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Abstract
The increasing availability of multimodal data 

holds many promises for developments in mil-
limeter-wave (mmWave) multiple-antenna sys-
tems by harnessing the potential for enhanced 
situational awareness. Specifically, inclusion of 
non-RF modalities to complement RF-only data 
in communications-related decisions like beam 
selection may speed up decision making in situ-
ations where an exhaustive search, spanning all 
candidate options, is required by the standard. 
However, to accelerate research in this topic, 
there is a need to collect real-world datasets 
in a principled manner. This article presents an 
experimentally obtained dataset, composed of 
23 GB of data, which aids in beam selection in 
vehicle-to-everything mmWave bands, with the 
goal of facilitating machine learning (ML) in the 
wireless communication required for autonomous 
driving. Beyond this specific example, the article 
describes methodologies of creating such data-
sets that use time synchronized and heteroge-
neous types of LiDAR, GPS, and camera images, 
paired with the RF ground truth data of selected 
beams in the mmWave band. While we use beam 
selection as the primary demonstrator, we also 
discuss how multimodal datasets may be used 
in other ML-based PHY-layer optimization areas, 
such as beamforming and localization.

Introduction
Interest in using large-scale multimodal datasets 
has surged within the past few years given the 
widespread availability of small form-factor sen-
sors and decreasing data storage costs. Such data-
sets may include historical and real-time streaming 
samples of camera images, GPS coordinates, 
light detection and ranging (LiDAR) pointclouds, 
radar signals, infrared signals, and acoustic signals, 
to name a few. These sensors may have a wide 
range of applications that include biomedical 
sensing, autonomous vehicles, and the ubiquitous 
Internet of Things. However, effective utilization 
of the collected information to extract meaning-
ful context from the operational environment 
remains an open challenge, particularly when real-
time execution is needed.

Diversity of data sources for wireless PHY 
optimization use cases. Classical wireless data-
sets use radio frequency (RF) data for applications 
such as channel estimation and interference detec-

tion, generally with multiple- input multiple-out-
put (MIMO) systems that utilize antenna arrays. 
While rapid advances in machine learning (ML) 
have demonstrated benefits of using RF data, 
recent results indicate the exciting possibility of 
leveraging non-RF data as well to improve system 
performance and increase solution robustness [1]. 
Non-RF modalities can complement tasks where 
rich environmental representations circumvent the 
shortcomings of RF data, albeit at increasing data 
collection costs and management overhead.

Challenges in creating multimodal datasets. 
Naturally, the creation of multimodal datasets 
comes with its own set of challenges. Depending 
on the application of a multimodal dataset, data 
samples may need to be synchronized, particularly 
for use with ML techniques that require a uniform 
input size. This requires meticulous consideration 
of the timescale characteristics of the different 
sensor types, including device startup delay and 
sampling frequency. These samples should have 
accurate labels and timestamps based on a com-
mon timescale, and in the likely scenario that dif-
ferent device capture frequencies do not align, 
sensor-specific “gaps” in the dataset should imme-
diately be addressed for synchronization. Final-
ly, any collected raw data needs to be checked 
for compatibility with a given task. For example, 
LiDAR pointclouds vary in size, which is unde-
sirable for deep learning (DL)-based approaches 
that require input tensors of fixed size. Hence, 
preprocessing steps may be necessary to com-
press and standardize data representations. Our 
contributions are as follows:
•	 We discuss how multimodal data can be 

used for beam selection for wireless links, 
specifically concerning beamforming in the 
millimeter-wave (mmWave) band.

•	 We survey different existing multimodal data-
sets that have the potential to contribute to 
emerging research directions.

•	 We describe a novel generalized process for 
collecting multimodal datasets using both 
our dataset, e-FLASH, and the collection pro-
cess behind e-FLASH to illustrate this process. 
e-FLASH, which consists of heterogeneous 
LiDAR, camera, and GPS sensor-generated 
real-world data, was collected for the pur-
pose of beam selection in mmWave bands. 
We make this dataset publicly available [4] 
to accelerate community contributions in the 
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exciting research area of mmWave commu-
nication.

• We conduct preliminary experiments that 
utilize multimodal data for beam selection, 
showing the potential to achieve low-la-
tency high-reliability communication within 
mmWave systems.

Use Cases of Multimodal Datasets
Multimodal data may be leveraged to speed up 
the utilization of heavily congested RF bands (Fig. 
1). As an example, modalities such as camera 
images and LiDAR are leveraged to provide con-
textual information and/or guide existing RF-on-
ly approaches. Earlier works such as [2, 3] have 
demonstrated that it is possible to increase accu-
racy of beam selection by using multimodal data-
sets. The contextual awareness drastically reduces 
inference time for optimal beam selection. These 
initial studies motivate us to identify different 
PHY-layer topics in mmWave and MIMO systems, 
describing how multimodal data in general can 
address research challenges in these topics. An 
overview of some state-of-the-art (SOTA) tech-
niques is presented in Table 1.

Beam Selection
Propagation in the mmWave spectrum is severely 
limited due to the increased path loss of RF sig-
nals in high carrier frequencies. To mitigate this 
propagation characteristic, directional links that 
offer the strongest signal strength in the domi-
nant signal lobe between the transmitter (Tx) and 
receiver (Rx) pair are used, but they must be care-
fully aligned. This alignment process, known as 
beam selection, is essential and must be repeated 
frequently in mobile environments to ensure con-
tinuous connectivity. Several prior efforts use a 
combination of RF and non-RF data, such as light-
based sensors [5, 6], to perform beam selection. 
Such techniques exploit the benefit of variety of 
light-based modalities (e.g., LiDAR and images) 
to either offset the sole reliance on RF data or 
increase beam selection efficiency.

Beamforming
Beamforming focuses on the generation of multi-
ple elements in a Tx antenna array with the goal of 
creating constructive interference at the Rx while 
producing destructive interference elsewhere, 
which is then paired with beam steering and selec-
tion steps in a system for optimal performance. 
While there is myriad research available on vari-
ous beamforming techniques, they are either:
•	 Solely validated on simulation studies [8]
•	 Have the potential to be improved using 

DL-based data-driven approaches [7]
In either case, SOTA techniques may benefit if their 
outcomes are demonstrated on a real-world dataset.

Localization
Localization is the prediction of a device’s place-
ment in space through the use of one or more 
wireless transmitters. Specific to scenarios involv-
ing mmWave links, [9] uses pre-existing auto-
motive radars and Van Atta arrays to build a 
low-power tag that may be localized with high 
accuracy over an extended range. In [10], the 
authors use signal-to-noise ratio (SNR) measure-
ments to construct an ML-based system that per-

forms only location-based classification, location 
and orientation classification, and coordinate esti-
mation. In [11], channel state information (CSI) 
from commercial off-the-shelf mmWave routers 
is used for localization and then to optimize net-
work operations. We believe that all of these 
approaches stand to benefit from the inclusion of 
LiDAR and GPS data, given the significant envi-
ronmental context awareness achievable beyond 
what has been demonstrated with only the classi-
cal parameters of CSI and SNR.

Classification of Existing Multimodal 
Datasets for Wireless PHY

We survey available simulation and real-world 
multimodal datasets consisting of primarily non-
RF data that address different problems in the 
mmWave band.

Simulation Datasets
Raymobtime: The Raymobtime dataset [3] 

consists of a high-fidelity virtual vehicle-to-infra-
structure (V2I) deployment for modeling 5G 
and mmWave MIMO channel propagation. The 
dataset is obtained from a simulated urban can-
yon region, where buildings flank the two sides 

FIGURE 1. Use cases and overview of real-world FLASH [2], e-FLASH, and synthetic Raymobtime [3] datasets.
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Abstract—The increasing availability of multimodal data
holds many promises for developments in millimeter wave
(mmWave) multiple antenna systems by harnessing the
potential for enhanced situational awareness. Specifically,
inclusion of non-RF modalities to complement RF-only
data in communications-related decisions like beam se-
lection may speed up decision-making in situations where
an exhaustive search, spanning all candidate options, is re-
quired by the standard. However, to accelerate research in
this topic, there is a need to collect real-world datasets in a
principled manner. This paper presents an experimentally-
obtained dataset, composed of 23 GB of data that aids in
beam selection in vehicle to everything (V2X) mmWave
bands, with the goal of facilitating machine learning (ML)
in the wireless communication required for autonomous
driving. Beyond this specific example, the paper describes
methodologies of creating such datasets that use time-
synchronized and heterogeneous types of LiDAR, GPS and
camera images, paired with the RF ground truth data of
selected beams in the mmWave band. While we use beam
selection as the primary demonstrator, we also discuss
how multimodal datasets may be used in other ML-based
PHY-layer optimization areas, such as beamforming and
localization.

Index Terms—Multimodal Data, MIMO, Non-RF Data

I. INTRODUCTION

Interest in using large-scale multimodal datasets has
surged within the past few years given the widespread
availability of small form-factor sensors and decreasing
data storage costs. Such datasets may include histori-
cal and real-time streaming samples of camera images,
GPS coordinates, light detection and ranging (LiDAR)
pointclouds, radar signals, infra-red signals, and acoustic
signals, to name a few. These sensors may have a wide
range of applications that include biomedical sensing,
autonomous vehicles and ubiquitous Internet of Things.
However, effective utilization of the collected informa-
tion to extract meaningful context from the operational
environment remains an open challenge, particularly
when real-time execution is needed.
Diversity of data sources for wireless PHY opti-
mization use-cases. Classical wireless datasets use radio
frequency (RF) data for applications such as channel

Fig. 1: Use cases and overview of real-world FLASH [2], e-
FLASH, and synthetic Raymobtime [3] datasets.

estimation and interference detection, generally with
multiple input/multiple output (MIMO) systems that
utilize antenna arrays. While rapid advances in machine
learning (ML) have demonstrated benefits of using RF
data, recent results indicate the exciting possibility of
leveraging non-RF data as well to improve system per-
formance and increase solution robustness [1]. Non-RF
modalities can complement tasks where rich environ-
mental representations circumvent the shortcomings of
RF data, albeit at increasing data collection costs and
management overhead.

Challenges in creating multimodal datasets. Naturally,
the creation of multimodal datasets comes with its own
set of challenges. Depending on the application of a
multimodal dataset, data samples may need to be syn-
chronized, particularly for use with ML techniques that
require a uniform input size. This requires meticulous
consideration of the time-scale characteristics of the
different sensor types, including device startup delay and
sampling frequency. These samples should have accurate
labels and timestamps based on a common time scale,
and in the likely scenario that different device capture
frequencies do not align, sensor-specific ‘gaps’ in the
dataset should immediately be addressed for synchro-

TABLE 1. Survey of literature leveraging the use of different modalities for solving mmWave challenges.

Application Modalities Methods Paper

Beam selection RF, image Computer vision, deep 
learning Alrabeiah et al. [5]

Beam selection RF, LiDAR Deep learning, fusion Dias et al. [6]

Beamforming RF Channel measurements, 
hybrid RF/baseband system Roh et al. [7]

Beamforming RF, radar
Hybrid beamforming, 

sub-arrayed radar 
techniques, minimization

Liu et al. [8]

Localization RF, radar Reflector array Soltanaghaei et al. [9]

Localization RF Deep learning Koike-Akino et al. [10]

Localization RF Channel measurements Palacios et al. [11]
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of a road. Using the Simulator for Urban Mobil-
ity (SUMO) software, a variety of moving vehi-
cles are generated to form traffic patterns near 
a roadside Tx. Image, LiDAR, and ray tracing 
(RT) data are collected by Blender, Blender Sen-
sor Simulation (BlenSor), and Remcom Wireless 
Insite, respectively. Synchronized samples of 
LiDAR pointclouds, GPS coordinates, and camera 
images are collected for each scene, in which an 
active Rx is designated to one of the three vehicle 
types. Overall, 256 beam configurations, consist-
ing of 32 codebook elements at the Rx and eight 
elements at the Tx, are collected, cumulatively 
giving over 6000 scenes (55 GB data).

ViWi: The Vision-Wireless (ViWi) framework 
utilizes 3D modeling and RT in combination 
with wireless data for the purpose of facilitating 
vision-aided mmWave wireless communication 
[12]. Simulated outdoor environments containing 
objects such as buildings, cars, and people are gen-
erated with Blender, while RT is done with Rem-
com Wireless Insite. The initial version of ViWi 
features four sets of raw data, consisting of visual, 
LiDAR, and wireless data (e.g., depth maps, sig-
nal angles of departure, and channel gains), and a 
data-generating package. An extended version of 
this dataset, named ViWi Vision-Aided mmWave 
Beam Tracking (ViWi-BT), contains an additional 
13 pairs of consecutive beam indices with corre-
sponding street view images in a new heavy-traffic 
downtown environment. ViWi-BT contains 281,000 
training samples, 120,468 validation samples, and 
10,000 test samples for ML-based beam tracking.

Real-World Datasets
Image-Based mmWave Beamforming: The 

dataset collected by Salehi et al. [1] uses camera 
images to complement beamforming optimiza-
tion between two mmWave antenna arrays. The 
Tx and Rx antenna arrays are placed on mobile 
sliders and are set to move to five distinct positions 
with an obstacle in between the arrays to represent 
the radiation pattern under both line-of-sight (LoS) 
and non-LoS (NLoS) conditions. Two GoPro Hero4 
cameras synchronized with mmWave radios are 
used to observe movement in the environment. 
The corresponding raw images are fed through a 
binary classifier to detect the locations of the Tx 
and Rx in the image and are later passed to a sec-
ond classifier to direct one of 13 beam directions 
at both the Tx and Rx. The dataset contains over 
3750 samples (2.85 GB), which are used to predict 
the optimal beam pairing using raw input images.

FLASH: The Federated Learning for Automated 
Selection of High-band mmWave Sectors (FLASH) 
dataset is a real-world multimodal dataset wherein 
sensory data from LiDAR, camera, and GPS sen-
sors participate in federated learning to speed up 
beam selection in mmWave vehicular networks 
[2]. Overall, this multimodal dataset is collected 
in real time with sensors mounted on an auton-
omous vehicle in an urban canyon environment 
in a variety of LoS and NLoS scenarios. Using 
the locally collected data, obstacles are detect-
ed within the immediate surroundings, and their 
locations are used to make guided inferences for 
selecting the best mmWave sector. The sensor 
suites in FLASH contain three sensors:
•	 16-channel LiDAR
•	 A side-facing camera
•	 GPS
The labels in FLASH are time synchronized RF 
ground truth of the received signal strength at 
each mmWave beam. Overall, the dataset con-
tains 31,923 samples (20 GB processed data), 
covering a wide variety of real-world vehicle-to-
base station (BS) LoS and NLoS scenarios.

Multimodal Dataset Creation Framework
In this section, we present a step-by-step meth-
odology of collecting a multimodal dataset, using 
the extended FLASH (e-FLASH) dataset as a guid-
ing example. e-FLASH is an extension of the orig-
inal FLASH dataset with the addition of two new 
sensors that provide richer environmental repre-
sentation, which we detail in the Sensors subsec-
tion. Additionally, e-FLASH provides a structured 
way of representing the multimodal data in the 
portable Hierarchical Data Format 5 (HDF5) for-
mat with self-explanatory metadata. The e-FLASH 
dataset is available for community use [4].

Data Collection Environment
The first step in collecting a multimodal dataset 
is to choose the right data collection environ-
ment. In our case, e-FLASH addresses the sector 
selection problem in the mmWave band, which 
will support low-latency communication via short-
range links within high-traffic regions. Thus, we 
set up the data collection in an environment con-
taining a two-lane 6-m-wide alleyway between 
high-rise buildings located 4 m from the road and 
multiple building material types, vegetation, and 
weather conditions.

Sensors
The selection of the right number of proper sen-
sors is crucial to defining a well-structured problem 
using multimodal data. Using a number of modal-
ities allows for both a more complete represen-
tation of the environment, which may improve 
inference performance, and greater flexibility 
in the selective contribution of the situationally 
favored modality for overall performance optimi-
zation. Most modern cars come pre-equipped with 
at least GPS tracking systems, which perform well 
in LoS environments. Although vehicular LiDAR 
systems are less common, they are more depend-
able in NLoS scenarios. However, low-light con-
ditions and reflections from strong sunlight can 
hamper the performance of LiDAR systems [13].

For e-FLASH, we consider five different sensors 
which capture data via three different modalities 

FIGURE 2. The experimental setup of e-FLASH data collection.
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Fig. 2: The experimental setup of e-FLASH data collection.

environmental representation, which we detail in the
Sensors subsection. Additionally, e-FLASH provides a
structured way of representing the multimodal data in
the portable Hierarchical Data Format 5 (HDF5) format
with self-explanatory metadata. The e-FLASH dataset is
available for community use [4].

A. Data Collection Environment
The first step in collecting a multimodal dataset is

to choose the right data collection environment. In our
case, e-FLASH addresses the sector selection problem
in the mmWave band which will support low latency
communication via short-range links within high-traffic
regions. Thus, we set up the data collection in an
environment containing a two-lane 6m-wide alleyway
between high-rise buildings located 4m from the road
and multiple building material types, vegetation, and
weather conditions.

B. Sensors
The selection of the right number of proper sensors

is crucial to defining a well-structured problem using
multimodal data. Using a number of modalities allows
for both a more complete representation of the environ-
ment, which may improve inference performance, and
greater flexibility in the selective contribution of the
situationally-favored modality for overall performance
optimization. Most modern cars come pre-equipped with
at least GPS tracking systems, which perform well in
LOS environment. Although vehicular LiDAR systems
are less common, they are more dependable in NLOS
scenarios. However, low-light conditions and reflections
from strong sunlight can hamper the performance of
LiDAR systems [13].

For e-FLASH, we consider five different sensors
which capture data via three different modalities that
are representative of sensor types found in modern

vehicular systems to record various representations of
the environment for mmWave beam selection. The sensor
suite, consisting of one side-facing GoPro Hero4 Silver
camera, one front-facing GoPro Hero9 Black camera,
two Velodyne VLP-16 LiDAR sensors, one Ouster OS1-
64 LiDAR sensor, and a GPS system on-board a 2017
Lincoln MKZ Hybrid autonomous car. The sampling
frequencies are 30 frames per second (fps) for the cam-
eras, 10 Hz for the LiDARs and 1 Hz for the GPS. The
GPS and LiDAR sensors are connected to an on-board
computer in the vehicle using low latency Ethernet cables
and assigned unique IP addresses. The computer runs
the Robot Operating System (ROS) suite, which reads
measurements instantaneously. The GoPro cameras are
also connected using Wi-Fi and USB cables for Hero4
and Hero9, respectively, for simultaneous operation. We
use a customized Python code employing OpenCV to
control the camera recordings, labeling them with the
appropriate timestamps. All sensors are connected to the
same computer for common reference timestamping.

In e-FLASH, we use mmWave radios to collect the RF
ground truth corresponding to each multimodal sensor
input. Two TP-Link Talon AD7200 tri-band routers,
which use Qualcomm QCA9500 IEEE 802.11ad Wi-Fi
chips with an antenna array consisting of 32 elements
to communicate at the 60 GHz band, are set to func-
tion as the BS, with a coverage angle and height of
168.57° and 1.5 m, respectively, and the Rx. We use
a default codebook of sector IDs 1-31 and 61-63, with
IDs 32-60 undefined, and the open-source Linux Em-
bedded Development Environment (LEDE) and Nexmon
firmware patching released by [14] to access the PHY-
layer characteristics of the routers, using the following
process. First, propriety IP addresses are assigned to each
router. Then, the open-source iPerf3 tool is used to set
the Tx-Rx pair as “client” and “server”, respectively, and
generate the stream to be transmitted. We use patched
LEDE firmware to send full-buffer TCP traffic, recording
the time-synchronized RF ground truth data at 1-1.5 Hz
via data transmission rate and received signal strength
indication (RSSI) for each mmWave beam sampled. The
throughput is approximately ⇠1.5Gbps with a 2GHz
channel at the 60 GHz center frequency.

C. Data Categories

The inclusion of diverse scenarios in the collected
datasets is necessary to create a comprehensive solution
that addresses every aspect of the problem. We diversify
possible scenarios in categories, as shown in Fig. 3. For
each category, we define specific variations, or scenarios,
and collect 10 episodes, or trials, of each scenario, with
each episode lasting approximately 15 seconds. To start

The first step in collecting 
a multimodal dataset is 
to choose the right data 

collection environment. In 
our case, e-FLASH addresses 
the sector selection problem 
in the mmWave band, which 

will support low-latency 
communication via short-

range links within high-traf-
fic regions.
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that are representative of sensor types found in 
modern vehicular systems to record various repre-
sentations of the environment for mmWave beam 
selection. The sensor suite consists of one side-fac-
ing GoPro Hero4 Silver camera, one front-fac-
ing GoPro Hero9 Black camera, two Velodyne 
VLP-16 LiDAR sensors, one Ouster OS164 LiDAR 
sensor, and a GPS system onboard a 2017 Lin-
coln MKZ Hybrid autonomous car. The sampling 
frequencies are 30 fps for the cameras, 10 Hz 
for the LiDARs, and 1 Hz for the GPS. The GPS 
and LiDAR sensors are connected to an onboard 
computer in the vehicle using low-latency Eth-
ernet cables and assigned unique IP addresses. 
The computer runs the Robot Operating System 
(ROS) suite, which reads measurements instanta-
neously. The GoPro cameras are also connected 
using Wi-Fi and USB cables for Hero4 and Hero9, 
respectively, for simultaneous operation. We use 
a customized Python code employing OpenCV 
to control the camera recordings, labeling them 
with the appropriate timestamps. All sensors are 
connected to the same computer for common 
reference timestamping.

In e-FLASH, we use mmWave radios to collect 
the RF ground truth corresponding to each multi-
modal sensor input. Two TP-Link Talon AD7200 
tri-band routers, which use Qualcomm QCA9500 
IEEE 802.11ad Wi-Fi chips with an antenna array 
consisting of 32 elements to communicate at the 
60 GHz band, are set to function as the BS, with 
a coverage angle and height of 168.57° and 1.5 
m, respectively, and the Rx. We use a default 
codebook of sector IDs 1–31 and 61–63, with 
IDs 32–60 undefined, and the open source Linux 
Embedded Development Environment (LEDE) and 
Nexmon firmware patching released by [14] to 
access the PHY-layer characteristics of the rout-
ers, using the following process. First, propriety IP 
addresses are assigned to each router. Then the 
open source iPerf3 tool is used to set the Tx-Rx 
pair as “client” and “server,” respectively, and 
generate the stream to be transmitted. We use 
patched LEDE firmware to send full-buffer TCP 
traffic, recording the time-synchronized RF ground 
truth data at 1–1.5 Hz via data transmission rate 
and received signal strength indication (RSSI) for 
each mmWave beam sampled. The throughput is 
approximately 1.5 Gb/s with a 2 GHz channel 
at the 60 GHz center frequency.

Data Categories
The inclusion of diverse scenarios in the collected 
datasets is necessary to create a comprehensive 

solution that addresses every aspect of the prob-
lem. We diversify possible scenarios in categories, 
as shown in Fig. 3. For each category, we define 
specific variations, or scenarios, and collect 10 
episodes, or trials, of each scenario, with each 
episode lasting approximately 15 s. To start each 
collection, we arrange the testbed according to 
the signal propagation conditions (LoS or NLoS) 
and obstacles present (none, pedestrian, or car). 
We set up the server/client and ensure that the 
transmission traffic is observed at the Rx, which is 
set up in the road lane specified by the “BS Loca-
tion” with respect to the collection vehicle. Then 
we start recording the non-RF data on all sensors 
while driving the collection vehicle at the desig-
nated “Car Speed” and assign unique names that 
describe the ongoing category. In total, we collect 
70 episodes over four categories.

Synchronization
The synchronization process is crucial when cre-
ating a multimodal dataset for DL-based applica-
tions that expect constant input sizes. In e-FLASH, 
individual modalities use the same reference 
clock to record real-time observations with dif-
ferent sampling frequencies. On the other hand, 
the beam sweeping mechanism used in the Talon 
AD7200 routers is triggered whenever a drop in 
RSSI is observed. Given the information above, 
we design a synchronization procedure with four 
steps as follows:
1. We identify the image and LiDAR sensor 

information between two consecutive RF 
measurement timestamps.

2. We pair the LiDAR sample with the closest 
image sample.

3. We estimate missing GPS sensor samples by 
interpolation.

4. We assign the same RSSI measurement to all 
sensor modality samples in the range.

With this scheme, we extract a total of 10,853 sam-
ples (23 GB raw data) from the raw data.

Post-Processing
The use of sensors that generate continuous rep-
resentations of the environment inevitably gen-
erates a large amount data in raw formats which 
contain some information that may not be used. 
Therefore, it is essential to perform post-process-
ing steps on the raw data to convert the data to 
more portable formats with high data efficacy.

In e-FLASH, we incorporate post-processing 
steps that extract the relevant features from raw 
data to generate a processed dataset. Note that 

FIGURE 3. Summary of different categories in the e-FLASH dataset.
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Fig. 3: Summary of different categories in the e-FLASH dataset.

each collection, we arrange the testbed according to
the signal propagation conditions (LOS or NLOS) and
obstacles present (none, pedestrian, or car). We set up
the server/client and ensure that the transmission traffic
is observed at the Rx, which is set up in the road
lane specified by the ‘BS Location’ with respect to the
collection vehicle. Then, we start recording the non-RF
data on all sensors while driving the collection vehicle
at the designated ‘Car Speed’ and assign unique names
that describe the ongoing category. In total, we collect
70 episodes over four categories.

D. Synchronization
The synchronization process is crucial when creating

a multimodal dataset for DL-based applications that
expect constant input sizes. In e-FLASH, individual
modalities use the same reference clock to record real-
time observations with different sampling frequencies.
On the other hand, the beam sweeping mechanism used
in the Talon AD7200 routers is triggered whenever a
drop in RSSI is observed. Given the information above,
we design a synchronization procedure with four steps
as follows: 1) we identify the image and LiDAR sensor
information between two consecutive RF measurement
timestamps, 2) we pair the LiDAR sample with the
closest image sample, 3) we estimate missing GPS
sensor samples by interpolation, and 4) we assign the
same RSSI measurement to all sensor modality samples
in the range. With this scheme, we extract a total of
10853 samples (⇠23 GB raw data) from the raw data.

E. Post-processing

The use of sensors that generate continuous represen-
tations of the environment inevitably generates a large
amount data in raw formats which contain some infor-
mation that may not be used. Therefore, it is essential to
perform post-processing steps on the raw data to convert
the data to more portable formats with high data efficacy.

In e-FLASH, we incorporate post-processing steps that
extract the relevant features from raw data to generate a
processed dataset. Note that the raw GPS measurements
are in decimal degrees with 13 digit precision, while the
LiDAR data range is set to ±80m. In order to resolve the
measurement scale conflicts, we define a fixed origin and
calculate the distances of GPS positioning recordings to
arrange a Cartesian coordinate system.

Meanwhile, LiDAR pointclouds are a collection of
(x, y, z) points that indicate the location of detected
objects in a coordinate system with the LiDAR sen-
sor location being the origin. As a result, the size of
pointcloud files scales with the number of objects in the
environment. Therefore, we apply a post-processing step
on the LiDAR data as follows [3]: we quantize recorded
space such that pointclouds are mapped to a rigidly-
defined representation where dimensionality is fixed and
the role of each object is identified with unique numerical
indicators.

V. DEEP LEARNING-BASED FUSION FOR FAST BEAM

SELECTION

In this section, we present a feasibility study of using
a DL-based framework on e-FLASH, where we leverage
all five sensor inputs and evaluate the end-to-end latency
improvement over the IEEE 802.11ad standard from
the beam selection performance in vehicle-to-everything
(V2X) communication. We assume that most modern
vehicles, particularly ones with on-board LiDAR systems
for autonomous driving, already have the required com-
putational power to process this specific task and other
similar tasks.

A. Collaborative Learning on e-FLASH
As part of a supervised learning scheme, it is as-

sumed that the training and test set follow the same
distribution. In order to achieve a generalized model, the
training set must have a rich representation of different
scenarios, such as the four categories that are described

The synchronization process 
is crucial when creating 
a multimodal dataset for 

DL-based applications 
that expect constant input 

sizes. In e-FLASH, individual 
modalities use the same 
reference clock to record 

real-time observations 
with different sampling 

frequencies.
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the raw GPS measurements are in decimal degrees 
with 13-digit precision, while the LiDAR data range 
is set to ±80 m. In order to resolve the measure-
ment scale confl icts, we defi ne a fi xed origin and 
calculate the distances of GPS positioning record-
ings to arrange a Cartesian coordinate system.

Meanwhile, LiDAR pointclouds are a collec-
tion of (x, y, z) points that indicate the location 
of detected objects in a coordinate system with 
the LiDAR sensor location being the origin. As a 
result, the size of pointcloud fi les scales with the 
number of objects in the environment. Therefore, 
we apply a post-processing step on the LiDAR 
data as follows [3]: We quantize recorded space 
such that pointclouds are mapped to a rigidly 
defined representation where dimensionality is 
fi xed, and the role of each object is identifi ed with 
unique numerical indicators.

deeP-leArnIng-bAsed fusIon for fAst beAM selectIon
In this section, we present a feasibility study of using 
a DL-based framework on e-FLASH, where we lever-
age all five sensor inputs and evaluate the end-to-
end latency improvement over the IEEE 802.11ad 
standard from the beam selection performance in 
vehicle-to-everything (V2X) communication. We 
assume that most modern vehicles, particularly ones 
with onboard LiDAR systems for autonomous driv-
ing, already have the required computational power 
to process this specifi c task and other similar tasks.

collAborAtIve leArnIng on e-flAsH
As part of a supervised learning scheme, it is 
assumed that the training and test sets follow the 
same distribution. In order to achieve a general-
ized model, the training set must have a rich rep-

resentation of diff erent scenarios, such as the four 
categories described earlier. We demonstrate this 
by considering a collaborative learning scheme, 
where multiple vehicles contribute to the com-
mon training set by sharing data from local repos-
itories to the BS.

The proposed system consists of vehicles in 
an urban canyon region, where buildings flank 
the sides of the road with roadside BSs in an 
mmWave V2X setup. We use a back-channel-
based framework [2] to collect the data from 
all vehicles and train on the collective data in a 
collaborative fashion. We then use a DL-based 
fusion network with stochastic gradient descent-
based training and a learning rate of 0.0001 over 
the cloud, where multimodal sensor data with RF 
ground truth is transmitted collectively from the 
vehicle to the cloud. In brief, the designed neural 
network consists of three unimodal architectures 
(each with 4–9 convolutional and 2–4 fully con-
nected layers) and a fusion network of 5 more 
fully connected layers with up to 105 million 
parameters [2]. The trained model is later trans-
mitted from the cloud to each individual vehicle, 
which selects the best beam for the mmWave 
radios in inference time. For the most complex 
case utilizing fusion of all three modalities, the 
time complexity of this framework with 13 layers 
using 80 percent of data, Ndata, samples for train-
ing is on the order of 0.8  N2

data
13  [15].

exPerIMentAl evAluAtIon
The preliminary results of predicting best beams 
on the e-FLASH dataset are presented in Fig. 4. 
We use three out of the five available modali-
ties present in the e-FLASH dataset and consid-
er diff erent combinations where only one, two, 
or three modalities are present. Using time-syn-
chronized samples of three sensor modalities, 
we train a fusion architecture that employs con-
catenation at the feature level to predict the 
optimum sector [2] and report the prediction 
accuracy. We show that LiDAR performs better 
than the other two sensors by 7.18–53.86 per-
cent in top-1 accuracy. Our initial results show 
the eff ectiveness of a DL-based fusion over the 
individual modalities with 8.17 percent improve-
ment with respect to best single modality (i.e., 
LiDAR). Moreover, we observe that unimodal 
scenarios achieve 62.32 percent average top-1 
accuracy, whereas the fusion of two and three 
modalities improves the performance by up to 
82.14 and 90.84 percent, respectively. We also 
analyze the end-to-end latency of the proposed 
beam selection scheme over the IEEE 802.11ad 
standard, showing that the sensor-based beam 
selection achieves 54.28–85.71 percent lower 
latency than the current IEEE 802.11ad standard 
while targeting >99 percent accuracy.

PotentIAl reseArcH dIrectIons
We present some specific scenarios with open 
research problems that can benefi t from the data 
in e-FLASH.

AdAPtIve beAM selectIon usIng trAnsfer leArnIng
The general idea of transfer learning is to prop-
agate the knowledge from one learning task to 
another for an efficient outcome. The proposed 
beam selection task can be formulated to adapt 

FIGURE 4. Comparing the top-1 accuracy and beam selection time of single and multiple modalities. The red horizon-
tal line denotes the beam selection time of the IEEE 802.11ad standard. 

6

Fig. 4: Conceptual overview of transferring the learning from different environments (similar to the categories in e-FLASH
dataset) and lifelong learning to serve users on infrastructures with different proprietary service providers.

in Sec. IV-C. We demonstrate this by considering a
collaborative learning scheme, where multiple vehicles
contribute to the common training set by sharing data
from local repositories to the BS.

The proposed system consists of vehicles in an urban
canyon region, where buildings flank the sides of the
road with road-side BSs in a mmWave V2X setup. We
use a back-channel-based framework [2] to collect the
data from all vehicles and train on the collective data in
a collaborative fashion. We then use a DL-based fusion
network with stochastic gradient descent-based training
and a learning rate of 0.0001 over the cloud, where
multimodal sensor data with RF ground truth is transmit-
ted collectively from the vehicle to the cloud. In brief,
the designed neural network consists of three unimodal
architectures (each with 4-9 convolutional and 2-4 fully
connected layers) and a fusion network of 5 more fully
connected layers with up to ⇠105M parameters [2]. The
trained model is later transmitted from the cloud to each
individual vehicle, which selects the best beam for the
mmWave radios in inference time. For the most complex
case utilizing fusion of all three modalities, the time
complexity of this framework with 13 layers using 80%
of data, Ndata, samples for training is on the order of
0.8⇥N213

data [15].

B. Experimental Evaluation

The preliminary results of predicting best beams on
the e-FLASH dataset are presented in Fig. 5. We use
three out of the five available modalities present in the
e-FLASH dataset and consider different combinations
where only one, two, or three modalities are present.
Using time-synchronized samples of three sensor modal-
ities, we train a fusion architecture that employs con-
catenation at the feature level to predict the optimum
sector [2] and report the prediction accuracy. We show
that LiDAR performs better than the other two sensors by

Fig. 5: Comparing the top-1 accuracy and beam selection
time of single and multiple modalities. The red horizontal line
denotes the beam selection time of IEEE 802.11ad standard.

7.18-53.86% in top-1 accuracy. Our initial results show
the effectiveness of a DL-based fusion over the individ-
ual modalities with 8.17% improvement with respect to
best single modality, i.e., LiDAR. Moreover, we observe
that unimodal scenarios achieve 62.32% average top-1
accuracy, whereas the fusion of two and three modalities
improves the performance by up to 82.14% and 90.84%,
respectively. We also analyze the end-to-end latency
of the proposed beam selection scheme over the IEEE
802.11ad standard, showing that the sensor-based beam
selection achieves 54.28-85.71% lower latency than the
current IEEE 802.11ad standard while targeting >99%
accuracy.

VI. POTENTIAL RESEARCH DIRECTIONS

We present some specific scenarios with open research
problems that can benefit from the data in e-FLASH.

A. Adaptive Beam Selection using Transfer Learning
The general idea of transfer learning is to propa-

gate the knowledge from one learning task to another
for an efficient outcome. The proposed beam selection
task can be formulated to adapt to new environments
within different dataset by consolidating the knowledge
from the previous seen environments. For example, an
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in Sec. IV-C. We demonstrate this by considering a
collaborative learning scheme, where multiple vehicles
contribute to the common training set by sharing data
from local repositories to the BS.

The proposed system consists of vehicles in an urban
canyon region, where buildings flank the sides of the
road with road-side BSs in a mmWave V2X setup. We
use a back-channel-based framework [2] to collect the
data from all vehicles and train on the collective data in
a collaborative fashion. We then use a DL-based fusion
network with stochastic gradient descent-based training
and a learning rate of 0.0001 over the cloud, where
multimodal sensor data with RF ground truth is transmit-
ted collectively from the vehicle to the cloud. In brief,
the designed neural network consists of three unimodal
architectures (each with 4-9 convolutional and 2-4 fully
connected layers) and a fusion network of 5 more fully
connected layers with up to ⇠105M parameters [2]. The
trained model is later transmitted from the cloud to each
individual vehicle, which selects the best beam for the
mmWave radios in inference time. For the most complex
case utilizing fusion of all three modalities, the time
complexity of this framework with 13 layers using 80%
of data, Ndata, samples for training is on the order of
0.8⇥N213

data [15].

B. Experimental Evaluation

The preliminary results of predicting best beams on
the e-FLASH dataset are presented in Fig. 5. We use
three out of the five available modalities present in the
e-FLASH dataset and consider different combinations
where only one, two, or three modalities are present.
Using time-synchronized samples of three sensor modal-
ities, we train a fusion architecture that employs con-
catenation at the feature level to predict the optimum
sector [2] and report the prediction accuracy. We show
that LiDAR performs better than the other two sensors by

Fig. 5: Comparing the top-1 accuracy and beam selection
time of single and multiple modalities. The red horizontal line
denotes the beam selection time of IEEE 802.11ad standard.

7.18-53.86% in top-1 accuracy. Our initial results show
the effectiveness of a DL-based fusion over the individ-
ual modalities with 8.17% improvement with respect to
best single modality, i.e., LiDAR. Moreover, we observe
that unimodal scenarios achieve 62.32% average top-1
accuracy, whereas the fusion of two and three modalities
improves the performance by up to 82.14% and 90.84%,
respectively. We also analyze the end-to-end latency
of the proposed beam selection scheme over the IEEE
802.11ad standard, showing that the sensor-based beam
selection achieves 54.28-85.71% lower latency than the
current IEEE 802.11ad standard while targeting >99%
accuracy.

VI. POTENTIAL RESEARCH DIRECTIONS

We present some specific scenarios with open research
problems that can benefit from the data in e-FLASH.

A. Adaptive Beam Selection using Transfer Learning
The general idea of transfer learning is to propa-

gate the knowledge from one learning task to another
for an efficient outcome. The proposed beam selection
task can be formulated to adapt to new environments
within different dataset by consolidating the knowledge
from the previous seen environments. For example, an
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to new environments within different datasets by 
consolidating the knowledge from previously seen 
environments. For example, an architecture pre-
viously trained on the simulation-based Raymob-
time dataset can be adapted for the real-world 
e-FLASH dataset. The pre-trained model weights 
of one dataset or category can be loaded as the 
starting point for training the other datasets or cat-
egories. We show an overview of the proposed 
idea for adaptive beam selection using transfer 
learning in Fig. 5.

Lifelong Learning for Adaptive Beam 
Selection of Variant Codebooks

The goal of lifelong learning is to develop a core fea-
ture extractor that can be used for a set of different 
tasks by only branching the input and output layers. 
Consider a scenario, such as that in Fig. 5, where 
single/multiple vehicles are using an ML module 
to speed up the beam selection. The road contains 
three BSs with proprietary service providers. As a 
result, each of these BSs have unique mmWave 
codebooks with different numbers of beams and 
radiation patterns. Using lifelong learning, we may 
derive a model that is able to adapt to all three tasks 
without changing the core ML model architecture.

Conclusion
This article introduces a step-by-step multimodal 
dataset collection process through the e-FLASH 
dataset, a large multimodal dataset consisting of 
camera image, GPS, and LiDAR data supported 
with RF ground truth, for the purpose of mmWave 
band communication. The dataset contains 
10,853 samples, consisting of seven unique real-
world LoS and NLoS vehicular network scenarios 
that are structured, synchronized, labeled, and 
ready for use in ML-aided applications. While we 
describe two use cases of this dataset in detail for 
beam selection in mmWave bands, we also out-
line other topics where this dataset can accelerate 
research, including beamforming and localiza-
tion. Given the number of potential applications, 
we believe e-FLASH will become a benchmark 
dataset for the emerging area of multimodal data 
fusion for wireless communication.
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