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Abstract—The paper presents theoretical development and
a system implementation of NetBeam, a framework for fully
programmable, reconfigurable and distributed beamforming.
NetBeam allows for joint mechanical antenna steering, grouping
of a network of individual transmitter radios for specific target
receivers, as well as digital beamforming that satisfies higher
layer application demands. We make the following theoretical
contributions: (i) We utilize, for the first time, a machine
learning approach that uses Kriging for predicting antenna gains
for arbitrary 3-D placements of transmitter - receiver pairs.
NetBeam efficiently exploits fine-grained and accurate antenna
gain predictions of the model, while estimating the uncertainty
at unexplored locations through a Gaussian distribution. (ii)
We allocate antennas to receivers by formulating the scenario
as a bipartite graph, followed by perfect matching strategies
that maximize the channel gain. (iii) We leverage the CSI com-
puted in stage (i) to compute the optimum digital beamforming
weights by trading off SINR and power consumption that meets
application requirements using semidefinite optimization. Our
implementation addresses many practical aspects of distributed
beamforming including achieving fast frequency, time, and phase
synchronization. NetBeam minimizes the gap to optimal channel
gain in a 3-D space, and reduces the total transmit power up to
60%, while still managing to provide the required SINR.

Index Terms—3D-beamforming, Distributed Systems, Antenna
oriention, Machine Learning

I. INTRODUCTION

Network densification is a promising approach for solving
the grand challenge of achieving 1000x throughput increase
in future wireless deployments. Here, a large number of base
stations (modeled as software defined radios or SDRs in this
work) are arbitrarily placed in a given area, which must coor-
dinate their actions to serve a large number of users that have
heterogeneous application needs. Such networks must operate
in rich interference-prone environments, rapidly converge on
optimal parameter settings, and efficiently use both power and
spectrum. In this paper, we present a systems architecture and
theoretical framework of NetBeam that coordinates multiple
SDRs for distributed beamforming, a critical operation that
concentrates RF energy towards users and regions of interest.

Distributed and Collaborative beamforming (DCBF) and
Distributed Array System (DAS) are two different approaches
that can be used to provide N2 fold gain in the received signal
strength (RSS) using N transmitters [1]. DCBF increases the
wireless capacity using cooperation among independent radios
[2], while DAS requires a central unit connected to multiple
spatially separated antennas [3]. NetBeam involves a network
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Fig. 1: Distributed beamforming using SDRs with steerable antennas
in azimuth (θ) and elevation (φ) angles. Edge cloud runs ML and
antenna grouping algorithms.

of radios that broadcast information locally to each other, and
then jointly transmit to a remote receiver. NetBeam approaches
the problem from a systems viewpoint under the DCBF model,
recognizing that SDRs can be placed at arbitrary locations
and heights. Furthermore, it assumes that antennas fixed on
the SDRs may also be mechanically controlled, along with
the regular function of pure beamforming (often called as
phase synchronization). The goal of the latter is to primarily
focus on optimizing the transmission beampattern to direct
energy towards the desired receiver (see Fig. 1). With multiple
independent SDRs, individual processing latencies may not
allow the exact same start of the transmission, even if the
same data packet is replicated across all of them. NetBeam
intelligently uses receiver feedback to introduce controlled
latencies within selected transmitters to operate them all in
a lock-step fashion.

A. Need for a different systems approach

Experimental testbeds have previously shown the feasibility
and benefits of DCBF using COTS devices. Some exam-
ples are the one bit-feedback (1BF) phase synchronization,
a Kalman filter-based frequency synchronization or the zero-
feedback (0F) blind beamforming [4]. Even though 1BF is
fully distributed, it’s suitability to indoor environments is
compromised due to the high convergence time and the adverse
scattering and fading conditions. In addition, it does not
exploit Channel State Information (CSI) at the receiver, which
limits the performance. A CSI-aware set of transmitters can
optimally identify which of them are most effective for beam-
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Fig. 2: NetBeam block diagram for Multi-user Heterogeneous traffic

forming to specific receivers [5]. This allows the transmitter
group to reduce both, the co-channel interference and transmit
power, while still guaranteeing a desired SINR at the receiver.
To the best of our knowledge, NetBeam is the first open-
source distributed beamforming implementation that uses full
CSI information.

B. Joint hardware-software 3D beamforming

Previous works assume a restricted 2-D topology, where
transmitters and receivers are located in the same plane. This
is growing interest in new beamforming techniques that also
accounts for the elevation plane of the antenna resulting
in 3-D beamforming (3DBF) or so called Full Dimension
Beamforming (FD-BF). 3DBF has proven to mitigate the
inter-cell interference [6] and to improve upon multiuser
beamspace transmission (MUBT) using the user’s angular
space information [7]. NetBeam takes the important first step
of demonstrating distributed 3-D beamforming using a mixed
mode operation: software-driven digital beamforming as well
as antenna orientation with low resolution (1 degree) in a wide-
angular span (azimuth and elevation), as shown in Fig.1.

C. Fast convergence with machine learning

The antenna orientation needs to keep up with the variations
of the channel. Though an exhaustive search would always
provide with the optimum elevation and azimuth angles, this
becomes unrealistic in real deployments given the high compu-
tational time. We leverage recent results from machine learning
that address the following question: how to achieve the opti-
mum in an unknown objective function while minimizing the
number of trials to achieve it. We select the so called Efficient
Global Optimization (EGO) approach, which combines model-
ing and trial selection via acquisition functions. NetBeam uses
a novel acquisition function, so-called DIRECT-UM, that splits
its operation into Off-line and On-line learning stages. The
Off-line stage selects angular trials in a deterministic fashion.
The On-line stage relates the sampled and unsampled points
in the angular domain using Gaussian Processes, and benefits
from the computed variance to select the next trial. This
process is done via the Kriging method, which interpolates
over the unknowns using the spatial correlation as a Prior. We
prove that the combination of DIRECT-UM and Kriging is
suitable for our communication scenario, providing the closest
solution to optimal within a reduced number of trials.

D. NetBeam Operational Overview

The proposed NetBeam system comprises of three main
stages: 1. Antenna orientation, 2. Antenna Allocation, and 3.
Centralized 3D Beamforming (Fig. 2). First, the optimal an-
tenna orientation for each transmitter-receiver pair is obtained
as described previously (Sec. V). This is followed by antenna
grouping and allocation with a max sum-rate policy (Sec. VI),
and a fast and optimum beamforming weight computation
obtained via Semidefinite programming (SDP) with a min.
power policy. This results in an efficient 3DBF approach that
leverages CSI from users, allowing NetBeam to serve users
with the required SINR while minimizing the overall transmit
power (Sec. VII).

Our main contributions are summarized as follows:
1) We present the design and systems implementation of

NetBeam, which is a fully programmable, distributed
beamforming approach. In building this testbed, we
identify practical challenges in using COTS hardware
and address many synchronization issues (time, fre-
quency, starting instant of transmission).

2) We propose a 3-D beamforming approach with both
digital beamforming and antenna orientation. We use
machine learning to efficiently search the feasible pa-
rameter space for a given tx-rx pair, through the Kriging
model and a Gaussian process that estimate both the
signal gain and uncertainty in estimation.

3) We devise a transmitter antenna to user matching al-
gorithm based on the observed CSI and the application
demands in terms of the SINR. Using heterogeneous
QoS requirements to form groups of SDRs that target
distinct receivers differentiates our work from previous
approaches such as [5], [8].

4) We formulate the distributed beamforming problem of
antenna weight allocation using the SDP method. This
method includes in the formulation the interference
caused to other users within the network through SINR
constraints, and solves the problem in a convex form,
despite the non-convexity of these constraints [9].

II. RELATED WORK

Antenna orientation, antenna selection, energy-efficient
beamforming and synchronization are the key components of
a distributed antenna system. In this section we review existing
works in each of these areas and highlight the differences with
the NetBeam approach.

Antenna orientation: In [10], the authors evinced the bene-
fits of base station antenna tilt in the elevation angle to reduce
the inter-cell interference. Moreover, a detail analysis of the
impact of antenna orientation on the RSSI is experimentally
studied in [11] and [12]. Even though [12] mentions a lower
impact of antenna (omnidirectional) orientation, our experi-
mental study shows that antenna orientation can considerably
improve receiver SINR in indoor and outdoor environments.

Antenna selection: The study of optimum antenna allo-
cation in a single-user communication has been extensively



covered in [13]. Recently, there is growing interest for multi-
user scenarios, where channel correlation between users can
potentially degrade the performance. [14] details the optimum
computation of the beamforming weights to maximize the
individual user subchannels (antenna pairs). [15] reduces the
complexity of the system via channel decoupling. [5], [8] fur-
ther reduces the complexity applying the bidirectional branch
and bound algorithm to find the optimal channel matrix. These
works focus on the physical layer, and do not accommodate
dissimilar QoS requirements of users. NetBeam aims to reduce
the complexity for antenna allocation while still accounting for
each user’s demands.

Beamforming in distributed systems: Beampattern opti-
mization aims to to either reduce the beamwidth [16] or
minimizing the sidelobe level (SLL) [17]. For the later,
metaheuristic solutions have proven to tackle the NP-Hard
problem and effectively minimize the maximum SLL [17].
These systems rely on general knowledge of either the network
topology and radio locations [17] or available CSI at the
transmitters [18]. Location awareness, however, imposes a big
restriction on the system. Moreover, beampattern optimization
does not deal with channel effects, i.e. scattering, making it
incomplete. A more realistic approach is found in [18], which
targets lifetime maximization in a wireless sensor network
while considering SNR and battery constraints.

III. PROBLEM STATEMENT & OVERVIEW

We consider N SDR transmitters, j ∈ T , equipped with
Ntx antennas and operating in Time Division Multiplexing
(TDD) mode to serve and satisfy the data needs of M users,
i ∈ R, each of which is equipped with a single antenna. The
signal is expected to experience flat fading due to a reduced
transmission bandwidth, allowing for a simplified and fast
channel estimation and equalization.

The transmitters are clustered into disjoint subsets with
the aim to combine efforts and increase the data rate at the
receiver. For instance, Gi ∈ R|Gi|×1 is the subset of |Gi|
transmitters assigned to receiver i, where | · | denotes the
cardinal or size of a set. It naturally follows that ∪i∈RGi ⊆ T .
Thus, the communication channel between any set of trans-
mitters and receivers follows a Multiple Input Single Output
(MISO) structure, given by yi = hi · xi + n. The channel
matrix is represented by h ∈ C|Gi|×1. The information to
be delivered to user i is captured in xi ∈ C, while n is
independent Additive White Gaussian Noise (AWGN). Under
these conditions, the capacity is bounded following Shannon’s
formula CmaxMISO = log(1+ P ·‖h‖2

σ2 ), where P is the maximum
transmit power and σ2 is the noise power.

Users run heterogeneous applications, each with a distinct
throughput and latency demand that maps to a required SINR,
noted in Λi. We envision multi-user links where users are
served concurrently by transmitter groups Gi ∀i operating with
mutual interference. For instance, the received frame at user
i is yi = hi · xi +

∑
k∈R\i hk · xk. The devices perform

equalization at transmission time during beamforming, while
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Fig. 3: NetBeam system architecture for heterogeneous users
using distributed SDR transmitters.

trying to meet user’s demands. This is done while minimiz-
ing the interference generated to others, so called inter-user
interference (IUI). Thus, the received frame is modified to
yi = hi · wi · xi +

∑
j 6=i hj · wk · xk, where wi ∈ C|Gi|×1 ∀i.

Note that the beamforming weights and the available transmit
powers are related by ‖wi‖2 ≤ Pi. Furthermore, the antennas
at the SDR transmitters can be flexibly oriented in azimuth and
elevation angles in the range, φ ∈ {0, π/2} and θ ∈ {0, π},
respectively.

min
{wi}i∈G

∑
i∈G

Tr
(
wi(φi, θi) · wi(φi, θi)H

)
, ∀i

s.t.
|hi(φi, θi) · wi(φi, θi)|2∑

k∈G\i |hk(φk, θk) · wk(φk, θk)|2 + σ2
i

≥ Λi,∑
i∈G

Tr(wi(φi, θi) · wi(φi, θi)H) ≤ Ptn

(1)

NetBeam’s ultimate objective is to ensure that the user
demands Λi are always met while the transmit power is
minimized, in a distributed deployment with uncoordinated
transmitters. The mathematical expression of the problem is
given in (1), where Tr (·) represents the trace of the matrix and
symbolizes the energy directed towards the intended receiver
for each transmitter antenna. [19] proves that that such a
formulation gives the optimum beamforming weights, while
acknowledging the problems of practical implementation ow-
ing to its complexity. In addition, [9] proves that the problem in
(1) is non-linear and non-convex, for which finding an optimal
solution is NP-Hard. Therefore, the formulation needs to be
relaxed to cope with the communication delays and expected
channel coherence times.

IV. NETBEAM SYSTEM DESCRIPTION

A. Architecture

The NetBeam architecture (see Fig. 3) consists of the
following key components; 1) Distributed base stations 2)
Heterogeneous users and 3) Wireless connection units.
• Distributed Base Stations: Comprised of a resource man-
agement entity (RME) and a set of distributed SDRs with



antennas. The RME receives information of the heterogeneous
needs of users using a WiFi control channel. RME consists
of software modules such as: antenna selection, time synchro-
nization, modulation and coding scheme (MCS) selection, and
3D beamforming. It identifies the best transmitter settings and
communicates them to the distributed SDRs. The antennas
mounted on the SDRs also have a steering module to set
physical orientations.

The distributed BS are implemented using Ettus X310
USRP SDRs, each with two UBX daughterboards (see Fig. 4).
The SDRs are connected to a host machine that runs the RME
through high-speed Ethernet. The software stack at the host is
implemented in MATLAB and Python. Each radio is equipped
with VERT900 isotropic antenna at 3dBi gain with 900
MHz as operational frequency. OFDM modulated packets are
created through the Communication Toolbox. These packets
are pre-pended with special preamble sequences called as Gold
codes and transmitted from each radio synchronously. Gold
codes are generated using preferred pairs of sequences that
have good cross- and auto-correlation properties. Therefore,
these codes allow concurrent synchronization and channel
estimation at multiple receivers.

NetBeam enables antenna orientation via a reconfigurable
control plane. We use small-form servo motors controlled by
an Arduino micro-controller, and attach them to any given
omni-directional antenna for setting elevation and azimuth an-
gles. We attach an Arduino UNO to an NRF24L01 transceiver
module (master) that issues directives to the servo motors,
mandated by the host computer. At the antenna, each servo
motor pair is connected to an Arduino NANO equipped with
a NRF24L01 receiver module (slave).
• Heterogeneous Users: The receiver is composed of Ettus
B210 USRP SDRs connected to a host machine via USB cable.
The receiver estimates the time correction by applying cross-
correlation techniques and estimates the channel by employ-
ing simple Least Square (LS) fit approach. This calculated
channel response is inserted in the payload for transmitter-
side beam weight computation. Thus, transmitters are now
able to synchronize the transmitted signals in phase at the
receiver. In addition, to enable coherence reception, all radios
are synchronized in frequency and time by connecting them
to a common reference OctoClock-G.

B. Frame structure and CSI

The transmitted frame comprises a preamble and a payload
field. The bits are modulated using the classical phase shift
keying (PSK) and quadrature amplitude modulation (QAM)
schemes, depending upon channel conditions. The symbols are
further OFDM modulated using a 256-IFT point. We employ
Zero padding at the OFDM modulation to avoid Inter Symbol
Interference (ISI), hence ensuring symbol recovery. Finally, the
symbols are adjusted according to the beamforming weights,
represented by a single complex value w. This simplifies the
implementation and prevents the need for multiple pilots for
channel estimation. Thus, the system operates under a flat-

fading regime, with a bandwidth of 400KHz, properly ensured
using interpolation, decimation and subcarrier spacing.

In order to generate a set of Gold codes, two Maximal-
sequence Linear-Feedback Shift registers (MLFSR) of order
m = 11 are used, with polynomials chosen according to the
specifications in [20]. The outputs of the two MLFSRs u and
v are XOR-ed, such that the set of output Gold codes is
G = {u, v, uY, u Y T 1v, · · · , u Y Tn−1v}, where n = 2m− 1
is the period of the Gold code, and T kv is the k-th shift of
MLFSR v. The symbol Y denotes the XOR operation. In
this way, a set of 2m + 1 sequences can be generated, all of
which have the maximum cross-correlation property following
θmax = 2b

m+1
2 c + 1. In addition, the peak auto-correlation of

every sequence in G is given as φ(0) = 2m−1. The maximum
ratio of cross- to auto-correlation is given by rmax = θmax ·
φ(0)−1. Thus, for the set of Gold codes of order m = 11,
there is a peak ratio of cross-to-auto-correlation of 0.03.

We obtain the CSI employing the LS approach for a
generated Gold code G and a presumed received Gold code Ĝ,
as the receiver can easily obtain estimated channel response
of H̃ by H̃ = Ĝ/G. The CSI information arrives at the
transmitter with a delay of d samples, and the normalized
beamforming weights can be calculated using this delayed

channel estimation as w[n−d] =
(
H̃[k − d]/||H̃[k − d]||

)−1
.

As a result, channel estimates from the receivers are used
continuously to update the transmitter-side beam weights (see
Sec. VII).

C. Generating Receiver Feedback

NetBeam’s CSI feedback packets are generated within the
MATLAB platform and then stored in the system buffer. In the
feedback packet, three main information blocks are included:
1) CSI that is estimated from channel response of each
transmitter, 2) Time correction for preventing misalignment
between Gold codes and ensuring each SDR transmits in lock-
step, and 3) Optimized angular parameters for the orientation
of each antenna. We use Python to setup a multicast connection
between the receiver and multiple transmitters to deliver these
packets to more than one end-point through a router via UDP.

D. Phase, Frequency and Time synchronization

NetBeam compensates for the phase offset of initially
uncoordinated SDRs by using the cross-correlation property
of Gold codes to estimate channel response for each tx-rx pair.
Depending on the received CSI, the transmitted signal is mul-
tiplied with the beamforming weights at the transmitter-side.
In addition, NetBeam compensated for the frequency offset
by means of a common reference clock, generated using the
Octoclock−G. This unit distributes 10 MHz and 1 PPS signals
generated from an external source and is connected via wires
to the transmitters. Time synchronization is ensured using the
correlation indexes for each Gold sequence at the receiver. A
mismatch reveals a lack of time synchronization and triggers
the time correction procedure. The receiver notifies the RME
of the node that is ahead of the rest, requesting it to defer its
transmission by the difference in the correlation indexes.
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E. Preliminary studies and motivation

We aim at characterizing the channel for different physical
antenna orientations to validate the following claim: despite
the popularity of pure-digital beamforming solutions, a joint
software-hardware implementation is needed. We employ a
reduced setup described in Fig. 4, exploring the complete
angular range of orientations in steps of 1 degree in both,
azimuth and elevation. The Gold sequences from Sec. IV-B
enable frame-detection and channel estimation. We use the
channel feedback described in Sec. IV-C to notify transmitters
of the new orientation angles.

The results are shown in Fig. 5, for indoor- and outdoor-
communication. The key observation is that the orientation
between antenna pairs impacts on the maximum achievable
channel gain in the order of 10x. More interestingly, the LoS
rarely offers the maximum gain in indoors, while it does so
for outdoor scenarios. The multipath effect and rich scattering
indoors creates constructive and destructive interference with
low correlation with the LoS path. Thus, simple location-
based orientation leads to suboptimal gain and, in turn, a lower
achievable capacity.

We are thus motivated to devise a more advanced antenna
orientation mechanism to utilize the full capacity of the
channel. The presence of multiple local maximum and the lack
of convexity in the general channel gain plots advocate for a
new approach. In the next section, we present our proposed
antenna orientation scheme, where we minimize (i) the gap to
optimum antenna orientation, and (ii) minimize the number of
trials required to achieve this level.

V. ANTENNA ORIENTATION

In this section, we propose a method for finding the optimal
antenna orientation for each transmitter-receiver pair, i.e. φj,i
and θj,i , ∀i ∈ R, ∀j ∈ T .

We approach the problem using Bayesian theory and cast it
as a sequential decision problem, where the set of feasible
angular choices is minimally explored. This is important
because the cost associated with computing the gain function
G(φ, θ) at any given φ and θ is non-negligible for real-time
systems. Ultimately, NetBeam returns the tuple (φ∗, θ∗) that
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Fig. 5: Empirical gain for indoor (top) and outdoor (bottom)
using the testbed in Fig. 4. The results reveal a non-trivial
optimum and a non-negligible gain difference from LoS to
optimum. X and Y axis map to Azimuth and Elevation angles.

maximizes the gain G and gives also the loss associated with
the choice λ(φ∗, θ∗), the latter obtained via the Bayesian
formalism of the problem. We use a Kriging-based approach
to model the environment due to its unique inclusion of spatial
autocorrelation between the inferred and empirically measured
data [21].

Section V-A provides a brief insight of Kriging and how
Gaussian Processes (GP) are used to infer the probability of
maximum channel gain at each exploration point. Section V-B
proves that the empirical data actually meets the Kriging data
pre-requisites. Section V-C describes the overall procedure
to find the next angles to be analyzed, i.e. (φk+1, θk+1),
the stopping criteria δ and the consequent final optimum
orientation (φ∗, θ∗).

A. GP and the Kriging model

GP can be treated as a generalization of the multivariate
normal distribution, where t represents the bidirectional col-
lection of indexes {φi,j , θi,j}. The yet-to-be visited points
in the set are characterized by (2), where I represents the
prior knowledge of the spatial distribution. Given the Gaussian
nature, I is modeled with mean vector µ and covariance matrix
C(y,y’), also referred as Kernel K(x, x).

P (y|x, µ,C) = N (y|x, µ,C) =
1

(2φ)2|C|
· e 1

2 (y−µ)HC−1(y−µ)

(2)
This way, P (y|x, µ,C) reveals the most probable value

for each point in the angular space to return the maximum
channel gain, i.e. µ, and how gains from different angles
correlate, i.e. C. Conversely, we can write µ(x) = E [(y|x)]
and K(x, x′) = Cov(P (y|x), P [y|x’)]. For instance, if we wish
to predict y|x with y ∼ N (µ,C = K(x, x)), we would use
the previously computed value x0, y0 to get the joint proba-
bility distribution P (y, y0) as in (3), where C∗ = K(x, x0).
Bayes rule gives us the conditional probabilities for these two
samples as shown in (4). Thus, the mean and variance in the



posterior distribution represent the prediction and the value of
uncertainty, respectively.

[
y
y0

]
∼ N

([
µ
µ0

]
,

[
C C∗
CT
∗ C0

])
(3)

P (y|y0) ∼ N (µ0 + CT
∗C
−1(y− µ),C0 − CT

∗C
−1C∗) (4)

Therefore, GP generates the posterior distributions given our
selected angle x and prior distributions µ0 and C0. Several
models are suggested to approximate the covariance matrix,
also called semivariogram. We will show that a Gaussian
Kernel allows for the best fit using the LS approximation
[22] (more details in Sec. VIII). The model is shown in (5),
where c0 and a0 are the hyperparameters, and h represents the
distance between any pair of angles, i.e. h = ||x− x′||2.

K(h|c0, a0) ∼ c0
[
1− exp

(
−h

2

a20

)]
(5)

Kriging extends from GPs in the sense that it allows to
model every single point as the sum of a weighted function,
called as a trend, and a GP with 0 mean and variance K,
i.e. g ∼ GP (0,K). Among the three different Kriging models
(simple, universal or ordinary), we fit the ordinary Kriging
model (OK) into our system given the stationary nature of
the data, i.e. no mobility in-between angular space sampling.
Therefore, the Kriging model can be expressed in (6), where
the coefficients W(y) are the Kriging trends and represent the
prediction value. For simplicity, we write these as W, with
their uncertainty metric captured in y, a GP centered in the
prediction WT x, added to environmental noise εx.

y0(x0|x, y) = WT x + g + εx (6)

min
Wi

σ2
y = E[{y − ŷ}2] = C00 + WTCW− 2WTC0

s.t. WT 1 = 1
(7)

W∗ = C−1
(
C0 − λT 1

)
(8)

The Kriging estimate is obtained by choosing weights W
so that the estimation variance σ2

y is minimized. We define
the matrix of autocovariance from the sampled data xas
C ∈ RP×P , and the covariance between x and the spot
y as C0 ∈ RP×1. In addition, the cumulative sum of the
weights should be constant and normalized. The constrained
optimization problem is defined in (7).

The Best Linear Unbiased Estimator (BLUE) has the lowest
estimate variance among all other linear, unbiased estimators,
under the following conditions: (i) E(ε) = 0,∀i, (ii) V ar(ε) =
σ2, and (iii) Cov(εi, εj) = 0 [21]. Since the only source
of error is AWGN noise, known to have 0 mean, constant
variance and independent, we conclude that BLUE will give
the optimum configuration (8). The constrained problem is
tackled via duality using the Lagrange Multipliers λ, leading
to the solution λ∗ = (CTC−10 −1)(1TC−11)−1. Note that the

Algorithm 1 Proposed DIRECT EGO-based antenna orienta-
tion

1: Init. angular space: Ω = {Φ,Θ}, ∀φ ∈ Φ, ∀θ ∈ Θ
2: Init. DIRECT and channel functions: D() , f()
3: Init. number of trials in On-line learning: KD

4: Init. candidates: Π ≡ (Φ0,Θ0) ∈ RKD×2 ∈ Ω
5: Init. stopping threshold γ and model variation ∆K

6: Populate x with candidates: x← Π
7: Eval. channel at x: y← f(x) (Off-line learning)
8: Compute Variogram of < x, y >: Var(x, y)
9: Gaussian fit to Var: K(x, x′) , ∀x, x′ ∈ Ω (Kernel)

10: Kriging to x, y and Kr(x,y): Kp,Kv

11: Select best: π∗ ← arg minx∈SE(||Kp||; x)
12: while γ ≥ ∆K do:
13: Sort Π, KD best: Πs = sort(E(||Kp||; x,KD))
14: for t’ in Π do:
15: Select new trial: xn+1 ← t′ (On-line learning)
16: Eval. channel at xn+1: yn+1 ← f(xn+1)
17: Apply DIRECT to xn+1: tD ≡ (Φ,Θ) ∈ Ω
18: Add tD to total candidate set: Π← Π ∪ tD
19: Remove explored configuration: Π← Π \ t′
20: Update set: x← x ∪ xk+1 and y← y ∪ yk+1

21: Update subindex n: n← n+ 1
22: Update Variogram of < x, y >: Var(x, y)
23: Gaussian fit to Var: K(x, x′) (Kernel)
24: Kriging to x, y and Kr(x,y) in: Kp,Kv

25: Select best: π∗ ← arg minx∈SE(||Kp||; x)
26: Model variation ∆K = max(Kn

p −Kn−KD
p )

27: return π∗ ≡ (φ∗, θ∗)

solution weights depend only on the spatial covariance and the
semivariogram (prior).

B. Kriging data prerequisites

Classical Kriging provides the optimal interpolation tech-
nique if the input data meets certain criteria: First, the data
needs to have a normal distribution. Second, the data needs
to be stationary. Third, the data cannot have any trends. The
second condition is met since the only disturbances in the
system is the AWGN, taken into consideration in (6). Finally,
we determine that the data has no trends by inspecting the gen-
erated dataset, containing uneven and dissimilar distributions
of maximums and minimums across the space.

C. Proposed approach based on GP

The objective in the antenna orientation is two-fold: obtain
the optimum combination of angles (φ∗, θ∗) for every antenna
pair while minimizing the number of sampling points. We ap-
proach the problem using Efficient Global Optimization (EGO)
theory, which considers scenarios where the objective function
is undefined [23]. The solution comes from the combination
of three well-differentiated aspects: (i) environment modeling,
(ii) point selection and (iii) stopping criteria.

With (i) described earlier in Sec. V-A, we focus attention
on (ii) and (iii). Standard EGO nomenclature refers to (ii) as
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the acquisition function, which decides the way we sample
our unknown function. Bayesian theory becomes critical at
this stage, since it not only provides an estimation of the
unknown values, but also it provides an understanding of
how sure we are about each prediction, giving the so-called
prediction uncertainty (Fig. 6). In other words, it allows for
the exploration in areas with high prediction values, high
uncertainty on the measure, or both. We want to minimize
the expected deviation from the maximum G∗ when choosing
the next trial point xk+1.

An extensive analysis on acquisition functions is avail-
able in [22]. The least complex approach is the so-called
Probability Improvement (PI), where the next trial is se-
lected to be the one with the highest expectation. That is,
xn+1 ← arg minx∈SE(||Kp||; x). PI works well with smooth
and convex objective functions but may get stuck at a local
minimum, which occurs in Fig. 5. Another widely used func-
tion is the Expectation Improvement (EI), where uncertainty
at each unknown combination is treated as if the predicted
value was generated from a normal distribution with mean and
standard deviation given by the Kriging predictor. However,
this requires tuning the environmental noise ε that controls
the exploration-exploitation phases.

We propose a method that requires no exploration-
exploitation tuning and limits the search space to a confined
subset, given the time limitation driven by the coherence
time of the channel. To that end, we use the DIvide in
RECtangles (DIRECT) method, which samples the space into
equidistant squares and applies a fractal procedure as samples
are withdrawn from them. Thus, DIRECT generates a set of
possibilities for next trial. We apply a variance minimization
(VM) mechanism, selecting the point to explore that has the
highest uncertainty in the Kriging model (see Sec. V-A).

Our approach, called as DIRECT-UM, alternates between
environmental modeling, via Kriging, and next trial selection,
via uncertainty minimization (UM). The algorithm comprises
two stages: Off-line learning, where the channel is evaluated
using pre-stored angles that span as much as possible the set;
and On-line learning, where we employ DIRECT-UM to select
the next trials. In On-line learning, the system keeps trying
new antenna angles until the variation on the channel map ∆k

is below a certain threshold (Alg. 1).

VI. ANTENNA GROUPING & ALLOCATION

Next, we present the approach of grouping the transmitter
SDRs together to serve different target receivers. We state the
objective as: given the channel gains y∗ provided by DIREC-
UM (see Sec. V), select the best transmitters to beamform to-
wards each user. We attempt to maximize the MISO sum-rate
so that each user perceives an interference-free environment.

The RME builds matrix M ∈ CN×M containing y∗i,j∀j ∈ T
and ∀i ∈ R. Noting heterogeneous QoS demands, we model
the network as a bipartite graph Gr = (T ,R,M), where
the sets T and R contain the transmitters and receivers, and
M represents the collection of y∗i,j . The antenna assignment
problem is solved using the Hungarian Algorithm [24], which
finds the perfect matching for the max sum-rate in the network.
Thus, every node in set T is linked to one node in set R and
removed from the set T afterwards. Given that users are to be
allocated multiple transmitters (MISO), a modified Bipartite
Graph Gr is formed by adding dummy transmitters so that a
perfect match can be found. That is, adding extra nodes in
Gr so that a one-to-one assignment in the graph results in a
multiple-to-one assignation in the real world. The Hungarian
Algorithm has polynomial complexity given by O(n3) and
always finds the optimum allocation in the graph Gr.

We execute the modified Hungarian for different K, de-
noting the maximum number of transmitters to be allocated
per user. This allows to balance available SDR resources with
capacity maximization. For each K, the algorithm terminates
when T is either an empty set or no further matches are
possible, returning the matching inM. The time complexity of
the method O(Nn3) is further reduced by employing a binary
search algorithm to explore the space, confining the values of
K via space bisection. The stopping rule is an improvement
below what is considered meaningful.

VII. EFFICIENT 3-D BEAMFORMING

Semidefinite programming allows us to solve the non-
convex NP-hard problem presented in Section III in polyno-
mial time. By solving the problem in (1), we not only take into
account scattering, but also consider the interference caused to
unintended receivers within the network, which is desirable for
our multi-user scenario.

The non-convexity of (1) is shown in [25]. SDP relaxation
is based on the inclusion of a new matrix variable defined
as Wi(φi, θi) = wi(φi, θi)w*i(φi, θi). Subsequently in this
paper, we simplify the notation regarding the selected 3DBF
angles, i.e. wi = wi(φi, θi). The resulting new formulation is
described in (9).



min
{Wi}i∈G

∑
i∈G

Tr(Wi), ∀i

s.t. T r(RiWi)− Λi
∑
k∈G\i

Tr(RkWk) ≥ Λiσ
2
i ,∑

i∈G
diag(Wi ≤ Ptn),

Wi = W*i,
Wi ≥ 0,

Rank(Wi) = 1

(9)

Where Ri is the channel correlation matrix, the property
w*iRiwi = Tr(Riwiw*i) = Tr(RiWi) is used, and the last
three constraints assure the equivalence between (1) and (9).
Notice that the equality Wi = wiw*i holds when Wi is a
one-rank positive semidefinite matrix. It can be proven that
when Wi is one-rank, wi can be computed as an eigenvector
associated to the only non-null eigenvalue. (9) is not a convex
problem yet and requires further modifications. By removing
the one-rank constraint of the weight matrix Wi, we relax the
problem and allow it to be solved efficiently. Our goal then
is depicted in (10), where we employ convex optimization
techniques.

min
{Wi}i∈G

∑
i∈G

Tr(AiWi), ∀i

s.t. T r(RiBiWi)− Λi
∑
k∈G\i

Tr(RkBkWk) ≥ Λiσ
2
i ,∑

i∈G
diag(Wi ≤ Ptn),

Wi = W*i,
Wi ≥ 0

(10)

The matrices Ai and Bi are multiplied by Wi in order
to assign each antenna to a user according to the previously
computed antenna allocation. The problem in (10) is solved
using the interior point method approach [26]. Furthermore,
given that the unitary rank constraint is relaxed, the rank of
the solution W*i could be greater than unitary. [27] shows
that the rank of W*i is one and thus, the optimum solution is
always found.

VIII. PERFORMANCE EVALUATION

In this section, we provide a comprehensive evaluation study
on our experimental testbed resented in Sec. IV to validate the
claims that NetBeam (i) requires minimum trials to find the
optimum orientation per antenna pairs, (ii) allocates antennas
efficiently so that the network capacity bound is maximized,
and (iii) reduces the emitted power while guaranteeing good
SINR service. First, we generate extensive channel matrices
from different deployment scenarios, ranging from several
transmitters, receivers, radio locations in a 3D space. We refer

Fig. 7: NetBeam outdoor testbed with a given antenna-location
configuration

to this as our dataset, which we divide into training and
validation sets. Our setup can be further inspected in Fig. 7
and test-cases in Fig. 8.

The testbed comprises 12 USRP-X310 transmitter SDRs
and 3 USRP-B210 radios as receivers. The architecture follows
the description in Sec. IV. Transmitters and receivers are cen-
trally connected to the RME, which receives the measurements
from the receivers, computes the antenna orientation (Sec.
V), weights (Sec. VII) and time correction (Sec. IV-D), and
forward the information to the transmitters.

A. NetBeam spatial correlation

We reduce the amount of computations during modeling
by considering spatial correlation in data. That is, NetBeam
finds the optimum orientation using the gains associated to
the visited angles and the angular distances to any un-visited
angle. Distance here refers to the 2-norm between xi and
xj , ∀i, j ∈ T . To that end, we employ our training data,
indoors and outdoors, to compute the semivariogram, and to
construct the Prior during the Kriging procedure. Fig. 9 shows
the experimental semivariogram, characterizing the sill, i.e.
the value at which the model first flattens out, and the range,
i.e. the maximum distance for which we can still consider
correlation. The range reveals to be approximately 100 (norm
L2), taken as a constraint in steps 4 and 12 of Alg. 1, fastening
the execution and improving the efficiency.

B. NetBeam antenna orientation

In this section, we prove that our proposed trial selection
in the antenna orientation procedure (Direct-UM) finds the
optimum with the minimum number of trials. To that end,
we implemented other common acquisition functions: variance
minimization (VM), random selection (Random) and DIRECT
with random sampling (Direct-RD). We use the empirical data
from our data set in the indoor and outdoor deployment, shown
in Fig. 8. Given the time constraint in real systems, the angular
exploration is capped at 8 trials.
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Fig. 10: DIRECT-UM partitions the space and finds the
optimum within few iterations via variance minimization.
Other techniques, i.e. Random search, do not search the space
efficiently.

The behavior of Direct-UM is explained in Fig. 10, where
the space is divided using DIRECT and the optimum ori-

entation is found within a limited set of trials. A Random
strategy, however, offers a worse performance. A comparative
summary of the aforementioned algorithms is included in Fig.
11. Indeed, DIRECT-UM minimizes the gap to optimality
when the off-line stage is large, benefiting from the Variance
in the set and selecting the points with highest uncertainty.
The greedy (PI) policy is unsuitable for non-convex objective
functions. DIRECT-RD, with no use of prior knowledge,
manages to explore the space but always settles in a local
minima. An unguided UM only exploits the exploration stage,
leading to a larger gap.

C. Power minimization and required SINR
We now show that the multi-stage comprising antenna

orientation using DIRECT-UM and antenna allocation produce
the minimum transmit power while meeting the desired SNR.
We use the empirical data from the test case shown in Fig.
8, execute the DIRECT-UM approach (Sec. V) and apply the
Hungarian Algorithm (Sec. VI) on the RME. The maximum
available transmit power at each node is assumed to be the
same. The used power and the resulting SNR is shown in Fig.
12. As expected, the optimum antenna allocation (Modified
Hungarian) combined with DIRECT-UM-based orientation
requires the minimum power while still able to meet the SNR
demands. An improper antenna allocation results in drastic
SNR losses.

IX. CONCLUSIONS

We introduce NetBeam, a full programmable 3-D beam-
forming approach with both digital beamforming and me-
chanical antenna orientation that serves multiple users with
heterogeneous application demands. First, we show the sub-
stantial channel gain when the antenna is properly oriented
versus a conventional LoS or even fixed orientation. We
then propose the multi-stage approach that comprises of: (i)
antenna orientation, (ii) antenna allocation and (iii) efficient
SDP-beamforming. Performance evaluation results show that
DIRECT-UM always finds the best solution in a minimum
number of angle trials, compared to other efficient acquisition
functions. In addition, NetBeam minimizes the transmit power
compared to conventional methods, while still meeting the
applications demands. Our approach is validated using our
testbed, using COTS devices deployed in indoor and outdoor
conditions.
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