (0.9, 0.999) and initialize the learning
rate to 0.0001. We set the LiDAR range to be within ±80 m.
We quantize each axis to a (20, 20, 20) block array which
correspond to steps of (2.79, 4.65, 0.5). Moreover, we resize
the high quality raw images to (160, 90, 3) for input.

3) Performance Metrics: Top-K accuracy is the percentage
of times that the model includes the correct prediction among
the top-K probabilities. The errors in prediction, i.e., selecting
a sub-optimal sector, can affect the system performance. Thus,
we evaluate the sector prediction performance by defining

throughput ratio as RT = 1
N
′
t

∑N
′
t

n=1
log2[1+yt̂(n)]
log2[1+yt∗ (n)]

. Here, t∗

and t̂ denote the best ground truth sector and the predicted
sector, respectively, and N

′

t is the total number of test samples.
Intuitively, this metric captures the ratio of degradation in
performance compared to the ideal exhaustive search method.

B. Competing Methods

We compare our proposed FLASH framework against two
other DL approaches in accuracy and overhead in Sec. VI-F.
• Local Learning and Global Inference: The vehicles use
their own local training data to optimize the local models, in-
dependently. In this method, there is no data sharing; vehicles
operate as disjoint independent clients and the training data is
confined to their own local data only.
• Centralized Learning and Global Inference: The vehicles
participate in a data sharing scheme to converge to a gen-
eralized model. As a result, V vehicles transmit their own
local training data that is centrally collected at the MEC. The
latter trains a model on the accumulated training data. This
scheme requires a back channel with the required bandwidth
for sharing such large amounts of data.
• FL and Global Inference (FLASH): The vehicles use
only their local training data to optimize their local model.
Each vehicle participates in a global model aggregation round,
where only the local models are sent to the MEC.

C. Local Learning and Global Inference

In the first set of our experiments, we train DNNs on the
local dataset for each vehicle, separately. During inference,

Fig. 9: Average achieved top-1 accuracy of local training and global
inference over all vehicles. The error bars depict the variance in top-1
accuracies among all vehicles.

Vehicles Top-1 Accuracy (%)
Cat. 1 Cat. 2 Cat. 3 Cat. 4 Combined Incr. Boost

1 22.87 28.13 24.49 33.38 26.58 -
2 29.37 37.14 33.37 38.22 34.01 7.43
3 40.05 43.84 40.47 42.90 41.64 7.63
4 46.85 49.81 47.21 52.74 48.79 7.15
5 52.04 57.12 53.49 62.09 55.58 6.79
6 62.03 64.79 62.36 65.80 63.52 7.94
7 68.13 72.10 68.75 70.64 69.75 6.23
8 73.62 78.07 74.43 79.67 76.08 6.33
9 80.91 83.55 80.47 84.19 82.08 6.00

10 85.91 90.37 85.32 88.22 87.31 5.23

TABLE II: The top-1 accuracy while training on local dataset of
V = 1, ..., 10 vehicles and testing on global test set.

we use the global test dataset to compare the performance. We
demonstrate the average achieved accuracy over all 10 vehicles
in Fig. 9 for different categories. Results reveal that each
model trained on the local dataset fails to achieve competitive
performance when exposed to the global test dataset in the
inference phase. Additionally, we observe that both the image
and fusion networks give better prediction accuracy than GPS
or LiDAR in most cases. Thus, we choose fusion as our se-
lected architecture for the rest of our experiments, as it enables
resilient inference as well. Even though the top-1 accuracies
are in the lower range in Fig. 9, it performs comparably better
than the random selection accuracy of 0.029 (1 among 34
classes). We observe the top-5 and top-10 accuracies vary in
the range of 40%-60% and 50%-75%, respectively.
D. Centralized Learning and Global Inference

In this set of experiments, we explore the effects of central-
ized learning on global test data. Considering the local training
dataset available at each vehicle, we construct an accumulated
training set by gathering the local training set from V vehicles.
We then train the model using the accumulated training set
and test it on the global test set. We present the result of this
experiment in Tab. II, where we begin with the data from
a single vehicle and increase the accumulated training set
by adding the local data from other vehicles, one at a time.
We observe a surge in top-1 accuracies as we keep adding
more vehicles to the accumulated training set. The incremental
improvement after adding one more vehicle is highlighted
in the last column. Although this approach improves the
robustness of sector selection, it requires all the training data
to be gathered at one site (unlike FLASH), e.g., a cloud, with
associated transmission cost and privacy concerns.

E. Federated Learning and Global Inference (FLASH)

In our proposed Alg. 1, the vehicles participate in feder-
ated aggregation, where different branches of the models are



selected through a multimodal orchestrator. The aggregation
policy is based on a stochastic function PP(.), captured by
parameters: α, β, γ, δ for GPS, image, LiDAR, and integration
networks, respectively. We provide a comprehensive study on
the effect of different policies on top-1 global accuracy. First,
with LiDAR being the most successful unimodal network, we
define a greedy LiDAR policy where only the LiDAR branch is
aggregated, denoted as PGreedy LiDAR. In the second policy
PL,IN Biased, we bias the LiDAR and integration branches and
select the LiDAR and integration branches with probability of
0.4 and the GPS and image branches with probability of 0.1.
Next, we consider an unbiased policy PUnbiased where one
branch is selected randomly following a uniform distribution.
These policies are parameterized as follows:

PGreedy LiDAR = (0, 0, 1, 0)

PL,IN Biased = (0.1, 0.1, 0.4, 0.4)

PUnbiased = (0.25, 0.25, 0.25, 0.25)

We also consider a final policy PAll where the entire model of
the fusion network is averaged and updated without orchestrat-
ing any specific branch. We assume all 10 vehicles participate
in FL aggregating and run 100 iterations.

Fig. 10a denotes the improvement in global top-1 accuracy
achieved by multiple rounds of aggregating the model weights
following the above policies. Although model aggregation
improves results for all policies, we observe the lines con-
verge after 50 iterations. In particular, the maximum top-
1 accuracy following the policy PAll is 68.17%. On the
other hand, PGreedy LiDAR, PL,IN Biased, PUnbiased policies
achieve the top-1 accuracy of 39.42%, 52.23%, and 59.72%,
respectively. The size of GPS, image, LiDAR, and integra-
tion model branches are 2.78MB, 26.55MB, 3.73MB, and
6.21MB, respectively. As a result, the corresponding overheads
for PGreedy LiDAR, PL,IN Biased, PUnbiased, and PAll policies
are 3.73MB, 6.90MB, 9.81MB, and 39.27MB on average,
respectively. In other words, even though the PAll policy yields
to best top-1 accuracy, it imposes 9.52x, 4.69x, and 3x ex-
tra overhead than the PGreedy LiDAR, PL,IN Biased, PUnbiased

policies, respectively. Hence, the branch selection policy gives
the flexibility to use less wireless resources to adhere to user-
imposed constraints, such as a threshold on the allowable data-
rate over downlink, which is easier to maintain when sending
only one branch instead of the entire fusion network.

F. Accuracy and Overhead Trade-off

In this section, we first compare the accuracies of three
competing methods, presented in Fig. 10b. The performance
of the local learning method, Sec. VI-C, is denoted with a
diamond marker. The dashed line indicates the improvement
achieved by centralized learning between multiple vehicles at
the cost of transmitting all the data to a central unit. The star,
dot, and triangle markers show the FL results at iterations 10,
40, and 78. We observe that in order to achieve 68.17% top-1
accuracy, the centralized learning requires data from around 7
vehicles, while the FL can achieve the same accuracy without
data sharing and with only 78 rounds of aggregation.

Methodology Acc.(%) Overhead(s)
Data sharing Model sharing

Local Learning 36.78 - -
Centralized Learning 87.31 11.54 0.1813

FLASH (78 iterations) 68.17 - 3.51

TABLE III: Comparing the performance of the three data-driven
competing methods with respect to accuracy and model initialization
overhead. All accuracies are reported on the global test set.

However, both the centralized and federated methods im-
pose some communication overhead in the control channel for
model initialization. We observe a trade-off between overhead
and accuracy for both the methods, presented in Tab. III.
Though the local learning approach does not require any
data/model sharing, it provides up to only 36.78% top-1
accuracy. On the other hand, the centralized learning approach
can provide 87.31% accuracy, but it comes with a large
communication cost of transmitting the entire data (2.5 GB)
to the cloud, as well as privacy concerns. Meanwhile, FLASH
reduces the communication cost while preserving 68.17%
accuracy without any sort of data sharing. FL aggregation
iterations continue in the background and do not disrupt the
inference. In each aggregation round, one out of four branches
is sent back to the vehicles with 696,600 parameters for the
lightest branch, i.e., for GPS, and 6,638,368 parameters for the
heaviest one, i.e., for images. The back channel is supported
by the 5GHz band of the Talon router with a data rate of
1733Mbps. Thus, it takes 45ms on average to retrieve the
model in each iteration with unbiased policy, considering 32
bits per model parameter (314.31Mb overall). For a total of
78 aggregation rounds, the model initialization overhead sums
up to 3.51 seconds. Hence, we conclude that FLASH provides
a 46.04% improvement in accuracy over local learning and a
70.05% improvement in overhead over centralized learning.

G. Sector Selection Speed and Throughput Ratio

Once we establish that FLASH outperforms the other two
competing methods in terms of both accuracy and overhead,
we next compare the sector selection speed against the current
mmWave standards. As described in Sec. III-A, in the tradi-
tional exhaustive search approach, each sector of BS transmits
M probes to initiate the communication. The end-user then
returns the optimal sector ID to the BS.

FLASH infers the optimum sector ID from the multimodal
sensor data by following four steps: (a) Data acquisition: given
the high-sampling rates of COTS sensors, we assume that sen-
sor data is acquired almost instantaneously; (b) Preprocessing:
the LiDAR preprocessing step described in section IV-A has
a negligible latency that can be further reduced by exploiting
parallel processing; (c) Model inference: we pass a test sample
100 times over the DL model and calculate the average
inference delay of 0.6 ms; (d) Sector sharing: an integer
varying between 0-31 and 61-63, representing the sector ID
with 7 bits, is sent back to the paired users. Considering
the 5GHz back channel of the Talon routers, transmitting the
optimal sector back takes only 4 ns. As a result, the FLASH
inference consumes ∼0.6 ms end-to-end. On the other hand,
sweeping all 34 sectors with the 802.11ad standard in Talon
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Fig. 10: (a) The performance of federated training and global inference over 90 rounds of aggregation. (b) Comparing the performance of
FL with an increasing number of vehicles and amount of federated training. (c) Comparing the performance of 802.11ad and FLASH with
respect to throughput ratio and end-to-end sector selection time.

(a) (b)
Fig. 11: (a) Performance of resilient inferencing when all three
modalities are missing with probability p = 0.1, 0.5, 0.9. We loop
back the sensor data to different sample values presented in the x-
axis. (b) Tolerance of the proposed FLASH framework when different
combinations of sensors modalities are missing.

routers takes 1.27 ms [4]. We also calculate the throughput
ratio (defined in Sec. VI-A3) of FLASH and the 802.11ad
standard in Fig. 10c. We observe 52.75% improvement in
sector selection speed while retaining 89.32% throughput ratio.

H. Resilient Inference for Missing Sensors

To evaluate the resiliency of FLASH, we first consider the
extreme scenario in which all the sensor data are missing.
We evaluate the performance with respect to the parameters
defined in Sec. IV-D, namely the loop-back step and proba-
bility of missing data in Fig. 11a. We observe that the top-1
accuracy is resilient to the low loop-back steps and decreases
as the loop-back step increases and the samples become far
apart. However, the higher probability of missing information
results in lower top-1 accuracy. Next, we explore the effect
of missing different combinations of sensor data in Fig. 11b,
with a fixed probability of 0.5. We observe the absence of
GPS negligibly affects the performance. One might argue that
the LiDAR preprocessing step described in Sec. IV-A requires
the location of the vehicle as input; however, the coordinates
can also be estimated using the GPS interpolation scheme
presented in Eq. 4. Note that two scenes separated by a small
amount of time might result in the same LiDAR data due
to quantization, while images are completely different. From
Fig. 11b, we observe that FLASH can retrieve 67.59% top-1
accuracy when up to ten samples are missing for all modalities.

I. Comparison with State-of-the-art
In Tab. IV, we benchmark the performance of our pro-

posed FL architecture against the state-of-the-art DL-based

approaches by Klautau et al. [16] and Dias et al. [17]. Both
of these techniques use centralized learning with only LiDAR
sensors at the vehicle while considering both LOS and NLOS
situations on synthetically-generated Raymobtime dataset [22].
We limit the comparison study to the above techniques, as
the other state-of-the-art techniques differ from ours with
respect to various aspects, such as: (a) different evaluation
metrics [14], [23], [24], [25], [26]; (b) consideration of LOS-
only scenarios while using camera sensors [27], [28]; and
(c) inclusion the RF inputs (sub-6 GHz channel measurements,
for instance) [15]. In Tab. IV, we observe that FLASH
outperforms the state-of-the-art by 35-45% in top-1 accuracy.

Methods Modalities Architecture Top-1 Dataset Evaluation Task
Acc. (%) Type

Klautau et
al. [16]

LiDAR Centralized 30.5± 1 Synthetic
Raymob-
time [22]

Simulation Beam
Prediction

Dias et al.
[17]

LiDAR Centralized 20.5± 1 Synthetic
Raymob-
time [22]

Simulation Beam
Prediction

FLASH GPS, Image,
LiDAR

Distributed 68.17 FLASH
Dataset

Testbed Sector Selec-
tion

TABLE IV: Comparison of FLASH with state-of-the-art techniques
which use non-RF data for similar tasks.

VII. CONCLUSIONS

We make a case for using multiple sensor modalities [29]
to aid in mmWave beamforming, as opposed to using only
RF-based approaches. FLASH incorporates multimodal data
fusion using DL architectures, whose training and dissemi-
nation in real-world vehicular networks, as well as resilience
to missing data sources, can be practically achieved using a
FL architecture. Results obtained on datasets collected by an
autonomous vehicle with LiDAR, GPS, and camera sensors
indicate 52.75% reduction for mmWave sector selection time
while retaining 89.32% of throughput as compared to the
traditional sector sweeping. The dataset and the code for the
proposed fusion models in FLASH are released online in [10]
for independent validation and further research on distributed
multimodal learning.
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