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Abstract—This paper describes the architecture and perfor-
mance of ORACLE, an approach for detecting a unique radio
from a large pool of bit-similar devices (same hardware, protocol,
physical address, MAC ID) using only IQ samples at the physical
layer. ORACLE trains a convolutional neural network (CNN)
that balances computational time and accuracy, showing 99%
classification accuracy for a 16-node USRP X310 SDR testbed
and an external database of >100 COTS WiFi devices. Our work
makes the following contributions: (i) it studies the hardware-
centric features within the transmitter chain that causes IQ
sample variations; (ii) for an idealized static channel environment,
it proposes a CNN architecture requiring only raw IQ samples
accessible at the front-end, without channel estimation or prior
knowledge of the communication protocol; (iii) for dynamic
channels, it demonstrates a principled method of feedback-driven
transmitter-side modifications that uses channel estimation at
the receiver to increase differentiability for the CNN classifier.
The key innovation here is to intentionally introduce controlled
imperfections on the transmitter side through software directives,
while minimizing the change in bit error rate. Unlike previous
work that imposes constant environmental conditions, ORACLE
adopts the ‘train once deploy anywhere’ paradigm with near-
perfect device classification accuracy.

I. INTRODUCTION

Sensing the wireless spectrum and identifying active radios
within the bands of interest directly impacts spectrum usage.
This paper takes the first step in distinguishing radios in a
shared spectrum environment by using machine learning to
detect characteristic reference signatures embedded in their
transmitted electromagentic waves, a process known as RF
fingerprinting. Our goal is to achieve this with information
that can be leveraged at the radio hardware front-end. We
separately consider situations where the channel is unchang-
ing between training and validation (idealized) and when
the channel is dynamic (practical). The key innovation in
our approach, termed ORACLE, is that it learns the unique
modifications present within the in-phase (I) and quadrature-
phase (Q) samples that are introduced in the signal as it passes
through the transmitter chain. ORACLE uses Convolutional
Neural Networks (CNNs) to learn and then identify individual
radios through device-specific variations contributed by the
inherent randomness in the manufacturing process. These so
called imperfections are present within the analog components
(digital-to-analog converters, band-pass filters, frequency mix-
ers and power amplifiers) that compose a typical transmission
chain, differentiating radio devices even if their manufacturer
and make/model are identical.
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Figure 1: Typical transceiver chain with various sources of RF
impairments.

A. Signatures contained within 1Q samples

Radio fingerprinting involves extracting unique patterns (or
features) across the protocol stack that can be used as device
signatures. Indeed, physical (PHY) layer, medium access con-
trol (MAC) layer, and upper layers have been utilized for radio
fingerprinting [1]. However, simple unique identifiers such
as IP addresses, MAC addresses, international mobile station
equipment identity (IMEI) numbers can easily be spoofed.
Location-based features such as radio signal strength (RSS),
angle of arrival (AoA) and channel state information (CSI) are
susceptible to mobility and environmental changes. ORACLE,
instead, focuses on those transmitter features that are inherent
to a device’s hardware makeup, which are unchanging and
cannot be easily replicated by malicious agents.

Fig. 1 indicates an example scenario of these so called
transmitter signatures (rigorously studied in Sec. III) for 16-
QAM constellation. The red circles indicate the ideal constel-
lation points formed by the I (x-axis) and Q (y-axis) samples,
and the black crosses indicate actual constellation points that
are shifted due to a specific type of hardware imperfection.
Practical transmitters have a combination of these shifts that
form their unique signatures, though we show only three
plots caused by IQ imbalance, nonlinear distortion and phase
noise in the figure. ORACLE aims to learn and intentionally
modify some of these features on the transmitter through



USRP Hardware Driver (UHD) software API commands,
thereby enhancing identifiability/classifier efficiency. We note
that ORACLE can be easily used in conjunction with other
existing and higher layer classification approaches.

B. Machine learning for RF fingerprinting in ORACLE

Machine learning (ML) techniques have shown great
promise in image and speech identification problems, and are
steadily gaining traction in applications within the wireless
domain. ORACLE is solely built on a convolutional neural net-
work architecture that has not only seen success in the above
areas, but has also been previously used for modulation [2]
and protocol identification [3]. ORACLE adopts a stagewise
approach towards achieving practical classification. We attain
this in the first step by demonstrating 99% accuracy on an
externally obtained data set of 100+ COTS WiFi radios (not
all of which are bit-similar), as well as on our testbed of 16
bit-similar USRP X310 radios that we configure to be exactly
similar in terms of waveforms generated (same 802.11a PHY
frame, modulation/protocol/mac ID).

C. The ORACLE approach

For radios operating in a channel-invariant environment
(henceforth referred to as a static channel), ORACLE identifies
radios by using only raw IQ samples. It neither estimates
the channel, nor does it use any prior knowledge of the
protocol being used. However, its performance degrades if the
operating environment of the radio is changed. This is because
the wireless channel often has a dominant impact on the
transformation of the IQ samples in the complex plane. When
the channel is varying (henceforth referred to as a dynamic
channel), ORACLE is trained with complex demodulated
symbols instead of raw IQ samples. This approach negates
the effect of the channel while retaining the effect of hardware
impairments only. Here we make an interesting observation:
training with demodulated symbols makes low-end SDRs
(such as the Ettus N210 USRP) robust to channel variations.
However, high-performance SDRs (such as the X310 USRP)
that are manufactured with components with lower variability
need an additional step. For such high-end bit-similar devices,
ORACLE has a principled method for intentionally introduc-
ing impairments to increase differentiability while minimizing
the bit error rate (BER) for each transmitter. The key insight
here is that controlled addition of impairments in a bit-similar
radio generates a unique pattern in the demodulated signal at
the receiver, which is independent of channel variations.

In summary, the main contributions of this paper are:

e We study the different causes of transmitter-side reference
signatures, and visualize their impact on the IQ constellation
space. We identify specific features that are amenable to fine
tuning by the receiver feedback using software APIs.

e Using an SDR testbed and external database of 100+
devices, we propose the design of ORACLE, which includes a
robust CNN architecture returning >99% device classification
accuracy on static channels using only raw 1/Q samples.

Table I: Machine learning approaches for device fingerprinting.

Publication Approach

Master DB of signatures for wireless
device driver fingerprinting
Master DB of signatures for AP
fingerprinting
k-NN based transmitter fingerprinting
SVM based NIC identification
ANN based wireless device identification

Franklin ef al [4]

Gao et al [5]

Kennedy et al [6]
Brik et al [7]
Radhakrishnan et al [8]
O’Shea, et al [2]

Chen, et al [9]

CNN based Modulation recognition

Infinite Hidden Markov Random Field
based classification

Infinite Gaussian Mixture Model based
device classification

Nyugen, et al [10]

e We propose and implement an enhanced design of ORA-
CLE on USRP X310 radios, that systematically introduces
controlled impairments to increase differentiability in high-end
bit-similar SDRs, while ensuring the added BER at a common
receiver is minimized. This is a critical step towards ‘train once
deploy anywhere’ paradigm that allows robust CNN learning
under realistic channel variations.

II. RELATED WORK

While there exists a vast literature on the theory and
applications of ML, we only review works that are directly
relevant to the problem of RF fingerprinting, and within it,
mainly supervised learning. Unsupervised learning, on the
other hand, is effective when there is no prior label information
about devices. For e.g., in [9], an infinite Hidden Markov
Random field (iIHMRF)-based online classification algorithm
is proposed for wireless fingerprinting using unsupervised
clustering techniques and batch updates. Transmitter charac-
teristics are used in [10] where a non-parametric Bayesian
approach (namely, an infinite Gaussian Mixture Model) clas-
sifies multiple devices in an unsupervised, passive manner.
However, in our approach we generate real data for each device
independently; hence, labeling the device specific dataset is an
inexpensive task. Given the ground truth to facilitate model
creations, we follow the supervised learning paradigm, where
a large collection of labeled samples are applied for training,
prior to network deployment. There are two main approaches
in this form of learning:

A. Similarity-based

Similarity measurements involve comparing the observed
signature of the given device with the references present in
a master database. In [4], a passive fingerprinting technique
is proposed that identifies the wireless device driver running
on an IEEE 802.11 compliant node by collecting traces of
probe request frames from the devices. A supervised Bayesian
approach is used to analyze the collected traces and generate
the device driver fingerprint. Gao et al. [5] describe a passive
blackbox technique, that uses TCP or UDP packet inter-arrival
time to determine the type of access points using wavelet
analysis. However these techniques rely on prior knowledge
of vendor specific features.



B. Classification-based

1) Conventional: This form of classification examines a
match with pre-selected features using domain knowledge of
the system, i.e., the dominant feature(s) must be known a
priori. Kennedy et al. [6] propose classification by extracting
the known preamble within a packet and computing spectral
components. A set of log-spectral-energy features are given
as input to the k-nearest neighbors (k-NN) discriminatory
classifier. PARADIS [7] fingerprints 802.11 devices based on
modulation-specific errors in the frame using SVM and k-
NN algorithms with an accuracy of 99%. In [8], a technique
for physical device and device-type classification called GTID
using artificial neural networks is proposed that exploits vari-
ations in clock skews as well as hardware compositions of
the devices. However, as multiple different features are used,
selecting the right set of features is a challenge. This also
causes scalability problems when large number of devices
are present, leading to increased computational complexity in
training.

2) Deep Learning: Deep learning offers a powerful frame-
work for learning complex functions, leverages large datasets,
and greatly increases the the number of layers, in addition to
neurons within a layer. O’Shea and Corgan [2] and O’Shea and
Hoydis [11] apply deep learning at the physical layer, specif-
ically focusing on modulation recognition using IQ samples
and convolutional neural networks. They classify 11 different
modulation schemes. However, this approach does not identify
a device like ORACLE, but only the modulation type used
by the transmitter. In our initial work [12], we used raw IQ
samples and CNN to identify low-end SDR radios.

To the best of our knowledge, ORACLE is the first work
that allows training a CNN for bit-similar device identification
such that the same classifier may operate in unknown/dynamic
channel conditions without the need for new trials.

IIT. A CLOSER LOOK AT DEVICE SIGNATURES

In this section, we first study RF hardware impairments that
cause variations in IQ samples, resulting in a unique signature
for each device. We focus on IQ imbalance and DC offset, the
two impairments that (i) are independent of the environment,
and (ii) do not apply only in context of a specific transmitter-
receiver pair (as opposed to, say, relative phase offset). Then,
we present a method of introducing controlled impairments
using GNU Radio UHD API at the receiver. Subsequently, we
explain the experimental testbed setup for trace data collection.

A. RF impairments

Using the MATLAB Communications System Toolbox, we
simulate a typical wireless communications processing chain
(see Fig. 1, with the shifts in the received complex valued
IQ samples), and then modify the ideal operational blocks to
introduce RF impairments, typically seen in actual hardware
implementations. This allows us to individually study the 1Q
imbalance, DC offset, phase noise, carrier frequency offset
and nonlinear distortions of power amplifier. In this paper,
we focus on the two impairments (IQ imbalance and DC

offset) owing to space constraints, though our approach can
be trivially extended for others as well.

o¢IQ imbalance: Quadrature mixers are often impaired by
gain and phase mismatches between the parallel sections of
the RF chain dealing with the I and Q signal paths. The
mismatch in their gains causes amplitude imbalance, whereas
phase deviation from 90° in the quadrature signal results in
phase imbalance. IQ imbalance varies only with frequency
due to frequency-dependent low pass filters, and thus, it
carries a unique signature of a transmitter for that frequency.
oDC offset: This is caused within the quadrature mixers due
to the finite isolation between Local Oscillator (LO) and RF
ports of a mixer, and a direct feedthrough from the LO signal
often gets coupled to the output.

B. Software-based control of impairments

We first explain the use of self-calibrations utilities provided
by Ettus to set IQ imbalance and DC offset in the transmitter
chain using GNU Radio functions.

o IQ imbalance compensation: Let s(t) € C be the transmit-
ted baseband complex signal at time ¢ before being distorted
by IQ imbalance. Then, the distorted baseband signal in the
time domain is:

sa(t) = pes(t) +ves™(t), (1)
where the distortion parameters p; and vy are related to
amplitude and phase imbalances in the I and Q paths of the
quadrature mixer in the transmitter chain.

The simplified model of these distortions parameters can
be written as p; = cos (6¢/2) + jaysin(6;/2) and v, =
o cos (0;/2) —jsin (6;/2), where o and 6; are the amplitude
and phase imbalance between the I and Q signal paths at the
transmitter, respectively. The phase imbalance is any phase
deviation from the ideal 90°. The amplitude imbalance is
defined as o7 ;ZZ, where o and ag are the respective gain
amplitudes on the I and Q paths.

1Q imbalance causes interference in the signal by generating
its image at a mirror frequency. It is quantified by measuring
the power of the image with respect to the desired signal, also
called as Image Rejection Ratio (IMRR), as shown in Fig. 2.
The IMRR is calculated by sending a complex sinusoidal e/,
and by taking ratio of the power of the signal at the image
frequency (—w) and desired frequency (w). Thus, IMMR for
amplitude imbalance a; and phase difference of 6;, is given
by:

2 + 1 — 274 cos b,
V2 + 14 27y cos b’

IMRR = )

where v; = ay + 1.

While many theoretical time and frequency domain
methods allow compensation for the IQ imbalance,
we use the Ettus provided UHD calibration utility

uhd_cal_tx_iqg balance. It performs a calibration
sweep over a range of frequencies checking the transmission
path signal leakage into the receive path.
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Figure 2: Effect of IQ imbalance quantified through IMRR.
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Figure 3: Experimental setup for data collection using SDR.

Table II: A snapshot of IMMR levels of IQ imbalance recorded using
uhd_cal_tx_iqg _balance utility

Correction| Correction | Power of P(?wer of IMMR
. . image
real imag. main tone (dB)
tone
—0.272 —0.636 —49.036 —66.138 —17.102
—0.636 —0.636 —48.852 —66.306 —17.454
—0.454 —0.0909 —49.091 —67.326 —18.235

At runtime, the UHD software automatically applies the
correction, typically a single complex factor, to the transmit
chain of the RF daughterboard. For a given value of correction
factor, a single frequency tone is transmitted, and the power of
the desired tone and the image tone are measured to compute
IMMR.

We modified this utility to record the correction factors
and the corresponding IMMR. Table II shows a snapshot of
the recorded IMMR levels for USRP X310 radio at a center
frequency of 2.45 GHz.

o DC offset compensation: DC offset results in a large
spike in the center of the spectrum. By measuring the
power of the main tone at the DC frequency, we can mea-
sure the amount of DC offset. A UHD calibration utility
uhd_cal_tx_dc_offset uses a single complex factor to
correct DC offset level. It finds the best correction factor that
minimizes the power of the DC tone. Again, by modifying
the utility, we record the levels of DC offset level for the
correction factor.

We use the open-source GNU Radio companion (GRC)
to transmit standard-compliant IEEE 802.11a WiFi pack-
ets through the SDR. Using set_ig balance and
set_dc_offset functions in GRC, these two separate
complex correction factors can be set to intentionally introduce
required level of impairments in the radio.

C. Experimental setup for Trace Data collection

We study the performance of the CNN using IQ samples
collected from an experimental setup of USRP SDRs, as
shown in Fig. 3, with a fixed USRP B210 as the receiver. All
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Figure 4: Our proposed CNN architecture with two convolution and
two fully connected layers.

transmitters are bit-similar USRP X310 radios that emit IEEE
802.11a standards compliant frames generated via a MATLAB
WLAN System toolbox. The data frames generated contain
random payload but have the same address fields, and are
then streamed to the selected SDR for over-the-air wireless
transmission. The receiver SDR samples the incoming signals
at 5 MS/s sampling rate at center frequency of 2.45 GHz
for WiFi. The collected complex IQ samples are partitioned
into subsequences. For our experimental study, we set a fixed
subsequence length of 128, i.e., the length of contiguous sam-
ples that will be used at a time for training and classification.
Overall, we collect over 20 million samples for each radio,
subsequently divided into training, validation and test set.

IV. CNN ARCHITECTURE FOR STATIC CHANNELS
A. Classifier architecture

For static channels, we design a CNN architecture that uses
raw time-series 1Q samples generated from 16-node USRP
X310 SDR testbed and the external database of 140 COTS
WiFi devices. Our proposed CNN architecture, as shown in
Fig. 4, is partly inspired from AlexNet [13]. It is a deep CNN
architecture specifically designed to classify 1.2 million high-
resolution images available in the ImageNet dataset into 1000
different classes. Unlike AlexNet, which is made up of 8 layers
(5 convolution and 3 fully connected), our CNN architecture
consists of four layers, with two convolution layers and two
fully connected (or dense) layers. The input to our CNN is a
windowed sequence of raw 1Q samples with length 128. We
choose a sliding window approach to partition the training
samples that enhances the shift invariance of the features
learned by the CNN. Each complex value is represented as
two-dimensional real values (i.e., I and Q are two real value
streams), which results in the dimension of our input data
growing to 2 x 128. This is then fed to the first convolution
layer. The convolution layer consists of a set of spatial filters,
also called kernels, that perform a convolution operation over
input data to extract the features. The first convolution layer
consists of 50 filters, each of size 1 x 7, in which each
filter learns a 7-sample variation in time over the I or Q
dimension separately, to generate 50 distinct feature maps over
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Figure 5: Box plot for the classification of WiFi devices using CNN.

the complete input sample. Similarly, the second convolution
layer has 50 filters each of size 2 x 7 and each filter learns
variations, again of 7 activation values, over both I and Q
dimensions of the 50-dimensional activation volume obtained
after the first convolution layer. Each convolution layer is
followed by a Rectified Linear Unit (ReLU) activation, that
performs a pre-determined non-linear transformation on each
element of the convolved output.

The output of the second convolution layer is then provided
as input to the first fully connected layer, which has 256
neurons. A second fully connected layer of 80 neurons is
added to extract higher level non-linear combinations of the
features extracted from previous layers, which are finally
passed to a classifier layer. A softmax classifier is used in
the last layer to output the probabilities of each sample being
fed to the CNN. The choice of hyperparameters such as filter
size, number of filters in the convolution layers and the depth
of the CNN is of high importance to ensure that our CNN
model generalizes well. These are chosen carefully through
cross validation. In order to overcome overfitting, we set the
dropout rate to 50% at the dense layers. We also use an
¢y regularization parameter A = 0.0001. The weights of the
network are trained using Adam optimizer with a learning rate
of Ir = 0.0001. We minimize the prediction error through
back-propagation, using categorical cross-entropy as a loss
function computed on the classifier output. We implement our
CNN architecture in Keras running on top of TensorFlow on
a system with 8 NVIDIA Cuda enabled Tesla K80m GPU.

B. Preliminary results

Our preliminary evaluation aims to demonstrate the accu-
racy of ORACLE’s CNN architecture for classifying radios
under static conditions, and it also motivates the need for
receiver-feedback driven modifications for dynamic channels
using techniques described in Sec. III-B.

1) Accuracy in static channel conditions: First, we ver-
ify the performance of our proposed CNN to classify
COTS WiFi devices using an external database, which
contains labeled IQ samples collected from 140 devices
(phones/tablets/laptops/drones) of 122 manufacturers. For each
device, we use 4.5K windowed examples as training set and
1K examples as test set, based on available samples in the
database. A validation set of 300 examples for each device
is used at each training epoch to monitor the performance

(a) (b)

Figure 6: Confusion matrix relative to two experiments with same
devices and different locations: (a) overall accuracy is 98.60%; (b)
overall accuracy is 87.13%.
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on unseen data and the training process is stopped if the
validation accuracy does not increase for 10 consecutive
training epochs. The training time for this experiment using all
140 devices is ~ 15min. ORACLE’s performance is shown
in Fig. 5 with the minimum accuracy, first quartile, median,
third quartile, and maximum accuracy for each dataset. Here,
the X-axis represents a number of randomly chosen devices
whereas the classification accuracy is shown on the Y-axis.
Up to 100 different devices, we obtain a median accuracy
of 99%, whereas it is 96% for 140 devices. We note that
while the number of radios is large, these devices are not bit-
similar. Hence, we ‘stress-test’ our classifier using collected
IQ samples from 16, high-end X310 USRP SDRs that present
a narrower range of impairments, with the same B210 radio
as a receiver. Our training set for this experiment consists,
per radio, of 200K windowed training examples and 10K
examples for validation. We use another 50K examples for
each device to test the performance of our trained model. It
takes ~ 30min with our current setup to train the model for
16 radios. Also for this setup, we obtained 98.6% accuracy on
the test set, shown in Fig. 6a.

2) Limitations of raw 1Q samples in dynamic channels:
Multipath reflection and fading have considerable impact on
received 1Q samples, at times distorting the samples wherein
the classifier no longer correctly identifies the radios. Typi-
cally, the effect of the channel is compensated by channel es-
timation and equalization techniques to correctly retrieve over-
the-air transmitted data. Thus, as we show next, classification
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performance degrades severely when either (i) classifiers are
trained on raw IQ samples under a given channel and then
tested on IQ samples obtained under different channels, or (ii)
transmitters experience very similar channel conditions.

Fig. 6a shows the classification accuracy of 16 X310 radios,
with near-perfect results for all the devices. However, Fig. 6b
shows the same setup in a different location where several
outliers exist, as the confusion matrix shows, e.g., see radio
pairs (5,15), (10, 14). The reason is that the similarity in
the wireless channel experienced by certain transmitter pairs
dominates subtle hardware variations. Given a set of R radios,
I{Q(k:) represents the average channel gain in k" subcarrier
of each radio r; € R, estimated over WiFi packets belonging
to the training dataset.

Fig. 7a and 7b reveal how received samples from transmit-
ters with smaller differences in channel estimation are more
likely to be misclassified by ORACLE during testing. This
shows that wireless channel state affects the distribution of
complex symbols captured by the receiver in a non-negligible
manner, and therefore becomes a discriminating factor when
the classifier is trained with raw I1Q samples. If we try to use
a pre-trained model and use it to classify samples collected
from same devices but at different times or locations, the
classification result is unpredictable. See Fig. 8a, 8b and 8c
for the classification results showing the time and location
dependence of the trained classifier.

V. ORACLE wWITH FEEDBACK FOR DYNAMIC CHANNELS

This section describes the enhancements in ORACLE that
allow it to robustly classify transmitters in unseen environ-
ments. The two main assumptions here are: (i) instead of raw
IQ samples, ORACLE works with demodulated symbols, and
(ii) in a pre-deployment phase, the receiver provides feedback
to the transmitter to incorporate controlled impairments.

A. Impact of impairments on demodulated symbols

ORACLE modifies the transmitter chain of the SDRs such
that their respective demodulated symbols acquire unique
characteristics that make the CNN robust to channel changes,
i.e., it makes the transmitter hardware dominate channel in-
duced variations. We first validate the hypothesis that a given
combination of impairments results in repeatability in the
outcome of the classification. To demonstrate this, consider
demodulated symbols received from two X310 radios, over
cable and air channels, as shown in Fig. 9, for three different
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Figure 9: Patterns generated by 3 impairments on 2 devices under
2 channel conditions. First and second row show the channel- and
device- invariance of the patterns respectively.

levels of IQ imbalance. The first row shows slight differences
in the demodulated samples when the channel is completely
changed (i.e., air to cable) for the same transmitter. In the
second row, when the same channel is maintained, but the
transmitters themselves are different, adding the same level of
IQ imbalance results in virtually the same pattern in each case,
ensuring repeatability and robustness.

We also quantitatively analyze the property of the channel-
and device- invariance of the patterns with Earth Mover’s
Distance (EMD), a widely used metric to measure similarities
between two multi-dimensional distributions. More precisely,
suppose we have two sets of points in R?. Let A C R? and
B C R? be two subsets of equal size, i.e., |A| = |B|. Let F
be the set of all possible bijections (1 — 1 and onto mappings)
from A to B. The EMD between A and B is given by:

EMD(A, B) ;rgggnx f@)ll 3)

In other words, EMD is given by the smallest possible sum
of Euclidean distances between points in A and B, over all
possible valid bijections f : A — B. Smaller EMD indicates
more similarities between two patterns and vice versa. Fig. 10
(a) and (b) show the EMD matrix of patterns generated on
different channel conditions and devices respectively with the
same set of impairments in Fig. 9. We see that computed EMD
on the matrix diagonal, which represents the patterns generated
by the same impairments, are much lower than the EMD
of patterns generated by different impairments. We further
evaluate the EMD for the demodulated signal collected under
3 different channel conditions, 4 devices across 32 different
levels of impairments. We see that the average EMD remains
around 0.1 and 0.2 for patterns generated by the same and
different level of impairments, respectively, despite of the
variations caused by channel conditions. This result matches
closely with Fig. 10 and verifies our intuition.

B. Identifying feasible impairments

The naive approach of introducing random combinations of
impairments before training the CNN has three problems:
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Figure 10: The EMD matrix of patterns generated (a) under different
channel conditions; (b) on different devices.
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Figure 11: (a) BER vs. IMMR value of IQ imbalance; (b) BER vs.
DC offset level for different SNRs.

1) Scalability: If a new transmitter is introduced in the
network, then we have to re-train the entire CNN, which
is a time- and computation-heavy process.

2) Accuracy: It is possible that demodulated samples origi-
nating from two different transmitters (previously, easily
differentiable) now appear clustered together owing to
the modification in their placement on the 1Q plane. This
may reduce the performance of the classifier.

3) Communication impact: Adding impairments naturally
increases the BER. Hence judicious and controlled ad-
dition is needed to limit any adverse impact on BER.

To solve these issues, ORACLE automatically selects fea-
sible impairments that produce IQ sample constellation points
that are significantly different from each other, while min-
imizing the influence on the BER for the transmitter. This
step allows ORACLE to pre-train on virtual radios transmit-
ter chains (constructed in GNU Radio) as the impairments
dominate other variations introduced by its own hardware and
the wireless channel. Thus, ORACLE learns the impairment
patterns, which we have shown in Fig. 9 to be both device
and channel agnostic, i.e., two different radios will result in a
similar demodulated IQ pattern at the receiver under the same
impairment. This approach greatly increases the flexibility of
ORACLE: if a new transmitter is added, we simply assign it
one of the feasible and uncommitted impairments, without any
need to re-train the CNN.

We use a generic X310 USRP radio that operates in a
loop while automatically adding impairments to its hard-
ware through the utilities uhd_cal_tx_ig balance and
uhd_cal_tx_dc_offset for IQ imbalance and DC offset,

respectively. Then the transmitter sends a stream of known
data over cable to the B210 USRP receiver that checks the
BER. For our experiment, we consider 80 different levels
of IQ imbalance with IMMR value ranging from —9 dB to
—44 dB and 120 levels of DC offset ranging from —82 dB to
—140 dB. The BER plots are shown in Fig. 11a and Fig. 11b
for different SNR levels, which we concisely refer to as an
impairment map M, and use it later in Sec. V-D. The bounds
on the impairments depend on the SNR that the radios operate
in. For e.g., our lab has a noise floor of —70 dBm, for which
we assume an average 30 dB SNR level with the constraint on
BER of 10~*. Accordingly, we choose upper bound —13 dB
on IMMR for IQ imbalance and —94 dB for DC offset level.

We next explain how to identify the feasible set S out of
all impairment combinations that satisfy the BER constraint.
Specifically, let [c1,¢a,- -, Cmaz] be the vector of different
levels of IQ imbalance resulting in an ordered set of corre-
sponding BER, i.e., BER|c;] < BER|c;+1]. Therefore, ¢paq
is the maximum IQ imbalance we can add without exceeding
the BER constraint. Note that the BER constraint of 10~*
is evaluated under ideal SNR level (40 dB). We start from
c1, since it has the smallest impact on the communication,
increasingly adding ¢ to ¢4, to the set S. However, any
new c; is eligible to be added only if the difference in EMD
between the pattern generated by c; and that of any existing
¢ in S is larger than a threshold 7. As we have seen
in Sec. V-A, T' = 0.15 allows for an acceptable buffer in
evaluating how close a given IQ pattern is to another. After
we have reached c¢,,,,, we configure the radio with a different
type of impairment until ||S|| > N, where N is the number
of bit-similar radios.

C. CNN classifier using transmitter-side impairments

In this section, we discuss to train the classifier for the
patterns (see Sec. V-B). We reuse the same CNN architecture
and the input data format as described in Sec. IV. Note all
IQ samples for training are collected over the cable, i.e, we
remove the influence of wireless channel so that CNN can
capture the pattern generated solely by hardware impairments.

ORACLE deliberately introduces random noise by modify-
ing the original data to increase the number and variability
of the initial dataset before input to the classifier, a tech-
nique commonly used in deep learning. Since low SNR of
the received samples results in scattering around the ideal
constellation point location within the IQ plane, the noise is
modeled as a Gaussian variable. We note that noise may result
in an altered demodulated IQ sample pattern that is different
from the original one, as shown in Fig. 12. To finely control
the possible variations, we maintain the EMD under 0.1 after
adding noise, since two sample patterns up to this level are
still similar to each other (see Sec. V-A). Thus, adding noise
power less than 02 = —13 dB ensures that the EMD between
original and altered patterns is below this threshold.

D. Allocation of specific transmitters to impairments
The main challenge in adding impairments is that it in-
creases the BER and degrades the quality of service. In
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Figure 12: Pattern generated with (a) original (demodulated) data; (b)
data after adding -17 dB noise, EMD with (a): 0.07; (c) data after
adding -9 dB noise , EMD with (a): 0.18.

addition, the degradation of impairments are different for
radios under various SNR levels (as shown in Fig. 11). Lower
the SNR, the less impairments we may add to radios to ensure
the required BER. We discuss how to solve this problem in
this section, assuming the SNR measurements at the receiver
side are quasi-static for duration 7', allowing an average of
SNR levels within each such time slot.

Problem formulation: Given K radios [ri,re, - - ,Tk],
the average SNR levels for these radios are
[snry, snra, -+, snrk]. We need to select K impairments

that minimize the BER of each transmitter, also depending
on the average SNR level at the receiver.

We solve this problem using a greedy heuristic similar to the
one we used in Sec. V-A to generate unique patterns. Without
loss of generality, consider IQ imbalance with [c1,¢a, -+ , ¢y
as the set of selected IMMR levels and M giving the the
mapping of different SNR levels to the max IQ imbalance to
maintain the BER (see Sec. V-B). Then, for each radio r; we
select ¢, ..., where ¢!, .. = M[maz(Q)], Q is the set of SNR
in M and q < snry;, Vq € Q.

Following this step, we sort the radios [ri,ra,---,7;] by
their ¢!, .., such that ¢, < ¢l ie, we sort radios
according to the max IQ imbalance that can be added. Then we
create two empty sets 2y and Ry, which denotes classifiable
and unclassifiable radios, respectively. We then start to allocate
[c1,ca, -, cp] iteratively to the radios from 7 to ry as long
as ¢; < ¢ .. and place a given radio in the classifiable
set Ry. Otherwise if ¢; > ¢! ., it means no feasible 1Q
imbalance can be added to radio 7 without exceeding the BER
limit. Therefore, we put the radio in the unclassifiable set
Rs. After we have explored all radios and if the Ry is not
empty, we repeat the above process with a second type of
impairment (e.g., DC offset) until all radios have been put in
the classifiable set.

In summary, allocating the impairment from low to high
makes sure that we are minimizing the degradation in the BER.

VI. PERFORMANCE EVALUATION

In this section, we present the performance of ORACLE
showing: (1) it increases the classification accuracy for bit-
similar radios, and that accuracy is not influenced by variation
in wireless channel conditions (Sec. VI-A); (2) it minimizes
the BER changes due to the hardware impairments without
sacrificing classification performance (Sec. VI-B).
Experiment setup: We first identify a set S of 32 impairments
which generates unique patterns as discussed in Sec. V-B.
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Figure 13: Two different experimental environments: (a) closed lab
area (location 1); (b) open recreation area with much less reflections
(location 2).
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Next, we collect demodulated data from WiFi packets that are
transmitted over a cable from a single radio, after introducing
these impairments through GNU Radio API. We replicate
and augment demodulated data by adding a random Gaussian
noise. We limit the power of noise to be under -13 dB to ensure
that EMD lies below the threshold of 0.1 between patterns
generated from original and altered data. Finally, we train the
classifier with the augmented dataset using the same CNN
architecture as described in Sec. IV.

A. Classification accuracy with different channel conditions

We test the performance of the trained CNN classifier with
16 X310 radios. To do so, we first collect samples from these
radios through cable. All radios are configured with one of 16
impairments selected from set .S, according to the approach
described in Sec. V-D. As shown in Fig. 14a, ORACLE
easily distinguishes bit-similar radios that are intentionally
introduced with the selected impairments by achieving a classi-
fication accuracy of 99.76%. This indicates that our pre-trained
classifier is able to identify bit-similar radios accurately.

Next, we evaluate the performance of ORACLE with data
collected over the wireless channel. To show robustness to
variation in channel conditions, we conduct the experiments in
two different locations: (1) our lab, which represents a typical
in-indoor environment (Fig. 13a) and (2) a more open recre-
ation area which has fewer reflections (Fig. 13b). The con-
fusion matrix of classification accuracy is shown in Fig. 14b
and Fig. 14c respectively. In general, in both environments
ORACLE can achieve higher than 99.5% accuracy, which
proves that the unique patterns created by the impairments
can still be detected, even with random noise.

In comparison, training the same classifier with these 16
X310 devices without any kind of artificially introduced hard-
ware impairments results in a poor classification performance.
As shown in Fig. 14d, the classification accuracy is only
35.96% for these bit-similar radios, which shows the benefits
of the careful impairment allocation process.

B. Reduced BER with heuristic impairments selection

We use the metric of average total sum of BER of all
the transmitters and compare the results with allocating im-
pairments i) randomly, and ii) greedily using the algorithm
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samples for > 1004 COTS WiFi devices and 16 X310 USRP
radios in static environment. To further improve the classi-
fication accuracy in dynamic environment, we showed how
feedback-driven transmitter-side modifications can increase
differentiability for bit-similar devices. The key innovation
lies in its ‘train once and deploy anywhere’ feature. We
demonstrate experimental > 99% accuracy with bit-similar
X310 radios, regardless of different channel conditions and
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Figure 14: Classification accuracy (a) via cable; (b) over air in
location 1 (Fig.13a); (c) over air in location 2 (Fig.13b). (d) shows
the accuracy without ORACLE (data collected in location 2).

described in Sec. V-D. We consider R = 4,8,12,16 ra-
dios to have average SNR values selected randomly among
{20,25,30} dB. Let IQ imbalance be the only impairment
added, which is bounded by IMMR value of -13.5 dB. How-
ever, we consider 16 available impairment levels that range
from IMMR of -13.5 to -21 dB with 0.5 dB separation. At
each selection we ensure that the CNN classifies with these
impairment levels at > 99% accuracy.

Under a random allocation approach, R radios are randomly
allocated one of the selected 16 impairment levels. On the
other hand, our greedy heuristic algorithm iteratively assigns
a lowest available impairment level to the radio which have
least average SNR level. A BER value for each radio is
computed with different SNR levels shown in Fig. 11a. We
run 1000 iterations, in which each radio is randomly assigned
one SNR level. In each iteration, a unique impairment level
is randomly allocated to each radio using random allocation
strategy. We repeat this 500 times to compute the total sum of
BER of all the radios averaged over 500 iterations for the given
SNR assignment. This is then averaged again over 1000 SNR
assignments. Similarly, we compute the total sum of BER of
all the radios obtained using the greedy heuristic algorithm,
averaged over 1000 SNR assignments. Table III shows the
BER of all radios confirming that ORACLE’s approach of
allocating impairments always outperforms random allocation.

VII. CONCLUSION

We presented ORACLE, a fingerprinting technique for
identification of specific radios based on the hardware-centric
features within the transmitter chain. We showed that our
CNN classier achieves an accuracy of 99% using raw IQ

wireless transmission environments.
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