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Abstract—Robotic factory floors will revolutionize the future of manufacturing and the service industry by automating tasks. However,
to fully supplement human effort, these robots will need low-latency, reliable connectivity throughout the work zone through links
established by wireless access points (APs). This will allow the robot to assuredly respond to programming directives that rely on the
real-time relaying of robot-generated sensor data to the Mobile Edge Computing (MEC) server. In this paper, we propose L-NORM, a
multi-AP and multi-robot coordination framework, as a multi-tiered solution for such autonomous edge networks. First, multi-robot
motion planning through reinforcement learning occurs at the MEC, using as input multi-modal robot sensor data. Second, multi-AP
resource orchestration is performed using another reinforcement learning-based method that maps a subset of available APs to each
robot toward meeting their sensor data delivery requirements. Furthermore, we suggest diversity combination of uplink channels with
the 802.11ax scheduled access mode that will (i) support high reliability of multi-robot uplink sensor packets and (ii) enable multi-AP
coordination, for optimized resource utilization. Through extensive simulation studies, we show that the probability of robot deviation to
remain within 0.5 m from its optimal path, is 19% more in L-NORM compared to classical 802.11ax based edge network solution,
considering ∼1 MB of sensor data per robot.

Index Terms—Edge network, orchestration, robot navigation, reinforcement learning, multi-modal data.

✦

1 INTRODUCTION

Industry 4.0 [1], proposes rapid change to technology,
industries and processes in the 21st century by fusing multi-
tier computing with capabilities from artificial intelligence
(AI), networked robotics, large-scale machine-to-machine
communication (M2M), and the Internet of things (IoT).
This integration results in increased automation, improved
communication and self-monitoring, and the use of smart
machines that can analyze and diagnose issues without the
need for human intervention [2], [3]. However, several chal-
lenges must be addressed to realize this vision, in terms of
the coexistence of a diverse set of applications with hetero-
geneous Quality of Service (QoS) requirements, for example
in Ultra Reliable Low Latency (URLLC) applications in a
dynamic, high user density environment [4]. Our proposed
approach called “Learning and Network Orchestration at
the Edge for Robot Connectivity and Mobility in Factory
Floor Environments” (L-NORM) is a step towards enabling
the vision of a smart, adaptive and scalable autonomous
control system that can simultaneously enable both low-
latency/high-reliability and general purpose applications.
L-NORM is designed to operate with the existing state-of-
the-art IEEE 802.11ax protocol with added enhancements
shown in Figure 1: (1) deployed robot entities that have
compatible 802.11ax radios interfaced with different sensory
modules, (2) multiple distributed Wi-Fi 6 Access Points
(APs), and (3) a controller residing in the MEC server that
executes multi-AP coordination, multi-robot navigation and
network resource orchestration in a multi-tiered fashion.
This joint orchestration is a novel approach as existing re-

Figure 1. System architecture of L-NORM performing Reinforcement
Learning (RL) enabled multi-robot navigation through autonomous edge
network orchestration.

source allocation in classical 802.11ax is independent of the
higher layers and does not consider multi-AP coordination
and dynamic network resource orchestration.

1.1 L-NORM motivation and novelty

L-NORM uses robot-generated sensor data as inputs to a
navigation control algorithm that runs in the MEC, which
then generates and communicates feedback in the form
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of linear and angular velocity to the robots to close the
loop. Existing methodologies like localized orchestration of
robots and cloud-based centralized navigation algorithms
[5] are not scalable and not designed to meet the typical
time-sensitive URLLC robot application latency threshold
(Υmax ≤ 5ms) and Packet Error Rate (PER) threshold
(Ωmax ≤ 10−3) [6], [7], as specified in the 3GPP Rel-16 [8].
Furthermore, when computing and wireless infrastructure
resources are statically assigned in a dynamic environment,
then there is a risk of inefficient operation in high user den-
sity scenarios with varying payload sizes. Existing 802.11ax
protocol features of Multi-User Uplink (MU-UL) and Or-
thogonal Frequency Division Multiple Access (OFDMA) for
high user density scenarios are leveraged by L-NORM to
support our vision of the edge network as an autonomous
and resilient control system. L-NORM predicts the state or
context of dynamic systems/applications with the help of
multi-modal sensor data in real time and learns to adapt
its communications and computation resources to meet the
QoS of heterogeneous applications. In this paper, we use
networked robotics URLLC application as an use-case to
validate the performance of L-NORM.

1.2 Conceptual overview of L-NORM operation
In L-NORM, the 802.11ax compatible APs form the edge
nodes which serve as the communication bridge between
the robots on the factory floor and the robot navigation
and network orchestration algorithms running in the multi-
tiered compute resources available to the edge network.
Difference with Classical 802.11ax: From a network ar-
chitecture point of view L-NORM differs significantly com-
pared to classical 802.11ax. In L-NORM the APs are con-
nected through backhaul to an edge-based MEC server for
dynamic multi-AP coordination and user association from
multi-APs to singular users for enhanced reliability. In clas-
sical 802.11ax, the APs form a singular point of contact as
gateways to the Internet for the users, that may not always
provide the best connectivity in mobile scenarios for URLLC
applications, thus resulting in handoffs and lowering the
user QoS.
L-NORM Operation: In the L-NORM environment, in-
dividual sensors mounted on these robots generate infor-
mation about the real-time state of the environment. This
state information is collected by the APs, and then relayed
via backhaul links to the MEC running an RL algorithm
for robot navigation. The RL algorithm generates actuator
feedback for each of the robots to ensure efficient navigation
without any collisions. The APs also forward network con-
trol information (signal-to-noise ratio or SNR and individual
AP link latency) to the orchestrator in the MEC which
decides the best APs for each robot to ensure reliable robot
sensor data delivery in the uplink. This method of multi-AP
coordination and joint optimization of network resources
with robot navigation ensures the correct interpretation of
the robot’s situational awareness by the robot navigation
controller at the MEC server, and generate accurate robot
actuator outputs for collision free navigation.
Paper Contributions: The main contributions of L-NORM,
designed in a multi-tiered compute solution are as follows:

• We design an RL-based robot navigation process
using multi-modal sensor data from the robots, for

Figure 2. L-NORM components and paper organization.

our Tier 1 compute solution. For this purpose, we
modify and use a deep deterministic policy gradient
(DDPG) based actor-critic network which takes en-
vironment data from different types of robot sensors
and generates the individual actuator feedback to the
robots.

• In Tier 2, to enable high reliability of delivering robot
sensor packets to the edge network, we propose a
heuristic network orchestration algorithm. This al-
gorithm utilizes multi-AP coordination by diversity
combination of uplink channels from one robot to
multiple APs through Maximum Ratio Combining
(MRC). This ensures a higher probability of correctly
decoding the robot sensor packets at the edge.

• We develop a DDPG-based learning framework that
performs learning-based multi-AP coordination in
multi-robot and multi-target scenario, as part of our
Tier 3 solution. We deploy this learning algorithm at
the MEC server to complement the performance of
our heuristic network orchestration algorithm when
the network is operating beyond its normal operat-
ing capacity.

• We validate the proposed multi-tiered solution in a
modular manner using ROS, Gazebo, and Matlab
platforms, thereby ensuring the flexibility to adapt L-
NORM in different scenarios and with different types
of robots. We pledge to open-source the codebases of
all three tiers for community use, upon the accep-
tance of this paper.

The rest of the paper is organized as given in Figure 2:
In Section 2, we review the relevant literature. Section 3
presents the motivations for designing L-NORM that leads
to the overall problem formulation in Section 4. We provide
details of the proposed solution in Sections 5, 6 and 7, respec-
tively. We then showcase in Section 8, how these solutions,
working in tandem, help us to achieve the overall optimiza-
tion of Section 4. Finally, we conclude in Section 9.

2 RELATED WORK

We review the most relevant works in the following two
areas:
• Autonomous Robot Navigation: The authors in [9]
present a simulation of Particle Swarm Optimization (PSO)
based autonomous robot navigation to reach a destination
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Table 1
Table of Notations

Symbol Description Symbol Description
A AP list Ω Packet error rate
αi AP ‘i’ in A Rj Robot ‘j’ in R
M Total #APs R Robot list
K Total #robots φ Robot collisions
Υ Latency y MRC output
t Time slot T Total time to reach target
πθ RL policy r Reward space
s State space A Action space

ϑ, ψ RL environments ψ RL environment
g Target distance lv Linear velocity
L Laser data c Camera data
av Angular velocity Q Action quality
β Delivered packets h Channel coefficient
w Uplink weight Γ SNR
b Received signal x Uplink payload
p Transmit power z AWGN
δ Obstacles η True position
ζ Original position ε MCS
γ RTTD U MRC list of AP
Λ Robot deviation λ Robot priority list
ρ Payload duration Ξ Uplink transmit time
µ Obstacle distance ι Target location

target in unknown environments. A multi-objective fitness
function-based robot path planning was simulated in [10] to
generate smooth paths and avoid obstacles. However, these
works consider single robots having global knowledge of
the environment and static obstacles, which is not scalable
for dense robot deployments in cluttered environments. Col-
lision avoidance with both static and dynamic objects was
showcased in [11], albeit with a single robot having prior
global knowledge of the environment that gets updated as
the robot encounters obstacles along its way. The authors in
[12] train an RL module locally on a robot for navigation
in a rough terrain environment. The work presented in
[13] uses RL locally on a robot for single-robot navigation
while avoiding collision in an indoor environment. The RL
algorithm uses real-time robot sensor data to aid in robot
navigation, thus negating the need for robots to have global
environment knowledge which needs to be updated every
time the environment changes. This approach thus ensures
scalability and comes close to our vision of autonomous
robot navigation in L-NORM.
• Wireless Edge Networking: An extensive survey about
emerging technologies for the next generation of wireless
networks is presented in [14]. The authors in [15], [16],
[17] discuss wireless resource allocation that are control-
aware. In [18], the authors discuss the feasibility and po-
tential of providing edge computing services to support a
massive number of connected devices requesting a variety
of different services such as mobile video streaming, virtual
reality (VR), and augmented reality (AR), as well as mission-
critical applications. with latency and reliability guarantees.
The authors in [19] use the Hungarian algorithm to assign
antennas to different users, but not considering different
priorities among users, while the validation is limited to
a static, indoor testbed environment. A Software Defined
Networking (SDN) based wireless network resource orches-
trator is proposed by the authors in [20] which optimizes
both the networking and computational flows for efficient
fog/edge/cloud-based aerial networking, however not con-
sidering heterogeneous application QoS requirements or

URLLC applications. Similarly, a study of the sensitivity of
traffic delay to the location of controllers and the magnitude
of inter-controller and controller-node overheads in a multi-
controller edge system is carried out in [21]. Mobility pre-
diction and Intelligent handover prediction models are de-
signed and evaluated in [22] and [23] respectively to enable
live streaming edge-based applications like mobile gaming,
virtual reality, etc. through MEC servers. Using predictive
methods for proactive caching to improve user Quality of
Experience through the alleviation of backhaul congestion is
proposed in [24]. For low-latency applications an RL-based
algorithm is proposed in [25] to overcome the limitations of
traditional heuristic and evolutionary algorithms.
• Distributed Reinforcement Learning: In [26] the authors
propose a distributed trustworthy storage architecture with
RL in Intelligent Transportation Systems, specifically tar-
geting edge services. The authors in [27] propose a novel
hierarchical RL approach for orchestrating the dynamic
placement of Virtual Network Functions (VNFs) in Cloud
and Edge 5G environment to augment the current state of
the art in orchestrators.

All of the above solutions are either static or specifically
optimized for fixed use cases. To the best of our knowl-
edge, there are no existing works for designing wireless
networks which are context-aware and resilient enough to
dynamically adapt to diverse application requirements in
potentially unknown environments.

3 MOTIVATIONS FOR DESIGNING L-NORM
Before designing L-NORM, we first investigate the limi-
tations in the current state-of-the-art by conducting some
preliminary experiments in the domain of robot navigation
and edge network orchestration. Specifically, we study the
ability of the robots to maneuver around obstacles in an
indoor cluttered environment and the capability of the
existing IEEE 802.11ax protocol to efficiently deliver robot
sensor and actuator data within the time QoS metrics. We
use notations summarized in Table 1.

3.1 Current state-of-the-art in robot navigation
• RL-based Robot Navigation: Consider an RL based robot
navigation scenario with collision avoidance presented in
[13], which is most aligned with our assumption of an
indoor cluttered factory floor environment. The authors in
this work develop a Deep Deterministic Policy Gradient
(DDPG) RL agent, that runs locally on each Turtlebot [28]
robot and calculates the robot’s linear and angular velocity
(robot actuator data) for the next time slot based on the
observed environment parameters in the current time slot.
We use the same model in our preliminary experiment ‘as
is’. This model assumes that each robot has Odometer and
LiDAR rangefinder sensors and the RL agent in each robot
has partial observations in the sensing range, with 180° field
of view and a range of 12 m.
• Experiment Setup: We perform this preliminary experi-
ment in the Robot Operating System (ROS) simulation envi-
ronment [29], which provides the robot sensor and actuator
functions. These functions interface with the Gazebo simula-
tor [30] which creates the indoor cluttered environment for
the robot to move around, as shown in Figure 3. The robot
navigation RL agent is instantiated in OpenAI [31], which
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Figure 3. Robot navigation simulation in ROS and Gazebo generated in-
door cluttered environment consisting of obstacles, Turtlebot and target
destination, for testing autonomous robot navigation.
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Figure 4. Limitation of the current state-of-the-art [13] robot navigation
performance with DDPG in an indoor cluttered environment. Frequent
collisions with obstacles can be inferred from the collected negative
rewards. Here, the number of collisions, φ = 2.

interfaces with the ROS functions through Gym wrapper
[32]. This simulation environment spans an area of 20 sq. m.
with 22 randomly placed obstacles and 10 robots, each
navigating to their unique randomly placed target locations.
The RL agent running on the robot learns to move the
robot from different starting locations to a randomly located
target location with the minimum number of steps while not
colliding with any obstacles. The DDPG RL agent is trained
for over 500 trials with 2000 robot steps per trial.
• Observation: We measure the performance of the RL agent
in the test phase in the same environment with randomized
initial robot and target locations. Since in our experiments,
all of the 10 robots faced collisions while navigating to the
target locations, we show one robot’s result here for ease of
understanding. The robot’s reward during test is shown in
Figure 4. The −200 reward is collected by the robot when it
collides with any object, resulting in the condition φ > 0,
where φ is the robot collision metric. We observe that the
RL agent performs sub-optimally, resulting in multiple robot
collisions.

Motivation 1. We need to fine-tune the existing DDPG-based
robot navigation RL agent to ensure zero collisions (φ = 0) and
also to customize it for multi-robot and multi-target scenario. We
explain these modifications in Section 5.

3.2 Classical 802.11ax for edge-based robot navigation

In this scenario, the robot sensor data is communicated
to an edge-based robot navigation algorithm which then
generates the movement feedback to the robots. We eval-
uate whether the state-of-the-art IEEE 802.11ax protocol is
effective for enabling time-sensitive multi-robot navigation
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Figure 5. Current state-of-the-art edge network architecture using clas-
sical IEEE 802.11ax protocol with singular AP association per robot and
network manager-initiated handovers. This figure shows 1 uplink frame
at every time t for ease of understanding.

and orchestration. At the time of writing this paper, typical
robot navigation simulators do not have wireless network
implementations. For this reason, we plug in MATLAB
WLAN Toolbox with ROS to perform our network simu-
lation studies in this paper.
• Experiment Setup: Our Matlab simulation takes in the
timestamped robot location data from the ROS simulation
environment. In this simulation, we place APs in uniform
grid locations in a 60 sq. m. area and simulate the robot
movement in that area by feeding the ROS (Application
Server) generated robot location to Matlab’s Differential
Drive Kinematics (DDK) model [33] to make the robot
in Matlab follow the exact path (optimal path) it took in
the ROS simulation. The DDK model generates the robot
actuator (wheel motor) inputs in terms of linear and angu-
lar velocity based on the current robot location and ROS-
mandated next waypoint ahead, in order to stay in the
optimal path. This actuator data generation is influenced
by the wireless network quality since in this scenario the
robot motion control directives are generated at the edge
based on the accuracy of robot sensor data delivery. The
robot network interface is provided by the classical 802.11ax
edge network architecture as shown in Figure 5, through
the MATLAB WLAN toolbox. For context, the state-of-the-
art multi-user uplink management for 802.11ax, which is
done through the MU-UL mechanism, is shown in Figure 6.
In the robot navigation scenario, we consider a 20 MHz
BW which can support a maximum of 9 robots, each with
2 MHz resource unit (RU) allocation, per Physical Layer
Protocol Data Unit (PPDU). The rest of the available BW
for 802.11ax, we consider being used for general-purpose
applications/background traffic. Here, the PPDU containing
multi-user data packets is preceded by a Trigger Frame (TF)
and followed by a Block Acknowledgement (BA) frame. We
use a 5 GHz operating frequency with IEEE indoor channel
model B in SISO mode, with the AP transmit power set at
25 mW. The rest of the available BW is reserved for general-
purpose Wi-Fi-based applications. For the sake of simplicity,
we assume a homogeneous sensor packet arrival rate across
all robots at every t =10 ms. This time slot t is divided
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Figure 6. Classical IEEE 802.11ax MU-UL mechanism showcasing the
distribution of overhead and data in a typical transmission.

into uplink and downlink thresholds of 5 ms each. We break
down the total time T taken by the robot to reach its target
destination into the granularity of t=10 ms time slots, and
measure the performance in each of these t time slots. The
robot associates with the AP having the highest SNR to
transmit the sensor packets to the MEC server. Following the
classical Wi-Fi association rules, the robot keeps its current
association alive till the SNR degrades below a threshold
of 20 dB. After this, the robot initiates the classical steps of
AP de-association and re-association to the next available
AP with the highest SNR. During this handoff time period,
(which typically ranges from 50 ms to ∼100 ms [34] based
on the AP vendor), all the data packets generated by the
robot are dropped due to the absence of any connected AP
to the robot.
• Simulation Parameters: Considering the multitude of
sensor data originating from the robots, and the fact that the
edge-generated actuator feedback is smaller in size (float
point data representing linear and angular velocity) com-
pared to sensor data, we monitor the uplink network char-
acteristics between the robot and the AP in this experiment.
Following the classical 802.11ax protocol, at every time slot
of this simulation study, the least conservative MCS for the
uplink is calculated based on the SNR to the associated
AP, such that the PER remains within Ωmax (10−3). This
translates to the uplink payload duration which should be
within the uplink latency threshold Υmax (5 ms).
• Observation: Since the AP handoff process (re-association
with another AP) in classical Wi-Fi is initiated by the client
side (robots in our case) and not by the robot navigation RL
application on the edge, we observe that the robot sensor
data uplink QoS crosses the threshold for both PER and la-
tency multiple times. Due to the dropped sensor packets, the
navigation RL agent cannot generate the optimal actuator
feedback. Thus, the robots start to deviate from their optimal
path, i.e., the path the robot takes when there is no network-
related uplink packet error. This increases the probability of
φ > 0, i.e., the robot suffering a collision. In this experiment,
the robot’s deviation, shown in Figure 7, is ∼3-4 m from the
optimal path. Moreover, in high robot density scenarios with
classical single-AP deployments, 802.11ax is unable to meet
the low latency uplink requirements [35].

Motivation 2. Even if the edge-based robot navigation RL
algorithm is performing optimally, the current state-of-the-art
802.11ax edge network design and architecture, and not the proto-
col itself, will impact the stringent time-sensitive robot application
QoS requirements. This will result in multiple robot collisions
in high robot density scenarios and cluttered environments. This
motivates the need for an improved multi-AP Wi-Fi based edge
network design.
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Figure 7. Limitation of current state-of-the-art IEEE 802.11ax [36] based
AP association in edge deployment. The robot deviated by 3-4 m from
the optimal path during AP handover instances, increasing the probabil-
ity of robot collisions (φ > 0).

Goal of L-NORM: Considering the Motivations 1 and 2,
our proposed work is a step towards enabling the vision
of a smart, adaptive and scalable edge solution that can si-
multaneously enable both low-latency/high-reliability and
general-purpose applications.

• In the context of Motivation 1, we model the edge as
an autonomous control system that predicts the state
or context of dynamic systems/applications (e.g.,
robot navigation) in real-time with the help of multi-
sensory data.

• In the context of Motivation 2, we design the edge
network such that it learns to adapt its communica-
tion and computation resources to meet the QoS for
heterogeneous applications.

4 L-NORM PROBLEM DESCRIPTION

4.1 Problem statement
We consider K robots and M APs in the environment. We
define vector R which represents all the robots, hence R =
{j|1 ≤ j ≤ K}. Similarly, the vector to represent APs is
A = {i|1 ≤ i ≤ M}. The latency and PER threshold are
parameterized as Υmax and Ωmax, respectively. The time
taken by the robotRj to reach its destination is Tj , which has
a granularity of t=10 ms time slot, based on the robot sensor
packet arrival rate. Accordingly, to reduce the number of
collisions, the optimization problem P is to minimize the
deviation Λt

j of robot Rj at time slot t from its optimal path,
while utilizing the minimum network resources (APs). Λt

j

is calculated as the Euclidean distance between the robot’s
location when sensor packets experience network errors and
when they are not corrupted at time slot t. We formally
define this as:
Problem P – Given a specific set of robots R, with a minimum
number of edge network resources (APs), ensure zero collisions
(φ) for each robot and minimal deviation (Λ) of each robot from
its optimal path, with minimum network resource (U ) utilization,
while satisfying the robot sensor application QoS thresholds, viz.,
PER (Ω) and latency (Υ).

4.2 Solution approach
From our observations in Section 3, we realize that deviation
Λt
j depends on the efficiency of the (i)robot navigation

algorithm, and (ii) the edge network in its ability to deliver
the robot sensor packets. We thus solve P in a modular
fashion, by breaking it down to the sub-problems P0 and P1.
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P0 is for efficient robot navigation while avoiding collisions,
and P1 is for efficient edge network orchestration.

• Problem P0– Develop an efficient multi-robot orchestra-
tor, that can ensure each of the robots reaches their in-
tended target location with the minimum number of steps
and with no collisions, i.e., φ = 0 (optimal trajectory), in
an indoor cluttered environment. [Details in Section 5]

After solving ProblemP0, our aim is to make the robot
orchestrator perform with the same efficiency from the edge,
as it was performing in absence of any wireless network-
related packet errors. For this purpose, the edge network
resources need to be orchestrated as well, because, the robot
orchestrator can generate the correct next-step actions for
the robots, only if the robot sensor packets are delivered to
it by the edge network in a correct and timely manner. This
leads to the second problem,

• Problem P1– Ensure the edge network can deliver each
of the robot’s sensor data to the edge-based multi-robot
orchestrator with the minimum network resources (APs),
while satisfying the robot sensor application QoS thresh-
olds, viz., PER (Ω) and latency (Υ), for the correct for-
mulation and generation of the next step actions for each
robot. This will result in minimum robot deviation (Λ)
from its optimal trajectory, thus ensuring no collisions,
i.e., φ = 0. [Details in Section 6]

In the rest of the paper, we show how a joint solution for
these two problems enables the realization of a dynamic
and adaptive edge-based resource orchestrator.

5 TIER 1: ROBOT NAVIGATION FROM THE EDGE

We first focus on improving the corresponding DDPG RL
framework and making it capable of running from the edge,
instead of running locally on the robots, since our prelimi-
nary experiments in Section 3.1 proved that the “local only”
solution in [13] does not scale for zero-collisions in a highly
cluttered environment with high user density. Even if we
wanted to use a “local-only” approach, the robots needed
to share their neighborhood information perceived by their
sensors for the RL-agents in the robots to learn optimally.
This would have resulted in a robot mesh network type
solution which has its own pros and cons like (i) flooding the
network with control information, and (ii) design of a better
mesh networking protocol (which is out of scope of this
paper). Specifically, our target is to make the RL agent more
efficient and capable of working with multi-robot sensor
information and coordinate each of the robot’s actuating
functions with the goal of enabling the robots to reach their
respective destinations with no collisions.
Motivation for choosing DDPG: DDPG is an actor-critic
and model-free algorithm that can operate over continuous
action and state spaces. In our multi-robot motion in indoor
obstacle-cluttered factory environments, continuous linear
and angular velocity (action) is better than discrete values
and ensures zero collisions for the robots. Since the focus
of our paper is not on proposing a better DRL architecture
or algorithm but on the joint orchestration of multi-robot
navigation and edge networking nodes, we modified the
SoA DDPG model from [13] and then adapted it to fit
into our edge-based MEC server, so that it accepts multiple

Figure 8. Robot navigation DDPG RL agent architecture. The agent is
interacting with the environment based on the policy, robot state, robot
action, and the collected reward.

robot sensor data as inputs to generate multi-robot actuator
commands as output.
Problem Formulation for P0 – To reach the goal of zero
collisions φ = 0, we aim to derive an optimal reinforcement
learning policy πR

θ for robot navigation. Therefore, given
the total time to reach destination is Tj for robot Rj , we
formulate the robot navigation problem P0 as:

P0 : max
πR
θ

EπR
θ

[ ∑
t∈Tj

[rtR]
]

(1a)

s.t. EπR
θ

[ 1
Tj

∑
t∈Tj

[rtR]
]
≥ RR

min (1b)

R∑
j=1

Tj∑
t=1

φt
j = 0 (1c)

where rtR is the generated reward from robot state stR and
action At

R at time slot t for all the robots in the set R. The
minimum reward threshold for robot motion environment
ψ is defined as RR

min. In L-NORM, the RR
min is kept at -

200, which is the reward for collision and when the robot
gets to within 0.25 m from any obstacle. We next present our
solution approach to this problem by defining our designed
DDPG RL agent.
Solution Approach: The overall framework of the designed
DDPG RL agent for solving problem P0 is showcased in
Figure 8. The RL agent tunes its policy with the ultimate goal
of making the robot reach the target in a minimum number
of steps without any collisions. The policy πR

θ is updated
at every time slot t and applied to the actor-critic network,
based on the collected reward rtR and the observed state stR
of the robot, which is generated by the environment ψ after
the application of the action At

R on it. We next explain these
state, action, and reward spaces, along with the actor-critic
network and the environment.
State Space: We define the state space stR as the combi-
nation of the multi-modal sensing data (laser (Lt), camera
(ct)), relative target position (gt) at current time slot t, and
velocity (vt−1) from odometer sensor at the previous time
slot t−1 for all the robots in set R. Overall, stR is formulated
as stR = {Lt, ct, vt−1, gt}, where Lt is a vector and ct is
a 2D matrix, each of specific dimensions based on user
requirement. The vt−1 constitute two values corresponding
to the linear and angular velocity. We defined vt−1 as:
{lt−1

v , at−1
v }, where lt−1

v and at−1
v are the linear and angular

velocities, respectively, at time slot t − 1. The gt is a tuple
of dimension 2 corresponding to the 2D coordinates of the
target location.
Action Space: The action is designed to allow the DDPG
agent to generate the angular and linear velocity of the
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Figure 9. (a) Actor and (b) Critic modeling in DDPG neural network for
multi-robot to multi-target navigation with K robots.

current time slot t. We define the action space At
R for all

the robots in R (|R| = K), as the combination of ltv and atv ,
where ltv is the linear velocity, and atv is the angular velocity
at time slot t, hence: At

R = K×{ltv, atv}. Following the prin-
ciple of reinforcement learning, the action At

R is generated
by the designed policy πR

θ from the state stR. Hence, the
action of time slot t is formulated as At

R = πR
θ (s

t
R). We

design the policy πR
θ using the DDPG actor-critic network

modeling for solving P0.
Actor-Critic Network: In an actor-critic model, the actor
network learns the optimal policy over time to generate the
actions from the state space. Therefore, the optimal policy
is determined by the parameters of the trained actor net-
work. To develop the training method for policy πR

θ which
corresponds to solving the problem stated in Equation 1a,
we parameterize the actor network as fA

θA
R

where πR
θ = fA

θA
R

.
Next, we formulate the actor network as:

At
R = fAθA

R
(stR), fAθA

R
: RK×(|Lt|+|ct|+|vt−1|+|gt|) 7→ RK×2

where the action output for all robots R at time slot t, is
represented by a matrix At

R = K × {ltv, atv}, yielding to an
output space of K × 2. The critic network takes both the
state and the generated action from the actor as inputs and
determines the quality of the generated action. The critic
model is formulated as:

Qt
R = fC

θC
R
(stR,At

R), fC
θC
R
: RK×(|Lt|+|ct|+|vt−1|+|gt|+2) 7→ RK×1

whereQt
R is theQ value generated by the critic at time slot t

evaluating the success of the generated action At
R, and critic

network is parameterized with fC
θC
R

. Here Q is a function in
the DDPG algorithm, which generates the expected rewards
for an action taken in a given state. Q-learning finds an
optimal policy in the sense of maximizing the expected
value of the total reward over any and all successive steps,
starting from the current state [37]. To facilitate the the op-
eration of L-NORM in a dynamic environment with random
number of robots at any given instant, we design the actor
critic networks to be adaptable to the variable shape of the
input state space. However, the shapes of the intermediate

Table 2
Robot reward details

Symbol Reward Description Reward Value

rg
t

R Relative distance to target Euclidean distance (m)
rcol

t

R Collision -200

r
at
v

R
Angular velocity (rad/s) 0 (if −0.8 < atv < 0.8)

-1 (if atv ≤ −0.8 or atv ≥ 0.8)

r
ltv
R

Linear velocity (m/s) -2 (if ltv ≤ 0.2)
0 (if ltv > 0.2)

rarr
t

R Reaching target 200

robs
t

R
Distance to obstacle (m), µt

0 (if µt > 0.5)
-200 (if µt < 0.25)

-80 (if 0.25 ≥ µt ≤ 0.5)

FC layers are fixed and their trained weights are used for
generating action output during the test time.
Reward Space: We define the reward space as for each
robot: fRA (stR,At

R) = −rg
t

R +rcol
t

R +r
at
v

R +r
ltv
R +rarr

t

R +robs
t

R =
rtR, where fRA (.) is the function to generate the rewards over
action At

R and state stR at time slot t. The total reward of
this RL agent is denoted as K×fRA (stR,At

R). The individual
reward descriptions are given in Table 2.
Environment: Finally the environment is parameterized as
st+1
R , rt+1

R = ψ(At
R), where the environment ψ takes the

inputs of the generated action by the actor-critic network at
time slot t and generates the next state and rewards for time
slot t+ 1.

5.1 Robot navigation RL network hyperparameter tun-
ing

The final version of our modified DDPG robot navigation
RL actor-critic model with tuned hyper-parameters for mul-
tiple robots is shown in Figures 9(a) and 9(b) respectively.
For the sake of simplicity, the input layers in both the actor
and critic networks are not shown. To train this RL agent
under realistic conditions, we add simulated AWGN noise
for IEEE indoor channel model B at 5 GHz frequency to
the laser sensor data before feeding this data to the Fully
Connected (FC) layers. An extra camera sensor, generating
point cloud data is also added on the robots, to improve
the RL functionalities. The laser and camera sensor, with a
180 ° field of view, divides the scanning environment into
24 sectors. This shapes the input dimensions of the camera
and laser sensor data to the neural network. The number of
FC layers, each with ReLU activation function, is increased
from 3 to 4, and the number of neurons per layer is in-
creased from 500 to 512. The neural network is trained using
Adam optimizer with a learning rate of 0.0001 and mean
squared error loss function. The actor network generates the
linear velocity command through a sigmoid function and
produces the angular velocity using a hyperbolic tangent
function. The critic network uses the state of the robot (stR)
as input, which is then passed through an FC layer with
512 nodes. The output of this layer is then merged with the
action input (At

R), after which the data is processed by three
dense layers. The Q-value is finally generated by a linear
activation function.

5.2 Performance validation

The modified RL network is trained in the same ROS sim-
ulation environment parameters as in Section 3, albeit with
random robots and targets spawning at random locations,
at each training iteration.
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Figure 10. Performance of DDPG with multi-modal sensor data during
testing for multi-robot navigation from the edge in an indoor cluttered
environment under perfect network conditions, assuming 0 PER and
no AP handovers. Rewards >100 signify the robot reached the target
destination. The absence of negative rewards proves the robots suffered
no collisions (φ = 0).

• Computational Complexity: In terms of the computa-
tional complexity of L-NORM robot navigation from the
edge MEC server, the policy is trained end-to-end and it
maps discrete lidar, velocity, camera information, and rel-
ative goal positions from the K available robots into action
command directly instead of using the whole environmental
map. The computational complexity of the actor neural
network can be denoted as O(Sain

Fa1+Fa1Fa2+Fa2Fa3+
Fa3Fa4 + Fa4Saout

), where Sain
, Saout

, where Sain
, Saout

denote the dimension of the input layer and output layer
for actor neural network, respectively. Fa1, Fa2, Fa3, and
Fa4 represent the dimension of four fully connected layers
for actor network, respectively. As shown in Figure 8b, the
computational complexity of the critic neural network can
be represented by O(ScinFc1 +(Fc1 +Saout

)Fc2 +Fc2Fc3 +
Fc3Fc4 + Fc4Scout

), where Scin and Scout
represent the

dimension of the input layer and output layer for critic
network, respectively. Fc1, Fc2, Fc3, and Fc4 denote the
dimension of the four fully connected layers for the critic
network, respectively.
• Ideal Wireless Network Scenario: First, we need to
validate the hypothesis that a robot navigation RL network
works without collisions under perfect wireless network
conditions, where the DDPG RL agent for robot navigation
resides in the MEC server and the sensor data from the
robots is delivered to the MEC server through 802.11ax
protocol. We assume an ideal channel with no packet loss
and no AP handovers. From Figure 10, we see that the robots
collect the reward of 110 for reaching the target destination
multiple times. The absence of the -200 reward for collision
proves that the robots trained on this RL network are able
to successfully maneuver around obstacles (including other
robots), thereby satisfying the condition of zero collisions
(φ= 0), while navigating to the target destination.
• Realistic Wireless Network Scenario: Next, we investi-
gate the performance of multi-robot navigation when the
robots’ sensor data is transmitted through the wireless net-
work to the successfully trained RL agent, which is located
at the edge. Here we use the IEEE indoor channel model B
for factory environments and AP handovers, which result in
robot sensor data packet loss. The experiment configuration
from Section 3.B is repeated for this purpose, but with the
improved robot navigation RL agent providing the robot
locations to the Matlab-based edge network simulation.
Figure 11 plots the robot movements directed by the edge

Figure 11. Performance of DDPG with customized hyper-parameter
tuning and multi-modal sensor data for multi-robot motion orchestration
from the edge with classical 802.11ax in an indoor environment. The
robots deviated significantly from their optimal path (dashed line) during
AP handover instances.

based RL algorithm under perfect network conditions with
no packet drops (dashed line) and in the classical 802.11ax
edge network (solid line). The robots diverge significantly
from their optimal path (the dashed line) under the classical
802.11ax protocol due to the AP de-associations and re-
associations (handovers). During this handover time, all the
sensor packets from the robots are dropped by the network,
resulting in undesired deviation traced in Figure 11 with a
solid line.

The degraded robot navigation performance in a realistic
wireless scenario, together with Motivation 2, lead us to
develop a dynamic edge network orchestration mechanism
based on the existing 802.11ax protocol as part of our Tier
2 solution. This design should not only enable edge-based
robot navigation but also can meet the diverse QoS re-
quirements of applications ranging from low-latency/high-
reliability to general purpose. We discuss these in detail in
the next section.

6 TIER 2: MULTI-AP ASSOCIATION FROM THE
EDGE

The 802.11ax-based edge network experiments in Section
3.2 (Figure 7) and Section 5.2 (Figure 11) prove that from a
networking perspective, if the successfully delivered robot
uplink data is maximized while maintaining the networked
robotics application QoS requirements of PER and latency,
then this will have a direct impact on minimizing the
probability of robot deviation. Moreover, these experiments
show that the re-association feature (handoff from one AP to
another AP) in classical Wi-Fi is one of the main bottlenecks
for URLLC communications in high user-density scenarios.
Given this shortcoming, the next-generation wireless
network protocols like IEEE 802.11be (Wi-Fi 7) are
considering breakthrough technologies like multi-Access
Point (AP) coordination [35], [38], [39] as candidate
solutions. Ensuring that each receiver’s latency thresholds
are satisfied requires timely and correct delivery of packets,
which can be ensured by increasing the SNR at the receiver,
while carefully associating the users/robots with the best
possible APs/edge nodes [40], [41]. By tying this classic
networking problem with robot deviation, we have also
generalized the problem P1, because the performance
metric of any application can be measured by the amount
of successfully delivered packets to the destination while
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conforming to the QoS requirements (PER, latency, etc.) In
this section, we first formulate the problem P1 and evaluate
the key reasons for the performance limitations of existing
state-of-the-art, and then propose enhancements to the
802.11ax protocol to enable multi-AP coordination and joint
OFDMA scheduling.

Problem Formulation for P1 – The objective of problem P1

is to minimize the deviation of each robot from the optimal
path, while maintaining the network QoS requirement of
Ωmax and Υmax, at every time slot t. This can be achieved
if the robot uplink sensor packets are delivered correctly
in a timely manner. Specifically, we maximize the uplink
packet delivery ratio in the edge network. Assuming, at
every time slot t, every robot Rj generates one data packet.
The successfully delivered packet being Rj = βj , then for K
robots, for a total of K data packets generated at every t, the
problem P1 can be formulated as:

P1 : max

(∑K
j=1 βj

K

)
(2a)

s.t. Ω(Rj) ≤ Ωmax (2b)
Υ(Rj) ≤ Υmax (2c)

where 1 ≤ j ≤ K, Ω(.) calculates the packet error rate,
and Υ(.) calculates the latency.

6.1 Limitations of 802.11 in mobile URLLC applications

In the robot navigation scenario, we assume the Wi-Fi
network operates in infrastructure mode, where the AP
bridges all data from the users associated to it in the Basic
Service Set (BSS) and provides a communication link with
the Internet. A handoff occurs when a user moves beyond
the radio range of one AP and enters another BSS, and
initiates the re-association procedure with the AP in the new
BSS. During this process, management and authentication
control messages are exchanged between the user and the
AP. As a consequence of this action, the AP and the user
are unable to exchange data traffic until the re-association
process has been completed, and this increases the latency
of data communication. An empirical study by the Mishra
et al. [34] regarding the Wi-Fi handoff impact on latency
in mobile applications show that not only are the latencies
quite high (50-100 ms) but it also varies significantly for the
same configuration of APs and client users.

6.2 Enhancing 802.11ax MU-UL with MRC

Given the limitations of single AP-based infrastructure
mode operation in high user density with low latency
application scenarios, we consider an edge-based multi-AP
coordination strategy for optimal allocation of AP resources
to robots/users on the ground. Specifically, we investigate
the implementation of Maximum Ratio Combining (MRC)
on the uplink, which has traditionally been deployed in
cellular networks and has shown potential for improvement
in existing Wi-Fi protocols [42], [43].
• Maximum Ratio Combining (MRC): Consider a robot Rj

transmitting uplink multi-modal sensor (e.g., camera, laser,
odometer) data. Let A = [αi|1 ≤ i ≤ M] be the APs within

Robot navigation RL
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Figure 12. IEEE 802.11ax architecture enabled with MRC for MU-UL.
Robots can associate with multiple APs at a time, removing the need for
handover. MRC algorithm at the edge processes the data and forwards
it to edge-based controller. A single uplink frame per time t is shown
here for ease of understanding.

the communication range of the robot Rj . At time slot t, the
signal received at each AP αi, can be represented as:

btαi
= htRj ,αi

√
ptRj

xtRj
+ ztαi

(3)

where hRj ,αi is the channel coefficient from robot Rj to AP
αi, pRj is the transmission power of robot Rj , xRj is the
transmitted symbol, and zαi is the additive white Gaussian
noise with variance σ2 at the AP αi. MRC assigns weights
to each of the AP links from the robot Rj and adds the
branches with the best weights at the MEC for maximum
SNR as:

ytmrc =
M∑
i=1

wt
ib

t
αi

(4)

where w is the weight for the Robot-AP uplink, typically
estimated from the channel gain conjugate [44]:

ytmrc =
M∑
i=1

Vie
−ζϕibtαi

=
M∑
i=1

Vie
−ζϕi [Vie

−ζϕixtRj
+ ztαi

]

=

(M∑
i=1

V2
i

)
xtRj

+
M∑
i=1

Vie
−ζϕiztαi

(5)
Here, V is the amplitude of the signal. The received SNR
after MRC thus becomes:

Γt
mrc =

∑M
i=1 V2

i Eb
N0

(6)

where, Eb is the energy of one bit and N0 is the noise
spectral density.
• MRC-enabled 802.11ax Architecture: As shown in
Figure 12, our proposed MRC-enabled 802.11ax edge net-
work architecture consists of multiple APs (edge nodes)
connected via wired backhaul to a Controller Unit (CU)
running the MRC-based AP resource allocation algorithm
and the robot navigation RL algorithm. Considering the
robot sensors’ uplink packet arrival rate at every 10 ms,
with MRC, the uplink transmission from a robot will be
heard by multiple APs. Since the robots are mobile, the
link quality from each robot to the APs will also vary over
time. Given these considerations, the controller will assign
weights to each robot-AP branch based on the real-time
link quality and add the branches with the best weights for
maximum SNR and better decoding probability, compared
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to a single AP scenario. This increases the chance of better
decoding probability, even if some of the links have low
SNR compared to others.
• MRC advantage in URLLC: Through this method, the
robot sensor data can be transmitted with a higher MCS than
traditional 802.11ax, since the chance of correct decoding at
the edge is now higher. This translates to higher through-
put, lower payload duration, and hence more time for re-
transmissions in case of packet error, thereby increasing the
reliability while remaining within the latency threshold.
• MRC constraints in 802.11ax: Even though increasing the
number of branches increases the probability of successful
decoding, it also increases the probability of backhaul traffic
congestion at the edge. Also, the APs which are far away
from the robot’s location will not contribute significantly
to the MRC approach, due to its low SNR condition. The
controller thus has to choose an optimal subset of APs for
applying MRC to each robot in the network, such that the
Υmax and Ωmax per robot are satisfied. Also, to enable
MRC with multiple distributed APs, accurate phase and
frequency synchronization is needed between the AP nodes,
for correct packet detection and channel estimation, an ex-
ample of which is shown in [45]. There also exist hardware-
based solutions like the clock distribution module, Ettus
Octoclock [46] for achieving accurate synchronization be-
tween distributed APs and other network nodes, through
the backhaul, as done in [47].
6.3 Edge network orchestration: solution to problem P1

We next address the network resource orchestration for
assigning multiple APs for MRC and solve the problem P1

by proposing a heuristic edge resource (AP) orchestration
Algorithm 1. This algorithm decides which APs will be
associated with which robots for performing MRC, in order
to have minimum deviation of the robots from their optimal
path, which ultimately will ensure zero collisions (φ = 0).
• Algorithm Initialization: In the indoor cluttered factory
environment, at every time slot t, there are R = [Rj |1 ≤ j ≤
K] robots with their sensor packets for uplink transmission
to the MEC server, via the A = [αi|1 ≤ i ≤ M] APs.
Given the overall latency bound Υtotal = 10 ms, as the time
from the origination of the robot sensor packets to the time
when the robot actuator feedback reaches back to the robots,
each time slot t is designed to have a duration of Υtotal.
The robot sensor packets are considered to have a periodic
and isochronous packet arrival pattern, arriving at every t
time slot. In order for the robots to get the correct actuator
feedback, it is imperative for the sensor data to be delivered
to the MEC server while maintaining the network-mandated
uplink QoS metrics (Υmax ≤ 5ms and Ωmax ≤ 10−3), and
ensure zero robot collisions in the process (φ = 0).
• Dynamic Multi-AP Association: Inferring from the
robots’ true location η and the original location ζ man-
dated from the robot path orchestration RL algorithm, our
novel approximation algorithm, presented in Algorithm 1,
dynamically associates the R robots with the available A
APs at every time slot t. The purpose of this association is
to maximize the Packet Delivery Ratio (PDR) of the network
while minimizing deviation Λt−1

j for robot Rj observed in
the previous time slot t− 1, as ((Step 4), in Algorithm 1) :

Λt−1
j =

√
(ηt−1

j − ζt−1
j )2, ∀j ∈ R (7)

Algorithm 1 Dynamic multi-AP association with robots
1: Inputs: Robot list→ R, AP list→ A,

Robot true location→ η, Robot original location→ ζ,
SNR→ Γ, RTTD for APs→ γ

2: while R > 0 do
3: for j ← 1 to K do
4: Get robot deviation from optimal path at t− 1:

Λt−1
j ←

√
(ηt−1

j − ζt−1
j )2 compute ∀j ∈ K

5: Compute distance from robot to nearby δ obstacles at
t:
µt

j,q ←
√

(ηt
j − q)2 compute ∀q ∈ δ

6: Update robot priority list at t: λt

7: for r ← 1 to |λt| do
8: Find AP with best SNR to robot: Γt

max ← [αt
i , Rt

r]
where 1 ≤ i ≤M and 1 ≤ r ≤ K

9: if α ≥ 1 then
10: Find least conservative MCS to meet PER thresh-

old:
εtr s.t. Ωt

r ≤ Ωmax

11: if PER threshold cannot be met: Ωt
r > Ωmax then

12: Select MCS 0 : εt0,r
13: end if
14: Compute payload duration: ρtr ← εtr
15: Update uplink transmit time at this AP if associ-

ated with this robot: Ξt
i ← ρtr

16: Predict RTTD at candidate AP: γt
i ← Ξt

i

17: while ρtr > Υmax or Ξt
i > Υmax do

18: Find next available AP with highest SNR to
robot:
Γt

max ← [αt
i−1, Rt

r]
19: Add this AP to probable AP list for this STA :

U t
r ← αt

g , with [g ̸= i] and g ∈ A

20: Perform MRC : Γt
mrc ←

∑K−1
i=0 ϑ2

i Eb
N0

21: Compute MCS with updated SNR :
εtrmrc

← Γt
mrc

22: for p← 1 to U t
r do

23: Compute PER, payload duration and RTTD :
Ωt

rp ← εtrmrc

ρtrp ← Ωt
rp

γt
rp ← ρtrp

24: end for
25: end while
26: Associate robot with APs in probable AP list :

U t
r ← Rt

r

27: for p← 1 to U t
r do

28: Update RTTD for the AP :
γt
rmrc

← γt
rp

29: end for
30: Remove robot from robot priority list:

λt ← λt \Rt
r

31: else
32: Discard packet for this robot :

Rt ← Rt \ r [Failure condition]
33: end if
34: end for
35: end for
36: for j ← 1 to R do
37: if ηt

j = ιj (robot reaches its target) then
38: Remove robot from robot list : Rt ← Rt \ j
39: end if
40: end for
41: return Robot list, AP RTTD : {R,γ}
42: end while

where 1 ≤ j ≤ K. Based on Λt−1
j , the proximity to nearby
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obstacles, µt
j,q , is formulated as (Step 5) :

µt
j,q =

√
(ηtj − q)2, ∀q ∈ δ (8)

The robots are added to the priority list λt =
[RK, .., R1, .., Rj ] based on the proximity values to the ob-
stacles at time slot t and the amount of deviation Λt−1

j at the
previous time slot t− 1, as (Step 6):

λt
j = ωxΛ

t−1
j + ωy∥µt

j,q∥ ∀q ∈ δ (9)

where ωx and ωy are the weights for the robot deviation
(positive value) and distance to obstacles (negative value),
respectively. In this way, the robots with a higher percent-
age of obstacles having low proximity values and higher
deviation values from the mandated path are given higher
priority. The SNR from every robot to every AP at time slot
t is defined by the matrix Γt having the dimension K×M.
Starting with the highest priority robot, the algorithm selects
the available AP αt

i with the highest SNR Γt
max for the

robot Rt
r at the time slot t (Step 8), where 1 ≤ r ≤ |λt|.

After this, the least conservative MCS εtr which satisfies the
network PER threshold Ωt

r ≤ Ωmax is chosen for that robot
Rr. In case the PER threshold cannot be met (Ωt

r > Ωmax)
with the lowest MCS 0, then following the best effort model,
MCS 0 (εt0,r) is chosen for robot Rr (Step 10 - 13). The
payload duration ρtr is computed based on the chosen MCS
εtr , following the IEEE 802.11ax MU-UL model in the indoor
scenario at 5 GHz frequency (Step 14). Next, the uplink
transmission time Ξt

i for the candidate AP αi is calculated to
check if robot Rr can be accommodated in one of the 2 MHz
RUs in the uplink PPDU frame, considering a 20 MHz BW
(Step 15). In case either ρtr > Υmax or Ξt

i > Υmax, then
the candidate AP αi is designated as ‘overloaded’, and is
removed from the list of available APs till it completes
serving sensor data packets from it’s currently associated
robots.
• Instantiating MRC: The algorithm then proceeds to
execute MRC for the robot Rr , in order to improve the SNR
condition Γt

mrc, following Equation 6. The robot Rr will
then get the flexibility to choose a higher MCS value, thereby
bringing the payload or the uplink frame duration below
Υmax in all the candidate APs [U t

r] which are performing
MRC for robotRr. The algorithm keeps adding the best can-
didate APs (with the highest SNR to Rr) from the remaining
available APs in A, until the latency for Rr, Υt

r < Υmax

(Step 17 - 25). The status of the selected candidate APs
in U t

r becomes ‘associated APs’ from ‘candidate APs’, and their
individual uplink frame duration Ξt

o, ∀o ∈ U t
r is updated

following this association. In case, all available APs in A are
exhausted but still the Υt

r >Υmax, then the failure condition
is encountered (Step 32), and the packets for robotRt

r are
discarded.

After this, the algorithm considers the next highest pri-
ority robot in λt

r until all robots in λt
r are served for the

time slot t. The algorithm continues for the next time slots
till all robots have reached their respective target locations,
thereby satisfying the condition ηj = ιj , ∀j ∈ R, where ηj is
the true position of the robot Rj and ιj is the target location
for robot Rj , respectively.
• Dynamic Multi-AP Association Algorithm Constraints:
The edge network resource orchestration algorithm, even

Figure 13. 802.11ax based edge network orchestrator DDPG RL agent
architecture. The agent is interacting with the environment based on the
policy, observed state, multi-AP association action, and the collected
reward.

though is designed to be dynamic and solves the AP
handover effects in classical 802.11ax, it still is a reactive
algorithm which will take time to converge to optimal
network utilization in scenarios of reduced AP to robot ratio
or in cases of large sensor payload sizes (e.g., real-time 4K
video streaming, multi-camera sensors, etc.). This has the
potential for reduced network efficiency and thus increased
divergence of robots from their optimal paths, leading to
collisions.

7 TIER 3: SMART EDGE NETWORK ORCHESTRA-
TION

Given the constraints with the L-NORM dynamic multi-
AP association algorithm, we integrate a network resource
orchestrator RL module at the edge as part of our Tier
3 solution. This RL agent will learn the optimal network
resource allocation over time, and make the network re-
source orchestration more proactive. The goal of this RL-
based edge network resource orchestrator is to improve
the edge network performance in such highly constrained
scenarios of reduced AP to robot ratio, large sensor uplink
payload size, etc.
The Problem: In this case, we denote the optimal RL policy
as πN

θ which will satisfy the Problem P1 through multi-
AP coordination. Similarly, given a total time period T ,
we formulate a modified version of problem P1 as modP1

which exploits the RL based formulation for the multi-AP
coordination problem, stated as:

modP1 : max
πN
θ

EπN
θ

[∑
t∈T

[rtN ]
]

(10a)

s.t. EπN
θ

[ 1
T
∑
t∈T

[rtN ]
]
≥ rNmin, (10b)

where rtN is the generated reward from state stN and action
At

N at time slot t. The rNmin is defined as the minimum
reward threshold defined for the multi-AP coordination
environment ϑ. We next present our solution approach to
this problem by defining our designed DDPG RL agent for
the edge network resource (AP) orchestration.
Solution Approach. The overall framework of the designed
DDPG RL agent for solving problem modP1 is showcased
in Figure 13. The policy of this RL agent is tuned with the
ultimate goal of making the robots associate with the APs
having the highest SNR at that time slot, which will remain
stable for the longest duration of time. We term this policy
as ‘Look-ahead SNR based reward generation’. Accordingly,
the policy πN

θ is updated at every time slot t, based on the
reward rtN and observed state stN , which are generated by
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Figure 14. (a) Actor and (b) Critic modeling in DDPG neural network for
IEEE 802.11ax based edge network resource orchestration.
the environment ϑ after the application of the action At

N on
it. We next explain these state, action, and reward spaces,
along with the actor-critic network and the environment.
State Space: The state space of network orchestration stN
is defined as the combination of AP load vector Lt, SNR
matrix Γt, and positional information of all robots, P t at
time slot t. The Lt is a vector that contains how many robots
are associated with each of the AP, hence, Lt = {i|1 ≤ i ≤
M}, where K is the total number of robots and M is the
total number of APs. The SNR matrix Γt holds the SNR for
each robot to each AP, therefore, Γt = {(j, i)|1 ≤ j ≤ K, 1 ≤
i ≤ M}, where M is the total number of APs. The P t is
defined as: {(xj , yj)|1 ≤ j ≤ K}. Overall, the state-space
stN is formulated as:

stN = {Lt,Γt, P t}
Action Space: The action At

N is designed to allow the
DDPG agent to generate a multi-AP association matrixAP t

N

at time slot t. The AP t
N is defined as {(i, j)t|1 ≤ i ≤ M, 1 ≤

j ≤ K}, where K and M are the total number of robots and
APs in the environment, respectively. Therefore, the action
for network orchestration is defined as At

N = {AP t
N}.

On the other hand, the action At
N is generated by the

designed policy πN
θ from the state stN . Hence, the action of

time slot t is formulated as: At
N = πN

θ (stN ). So, for edge
network resource orchestration the optimal policy πN

θ is
trained using the DDPG actor-critic network modeling for
solving modP1.
Actor-Critic Network: In this case, the optimal policy πN

θ

(corresponding to Equation 10) is determined by the param-
eters of the trained actor network fA

θA
N

, where πN
θ = fA

θA
N

.
Hence, we formulate the actor network as:

At
N = fAθA

N
(stN ), fAθA

N
: R|Lt

N |+|Γt
N |+|P t

N | 7→ R|At
N |.

Next, the critic network is modeled as:

Qt
N = fCθC

N
(stN ,At

N ), fCθC
N
: R|Lt

N |+|Γt
N |+|P t

N |+|At
N | 7→ R1,

where Qt
N is the Q value generated by the critic at time

slot t evaluating the success of the generated action At
N ,

Table 3
AP association reward details

Symbol Reward Description Reward Value

rΩ
t

N PER 10−4 to 100
rΥ

t

N Latency −100 to 0
rΛ

t

N Robot deviation Euclidean distance (m)
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Figure 15. DDPG RL based network orchestrator improvement in reward
collection by 1.8% with look-ahead SNR policy compared with only-
SNR-based policy.

and critic network is parameterized with fC
θC
N

. Similar to
Section. 5, these actor and critic networks are adaptable to
random number of robots for both training and testing.
Reward Space: We define the reward space for each robot
as: rtN = fRC (stN ,At

N ) = rΩ
t

N + rΥ
t

N −rΛt

N , where fRC (.) is the
function to generate the rewards over action At

N and state
stN . Here, for every robot’s uplink packet transmission, rΩ

t

N

is the reward for PER, and rΥ
t

N is the reward for latency.
rΛ

t

N is the reward for the robot’s deviation. In this case we
design fRC (.) as a consolidated outcome of rΩ

t

N , rΥ
t

N and rΛ
t

N .
The details of different rewards are given in Table 3. Overall,
the total reward of RL agent for AP association is denoted
as K × fRC (stR,At

R).
Environment: Overall, the environment is parameterized as
st+1
N , rt+1

N = ϑ(At
N ), where the AP-allocation environment

ϑ takes the inputs of the generated action by the actor-
critic network at time slot t and generates the next state
and rewards for time slot t+ 1.

7.1 Edge network RL hyperparameter tuning
The final version of our DDPG edge network RL actor-
critic model with tuned hyper-parameters for the multi-AP
association is shown in Figures 14(a) and 14(b) respectively.
For the sake of simplicity, the input layers in both the actor
and critic network are not showcased here. The latency in-
formation at each AP (AP Load), SNR to each of the robots,
and the robots’ position values serve as the state inputs stN
to this RL network. These values after being normalized
are processed through two FC layers with ReLU activation
function and having 128 and 200 neurons respectively. The
neural network is trained using Adam optimizer with a
learning rate of 0.0001 and mean squared error loss function.
The action output At

N is generated through an FC layer with
Tanh activation function and having K × M neurons. The
critic network uses the state data (stN ) as input which is then
passed through two FC layers with 128 and 200 neurons
respectively. The output of this layer is then merged with
the action input (At

N ) processed through an FC layer with
200 neurons. This merged data serves as the input to a linear
activation function which generates the corresponding Q
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Figure 16. Autonomous edge-based robot and network orchestration
data flow model of L-NORM for performance evaluation. The robot loca-
tions from ROS simulation were given as input to the Matlab-based edge
network orchestrator to observe the robot deviation due to network-
related sensor packet errors.

values for the robot association action, having dimension
K × 1.

7.2 Edge network RL agent performance
The performance of this RL agent is shown in Figure 15
through the reward plot. At first, the edge network orches-
trator RL agent’s reward is generated based solely on the
SNR values to the AP that the agent decided is best for each
robot. From this figure, this reward is plotted (blue line)
over time during the training phase. As seen by the lack
of stability in the reward collection, it can be surmised that
this type of reward generation is not making the RL agent
learn the optimal network resource allocations. To improve
this performance, the RL agent’s policy is updated to make
the robots associate with those APs where the SNR remains
high and stable for the longest duration of time, during their
navigation from source to destination (Look-ahead SNR-
based reward). This approach makes the RL agent converge
to a very high and stable reward collection, in terms of SNR
values, during the training phase, and is showcased in the
same figure by the red-colored plot. The collected reward
improve by 1.8% compared to the only-SNR-based policy.
Motivated by this improvement in performance, we next ex-
ecute the detailed and overall performance evaluation of L-
NORM, comprising all the proposed multi-tiered solutions
working in tandem with each other.

8 L-NORM PERFORMANCE VALIDATION
In this section, we extensively evaluate the edge net-
work and robot navigation performance metrics of L-
NORM. We implement L-NORM through the integration
of ROS/Gazebo robot simulation with Matlab WLAN tool-
box [48]. First, we evaluate edge network performance in
terms of SNR, MCS, and PER, and then we investigate the
robot navigation performance in terms of robot deviation
from the optimal path by comparing with three schemes:
(a) classical 802.11ax based edge network (denoted as
“dot11ax”), (b) L-NORM: 802.11ax edge network enhanced
with MRC and dynamic multi-AP allocation (denoted as
“dot11ax+MRC”), and (c) L-NORM with added reinforce-
ment learning based edge resource orchestration (denoted
as “dot11ax+MRC+RL”).

8.1 Simulation setup
We consider a variable number of robots that are randomly
deployed in 60 sq. m. indoor area with multiple 802.11ax
APs forming the edge nodes connected to an edge-based
controller. With each solution (dot11ax, dot11ax+MRC and
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Figure 17. (a) SNR improvement in multi-AP scenario when using MRC
enabled 802.11ax (L-NORM) vs classical 802.11ax on the edge. The
robot suffered multiple handovers with classical 802.11ax when the SNR
reached 20 dB or lower. (b) PER improvement in the multi-AP scenario
when using MRC-enabled 802.11ax (L-NORM) vs classical 802.11ax on
the edge. The robot’s PER in classical 802.11ax crosses the threshold
of 10−3 multiple times during AP handover instances.

dot11ax+MRC+RL) we run the simulation 300 times with
a random number of robots (between 1 and 10), a fixed
number of APs (49), and varying packet sizes (1 MB and
10 MB). The simulation data flow is shown in Figure 16. The
edge network operates in 5 GHz frequency, with 20 MHz
BW in SISO mode and utilizes the IEEE indoor channel
model B by initiating the wlanTGaxChannel [49] system
object in Matlab for 802.11ax. The sensor packet sizes are
varied from 1 MB to 10 MB, with 20 robots and 32 APs for
this performance evaluation. The AP transmit power is kept
at 25 mW. The robots have a maximum linear velocity of
0.8 m/s and a maximum angular velocity of 2 rad/s.
Performance Metrics: For measuring the performance of
the edge network we evaluate the SNR between the robots
and the APs and the PER of the robots’ uplink sensor data
packets. To measure the performance of the robot naviga-
tion, we evaluate the robots’ deviation from the optimal path,
i.e., the path the robot could have taken under ideal network
conditions (continuous high SNR, no AP handovers, 0 PER).

8.2 L-NORM based edge network

For the edge network performance comparison, for bet-
ter comprehension and readability, Figures 17(a) and 17(b)
show the SNR and PER of the uplink from one random
robot in the ‘dot11ax’ versus the ‘dot11ax+MRC’ method.
In the classical case, the robot suffers from numerous AP
handovers, which can be seen by the SNR fluctuation going
below 20 dB and rising back up to 40 dB after re-association
with the next best AP. This leads to packet loss which can be
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Figure 18. (a) Robot SNR performance improvement through the inclusion of MRC and RL in network resource orchestration (L-NORM) for
multi-robot navigation. L-NORM ensures more stable SNR compared to classical 802.11ax based edge network solution. (b) Robot performance
improvement through the inclusion of MRC with 802.11ax and dynamic edge resource orchestration (L-NORM without network RL) compared to
classical 802.11ax base edge network with small payload size. With L-NORM without network RL, the robot deviation to remain within 0.5 m from
the optimal path is 19% less than classical 802.11ax. (c) Robot performance improvement through the inclusion of MRC with 802.11ax and edge
network resource orchestration RL (L-NORM with network RL) compared to classical 802.11ax base edge network with large payload size. In this
case, with network RL enabled L-NORM, the probability of robots to be within 1 m from the optimal path is 28% more than classical 802.11ax.

seen by the high PER values above the threshold of 0.001,
during the AP handover instances.
Comparison with state-of-the-art 802.11ax: With L-NORM
(‘dot11ax+MRC’), due to multi-AP association and dy-
namic edge resource orchestration, the SNR fluctuation re-
mains bounded between 30-40 dB resulting in controlled
PER which remains within the threshold, as compared to
the high fluctuations with ‘dot11ax’. Moreover, the RL-
enabled edge network resource orchestration in L-NORM
(‘dot11ax+MRC+RL’) improves the performance further in
terms of SNR, shown in Figure 18(a). The mean SNR,
in this case, is ∼10 dB higher than the MRC-based dy-
namic resource orchestration approach (‘dot11ax+MRC’),
and ∼17 dB higher than the classical 802.11ax-based edge
network (‘dot11ax’). The SNR remains the most stable (2-
3 dB deviation) with L-NORM in both the ‘dot11ax+MRC’
and ‘dot11ax+MRC+RL’ cases, as compared with the
‘dot11ax’ case where the SNR deviation is ∼7 dB.
Observation 1. L-NORM outperforms the ‘dot11ax’ both in
terms of PER and mean SNR. The RL based network orchestrator
(Sec. 7) of L-NORM (‘dot11ax+MRC+RL’) gives ∼10 dB better
mean SNR than the proposed dynamic solution (Sec. 6). This
leads to higher MCS allocation for the robots, thereby reducing
the uplink latency and chances of re-transmission.
8.3 L-NORM based robot navigation
We next measure the performance of the robots’ navigation
when it is controlled by the edge-based robot navigation
orchestrator under different edge network designs, i.e.,
‘dot11ax’, ‘dot11ax+MRC’ and ‘dot11ax+MRC+RL’, with
varying sensor payload sizes.
Small Payload Size (∼1 MB/Robot): Figure 18(b) shows the
cumulative distribution function (CDF) plot of the robot
deviation, with 1 MB sensor payload data per robot, in
‘dot11ax’ and ‘dot11ax+MRC’ scenarios.

Observation 2. With small payload size, the probability of
the robots to remain within 1 m from optimal path is 0.89 for
L-NORM without network RL (‘dot11ax+MRC’), whereas for
classical 802.11ax (‘dot11ax’) it is 0.73. Also, with L-NORM
(‘dot11ax+MRC’), the probability of the robots to remain within
0.5 m from its optimal path is 19% more than (‘dot11ax’).

Large Payload Size (∼10 MB/Robot): We stress test L-
NORM by increasing the sensor payload size to 10 MB per

robot. The edge network performance with ‘dot11ax+MRC’
degrades due to the algorithm being reactive, leading to an
increase in packet loss at the APs because of congestion and
sensor packets overshooting the latency threshold. This is
manifested in Figure 18(c) showing the CDF plot of the robot
deviation.

Observation 3. With large payload size, the probability
of the robots to remain within 1 m from their optimal
path for ‘dot11ax+MRC’ is 0.78 as compared to 0.66 for
‘dot11ax’. However, activating the network RL in L-NORM
(‘dot11ax+MRC+RL’) improves the probability of robot deviation
from 0.78 to 0.94.

When increasing the constraints, i.e., the probability of the
robots to remain within 0.5 m from the optimal path, the per-
formance of L-NORM (‘dot11ax+MRC’) degrades further
and is almost the same as ‘dot11ax’ performance. However,
when activating the network orchestrator RL in L-NORM
(‘dot11ax+MRC+RL’), the performance improves.

Observation 4. For L-NORM with network RL
(‘dot11ax+MRC+RL’), the robots’ probability to remain within
0.5 m from the optimal path is 0.69 which is an improvement over
‘dot11ax’ based approach where it is 0.44

Overall, we can observe that L-NORM (both
‘dot11ax+MRC’ and ‘dot11ax+MRC+RL’) provides better
results in terms of SNR, PER, and robot deviation while
classical 802.11ax (‘dot11ax’) struggles to keep up with
the stringent QoS requirement for time-sensitive robot
navigation applications.

8.4 Adaptability of L-NORM
In L-NORM the solutions in Tier 2 and Tier 3, can also be
applied to other applications as well. For any application
(e.g., live video streaming) or any mix of heterogeneous
applications that needs to be served along with robot
navigation, L-NORM’s Tier-2 solution will assign multi-
AP resources for MRC, based on each application QoS
performance (PER, latency). In this case, in Algorithm 1,
the priority of the packets (Line 6), will be determined by
how much each user has experienced packet loss, instead
of the robot deviation metric. This will not be an issue for
robot navigation, since in the paper we have shown in the
preliminary experiments and performance evaluation that

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3266643

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Northeastern University. Downloaded on June 22,2023 at 14:29:44 UTC from IEEE Xplore.  Restrictions apply. 



15

the robot deviation is directly proportional to the sensor
packet loss. For the Tier 3 solution, the inputs are AP load,
SNR, and user location, based on which the RL agent assigns
a set of APs for each user to associate with and the rewards
are generated by the resulting PER, latency, and user (robot)
deviation from the ideal path. These metrics are common
for all applications when measuring performance, except
the user deviation. Hence, for other applications also, Tier
3 solution can be applied as is, with the slight modification
of the reward space by removing the robot (user) deviation
rΛ

t

N in Section 7.

8.5 Constraints on testbed experiments

The solutions for L-NORM involve multi-AP coordination
and since Wi-Fi is asynchronous, this requires synchro-
nization of the APs at the edge network. Also, L-NORM
displaces the data processing from the APs to the edge
controller entity. Since the available Commercial-Off-The-
Shelf (COTS) 802.11ax devices and drivers are proprietary
and they do not support multi-AP coordination, we are
unable to perform a testbed experiment-based evaluation
of L-NORM.

9 CONCLUSIONS
For implementing multi-robot orchestration in an au-
tonomous smart factory, we illustrate the challenges from
both robotics and wireless network perspective. We tackle
these challenges in a multi-tiered computing solution. We
implement autonomous multi-robot navigation in an indoor
cluttered environment through reinforcement learning in
ROS simulation. We elaborate on the drawbacks of the cur-
rent state-of-the-art Wi-Fi protocol architecture design to act
as an enabler of autonomous multi-robot navigation from
the edge network and proposed essential solutions. Our
proposed multi-tiered L-NORM solution shows significant
performance improvement over the current state-of-the-art
802.11ax protocol. Through extensive simulation studies we
show that for small-sized sensor data (∼1 MB) per robot, the
probability of robots to remain within 0.5 m from its optimal
path is 19% more in L-NORM than the classical 802.11ax. For
large-sized sensor data (∼10 MB) per robot, we improve the
performance of L-NORM with RL-enabled edge network
orchestration and observe that the probability of robots
to remain within 0.5 m from its optimal path with RL-
enabled L-NORM is 25% more than classical 802.11ax. As
a future direction of this work, we envision to improve the
L-NORM performance under large robot payload scenarios
by incorporating techniques like multi-modal sensor fusion
to enable intermittent robot sensor payload transmission
without affecting the robot navigation in the process.
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