
978-1-4799-4912-0/14/$31.00 2014 IEEE

Self-Organizing Aerial Mesh Networks for

Emergency Communication

Marco Di Felice∗, Angelo Trotta∗, Luca Bedogni∗, Kaushik Roy Chowdhury†, Luciano Bononi∗

∗ Department of Computer Science and Engineering, University of Bologna, Italy

Emails: {difelice, trotta, lbedogni bononi}@cs.unibo.it
† Department of Electrical and Computer Engineering, Northeastern University, Boston, USA

Email: krc@ece.neu.edu

Abstract—Guaranteeing network connectivity in post-disaster
scenarios is challenging yet crucial to save human lives and
to coordinate the operations of first responders. In this paper,
we investigate the utilization of low-altitude aerial mesh net-
works composed by Small Unmanned Aerial Vehicles (SUAVs)
in order to re-enstablish connectivity among isolated end-user
(EU) devices located on the ground. Aerial ad-hoc networks
provide the advantage to be deployable also on critical scenarios
where terrestrial mobile devices might not operate, however their
implementation is challenging from the point of view of mobility
management and of coverage lifetime. In this paper, we address
both these issues with three novel research contributions. First,
we propose a distributed mobility algorithm, based on the virtual
spring model, through which the SUAV-based mesh node -called
also Repairing Units (RUs) in this study- can self-organize into a
mesh structure by guaranteeing Quality of Service (QoS) over the
aerial link, and connecting the maximum number of EU devices.
Second, we evaluate our scheme on a realistic 3D environment
with buildings, and we demonstrate the effectiveness of the aerial
deployment compared to a terrestrial one, in terms of coverage
and wireless link reliability. Third, we address the problem of
energy lifetime, and we propose a distributed charging scheduling
scheme, through which a persistent coverage of RUs can be
guaranteed over the emergency scenario.

I. INTRODUCTION

In the aftermath of a large-scale emergency, the breakdown

of communication infrastructure impacts the actions of the

first responders, i.e. the dissemination of information to the

general population [1], as demonstrated by recent catastrophic

events worldwide (e.g. the earthquake in Italy in 2012). Thus,

there is strong motivation towards the realization of backup

communication systems that are able to quickly self-deploy in

the aftermath of an emergency and ensure temporary network

services in the affected area.

A recent report from FCC proposes the utilization of

low-altitude, Deployable Aerial Communications (DAC)

systems to support first response operations on post-disaster

scenarios, due to their advantages over traditional terrestrial

infrastructures [1]. DAC systems can guarantee higher

coverage than ground wireless networks as aerial links are

less affected from fading, and are more suited when road

mobility has been compromised (e.g. flooding). Nowadays,

deployment of low-altitude DAC systems is feasible thanks

to the increasing availability and affordability of Small

Unmanned Aerial Vehicles (SUAVs), such as quadcopters.

However, when planning for the aerial coverage of large-scale

emergency scenarios for at least the first 48 hours, coordinated

mobility and energy issues must be taken into account [7].

Network mobility is known to be highly challenging in 3D

environments, and only few works investigate the creation of

flying self-organizing swarms, specially designed for rescue

operations [2] [3] [4] [5] [6].

In this paper, we take into account both mobility and energy

issues in the deployment of SUAV-based mesh networks for

backup communication systems in post-disaster scenarios.

More specifically, we consider an emergency scenario, where

not all End-User (EU) devices are connected to each other,

and the aerial mesh attempts to build the links between them.

Three contributions are provided: (i) We extend our earlier

distributed algorithm in [15] [16] in the context of a swarm of

SUAVs, that allows them to self-organize into an aerial mesh

to maximally connect the EUs on the ground. The mobility

scheme is based on the Virtual Spring force model [14],

and introduces channel-aware metrics in order to guarantee

a minimum link quality on the air-to-ground and air-to-air

links. (ii) Second, we model a realistic 3D urban environment

in OMNET++, with shadowing effect caused by buildings,

and investigate the benefits provided by an aerial mesh

deployment compared to a terrestrial deployment (through

mobile robots), in terms of coverage, link stability, and

altitude. (iii) Third, we investigate approaches to maximize

the lifetime of the aerial mesh by considering a scenario

where SUAVs can recharge their batteries through contact

with the ground station. A distributed scheduling algorithm

is proposed that ensures a guaranteed coverage area by the

SUAVs, while network lifetime is maximized.

II. RELATED WORKS

Recent studies have been focused on three research direc-

tions: characterization of aerial links, dynamic establishment

of swarm flying structures, and task assignment in mission-

critical scenarios [5]. Mathematical bounds for capacity, cov-

erage and connectivity of nodes placed in 3D spaces are

derived in [8]. However, this work does not consider several

aspects of real scenarios, like the antenna orientation and the

shadowing caused by buildings. For these reasons, testbeds

have been used in [9] [10] to characterize the performance of

two-hops aerial mesh networks. In [9], the path loss and the





We assume that each disconnected EU device periodically

transmits a HELLO message, with its position and identifier

in order to enable its localization from the RUs. Similarly,

while flying, each RUi broadcasts a BEACON message on the

Common Control Channel (CCC) in the 2.4 GhZ band every

Tf intervals containing its id, position, the number of EU

devices currently connected to (ni
EU ), and the set of neighbor

RUs of RUi (Neighi).

In the following, we explain how the k, l and ~x parameters are

defined for the AtA and AtG links. The AtF link case is de-

scribed in Section IV-A. In [14], displacement of virtual spring

is defined in terms of spatial distance among the end-points.

Conversely, we propose a formulation of the displacement that

reflects the communication quality of the AtA/AtG link in

terms of Link Budget (LB). More specifically, once receiving

a BEACON message from RUj or an HELLO message from

EUj , RUi computes the Link Budget of the link i ↔ j (i.e.

LB(i, j)) as follows:

LB(i, j) = Prij −RSi
thr (2)

where Prij is the receiving power at RUi, and RSi
thr its

receiving sensitivity. The LB metric, also called fading margin,

provides an indication of the communication reliability (i.e. it

tells when the link is going to break), and at the same time

indicates the maximum achievable rate that can be offered

on that link. We introduce the requested link budget (LBreq)

to express the Quality of Service (QoS) requirements which

must be guaranteed on each link of the aerial mesh. Then,

we formulate the displacement (~x − l0) as a function of the

requested and current LB on the i − j link, which can be

derived from propagation models as:

δ = α

√

max(LB(i, j), LBreq)

min(LB(i, j), LBreq)
− 1 (3)

Here, α is the propagation decay exponent (equal to 2 in our

scenario). We observe for:

• AtA link. In this case kAtA is a fixed parameter in

the range [0:1] (0.5 in our experiments). If the spring

displacement expresses the requested link quality, the

value of kAtA defines the system responsiveness, i.e. how

quickly RUs will act in order to meet the QoS value

(LBreq).

• AtG link. In this case, kAtG is dynamically adjusted on

the basis of number of EUs connected to RUi (i.e. ni
EU )

as follows:

kAtG =
ni
EU

max(nj
EU ) ∀j ∈ Neighi

(4)

In practice, the stiffness (and thus the force module)

of the AtG spring is proportional to the number of

connected EUs at the current location, and scaled on the

basis of the CI of neighboring nodes. As a result, a RU

connecting more EUs at the current location will oppose

more resistance to move than its neighbors.

Based on its connection with other neighboring RUs, and

discovered EU devices, multiple virtual forces ~R0, ~R1 ... ~Rn

act on each RU. Every TDEC intervals, each RUi computes

the resultant force ~R defined as ~R =
∑n

i=0
~Ri, and moves

in the direction indicated by ~R, with constant speed. To avoid

fluctuations we define two additional mobility mechanisms: (i)

a minimum threshold Rthr is introduced, so that an RU will

change its position only if |~R| > Rthr, and (ii) before moving

on the direction indicated by ~R, each RU verifies through the

CI metric whether any breakage of AtA link will occur, and

if so, it does not update its position.

A. Exploration phase

This phase allows the RUs to locate the EU devices and

connect them to the mesh. While poor exploration might

translate into suboptimal CI performance, uncoordinated mo-

bility of RUs can lead to the partitioning of the aerial mesh.

To address both the connectivity and performance issues,

our mobility scheme delegates the exploration phase to a

dynamically selected set of special nodes, called Scout RUs,

which are placed on the edges of the aerial mesh. A virtual

spring force (with length equal to 0, and thus attractive only) is

used to drive RUs towards less explored cells of the grid. More

specifically, the exploration procedure involves four steps:

• Scout selection. Every TSCOUT time instants, each RUi

checks its position compared to its neighbour RUs. In

case Ri does not detect any other RU in its visilbility

zone (defined as a cone with sweep angle of θ centered

in RUi), then it self-elect as scout node, with probability

equal to pSCOUT .

• Direction selection. We assume that each RUi keeps

statistics about the number of times it has visited each

cell j of the scenario (i.e. vi(j)). The cell value vi(j)
is incremented by 1 each time RU stands on cell j for

a minimum duration interval (equal to 10 second in our

experiments). We consider the exploration frontier of RUi

(EFi) as the set of cells located inside the intersection of

the square centered on the current cell, and of side equal

to 2 · h + 1, and the visibility zone of Ri. In Figure 2,

we depict the EF zone with h=1 and θ=30. In practice,

the parameter h defines the horizon of the exploration

phase, i.e. how far RUi is looking at when deciding its

next position. Then, RUi selects the cell j that has been

less visited in EFi, i.e. j = argmin vi(k)|∀k ∈ EFi.

• Force computation. Once the next cell j has been deter-

mined, a virtual AtF spring is built between RUi and

the center of cell j. The spring displacement is fixed

and equal to a reference value LBmin. Vice versa, the

stiffness constant kAtF is adjusted on the basis of the

amount of exploration performed on cell j, i.e.:

kAtF =

(

1−
vi(j)

vMax
i

)vmin

i
+1

(5)

where vMax
i and vmin

i are respectively the maximum and

minimum cell values for RUi, considering all cells of the

scenario, i.e. vMax
i = max(vi(j)), ∀j ∈ G × G and vmin

i =
min(vi(j)), ∀j ∈ G × G. Through Equation 5, we express
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function for different values of αi.

the intuitive concept that RUi should be more attracted by

cells that has been explored less than the average, and that the

exploration force decreases when the discovery ratio of the

full scenario (i.e. vmin) increases.

V. DISTRIBUTED CHARGING SCHEDULING

In this section, we propose a distributed algorithm to let

RUs autonomously decide when to recharge. The algorithm is

designed based on the following requirements: (i) it attempts to

preserve the CI, by giving precedence to RUs whose departure

will not cause the partitioning of the aerial mesh, and (ii)

it accounts for the recharging need of each RU based on

its residual energy. To fulfill these requirements, we propose

a probabilistic approach, in which each RUi is assigned a

probability pi of recharging, defined as:

pi(E
act
i , Emax

i ) =

(

Emax
i − Eact

i

Emax
i

)αi

(6)

where Emax
i and Eact

i are, respectively, the maximum and the

actual residual battery capacity of RUi. The exponent αi ≥ 1
modifies the probability pi by reflecting the cost incurred by

the departure of RUi, as discussed below. To avoid the case of

a RU having insufficient energy to reach the nearest charging

station, we introduce a threshold value Elim on the residual

energy, below which the RU must go for recharging. Hence,

the probability pi is adjusted as follows:

psri =

{

pi(E
act
i − Elim, Emax

i − Elim) if Eact
i > Elim

1 otherwise

(7)

In Figure 3 we plot the psri values, for different configuration

of αi. It is easy to notice that psri decreases with the current

state of charge of RUi (Eact
i ), and that -for the same value

of Eact
i - the probability is lower for higher values of αi. This

latter is defined as follows:

αi = αcritical
i + αEU

i + 1 (8)

The first component αcritical
i reflects the connectivity degree

of RUi, and is defined as follows:

αcritical
i = αmaxC · (1− e−#numclusters) (9)

Here, αmaxC bounds the maximum value of αcritical
i (equal

to 12 in our experiments) and #numclusters is defined as

the number of the potential clusters that might be formed if

the RUi disconnects from the mesh. This value is computed

by determining the rank of the matrix ANeighi , where A is

the adjacency matrix of RUi
1. The second component αEU

i

is specific to the AtG link, and reflects the importance of RUi

in terms of EU devices currently interconnected:

αEU
i =

{

αmaxEU · kAtG if ni
EU > 0

0 otherwise
(10)

where αmaxEU bounds the maximum value of αEU
i (equal to

3 in our experiments) and kAtG is the stiffness constant of the

spring for AtG link defined by Equation 4. Basically, through

(9) and (10), the probability psri is discounted by considering:

(i) the potential clusters that might occur, and (ii) the isolated

EU devices that might be left.

Every Trecharge seconds, each RUi decides with probability

psri whether to go to recharge or not. We assume a linear

charging model, i.e. the charging time CTi is computed as:

CT r max ·

(

Emax
i − Eact

i

Emax
i

)

, where CT r max is the time re-

quired by a full battery recharge. After charging is completed,

the RU resumes its operation.

VI. 3D SCENARIO MODELING

In this Section, we detail how the 3D scenario has been

modeled through the Omnet++ tool. We consider rectangular-

shape buildings, with varying dimensions on the 3 axes.

Although in the evaluation (Section VII) we consider synthetic

generated scenarios, realistic scenarios can also be modeled

through our tool, by importing the XML maps provided

by OpenStreetMaps with building information. Modeling the

wireless propagation effects in 3D environments is highly-

challenging, and owing to the complications of creating ac-

curate ray-tracing models, we consider a simplified 3D prop-

agation model that takes into account the attenuation effect

caused by buildings on the line of sight. Although this model

cannot capture the complex reflection/diffraction phenomena,

its suitability to guarantee good approximation for large-scale

network simulations has been demonstrated in [18]. More

specifically, our algorithm works in three steps:

• First, we consider the Line-of-Sight (LOS), i.e. the

straight line between the sender and the receiver (which

can be two RUs or a RU and an EU device).

• Then, we determine all the points in which the straight

line collides with an obstacle.

• Finally, we apply an attenuation factor to the received

signal, based on the the length of the indoor path and on

the number of intersected outdoor walls.

The pathloss (in dB) is modeled as PL[d] = α · 10 ·
log10(d(i, j)) + β, where d(i, j) is the 3D distance between

node i to node j, α is the propagation exponent (fixed to 2

in our case, i.e. a free-space model is considered) and β is a

zero-mean Gaussian distributed random variable with standard

1The #numclusters value takes into account only the 2-hop neighbors of
RUi, and thus, it provides a local approximation of disconnected components.
We omit details on how the #numclusters is computed.



deviation σ (in dB). By computing the intersection points

between the LOS and the faces of a building b, we derive

the length d′b, in meters, in which the signal travels indoor.

We thus model the signal attenuation as follows:

Sb = 2 · k + d′b · η (11)

where k is the attenuation factor due to the outside walls, and

η is the attenuation related to indoor propagation through dry

walls, furniture etc. The parameters k and η are set to 20dB

and 1dB/mt, based on literature surveys. Finally, given B the

set of buildings of the scenario, we compute the power of

received signal as Prx = Ptx − PL[d]−
∑B

b=0 Sb.

In order to further reduce the computation, we consider the

cell-grid world depicted in Figure 2, and we reduce B to B′ ⊆
B, i.e. the set of buildings that are on the cells intersected by

the LOS between nodes i and j.

VII. PERFORMANCE EVALUATION

In this Section we evaluate the performance of the dis-

tributed mobility scheme (Section IV) and of the charging

scheduling algorithm (Section V), on 3D scenarios modeled

according the propagation model described in Section VI. We

consider a scenario of 500m x 500m, with buildings of height

30m placed at random cells of a Manhattan grid scenario.

50 EU devices are randomly distributed at indoor/outdoor

locations. In Figures 4(a) and 4(b) we depict the CI metric

(Section III) when varying the number of RUs and the altitude

from ground. More specifically, in Figure 4(a) we plot the CI

values against the number of RUs, for three increasing building

density configurations, namely Rural, Suburban, and Urban.

Clearly, increasing the number of RUs has a beneficial effect

regardless of the scenario considered, since it translates into

the possibility to enlarge the exploration and coverage range of

the aerial mesh network. Figure 4(a) demonstrates the fact that

the attenuation caused by buildings might have a significant

impact on the quality of AtA links, since RUs are forced to

stay closer to guarantee the request QoS expressed in terms

of minimum Link Budget LBreq (Equation 2). Also, frequent

partitions may occur in the aerial mesh, caused by mobility

of RUs. In Figure 4(b) we further investigate this issue, by

varying the altitude h from ground of the aerial mesh. We

consider a modified version of the Suburban scenario (medium

building density) with building heights uniformly chosen in

the range [10, 20] m. This result clearly demonstrates that

the CI is affected by the altitude h more than the number

of RUs. Indeed, CI value significantly increases when h ≥
15m, i.e. when RUs are -on average- just over the buildings

clutter height. The case with h=0 corresponds to the case in

which mobile nodes move on the ground, and thus the mobility

algorithm described Section IV is implemented by robot

equipped with wheels. Thus, aerial communication performs

much better than ground communication, and the CI with 5

RUs deployed at 20 m is much higher than the CI with 30

RUs on the ground (h=0).

In Figures 4(c) and 5(a), we plot the coverage area with

varying heights of 0m and 25m, when using the same number

of RUs (i.e. 15). All the RUs are injected at the center of the

scenario at the start of the simulation. The blue color gradients

depict the probability that RUs will stop at a given position2.

We see that RUs moving in the air are able to cover much

wider area than terrestrial robots, while guaranteeing the same

quality over the mesh link.

In Figures 5(b) and 5(c) we evaluate the effectiveness of

the distributed charging scheme in guaranteeing a persistent

coverage over the emergency area through four scheduling

approaches: (i) Distributed, which corresponds to our solution

described in Section V, (ii) Centralized (lowest), which corre-

sponds to a centralized algorithm in which at each Trecharge

interval the RUi with lowest residual energy Eact
i is selected

for recharging, (ii) Centralized (lowest with αEU
i = 0) which

works as the previous, but it chooses the lowest residual energy

RUi with αEU
i = 0, i.e. not connected to EU devices, (ii)

Centralized (lowest with αcritical
i = 0) which works as the

previous, but it chooses the lowest residual energy RUi with

αcritical
i = 0, i.e. not originating mesh partitions after its

departure. Figures 5(c) shows the average CI for the four

algorithms when varying the number of available RUs. This

result demonstrates that selecting RUs on the basis of the

energy factor only -i.e. like the Centralized (lowest) works- can

cause frequent partitioning events within the mesh networks.

This is also confirmed by Figure 5(c) where we depict the

average number of isolated clusters that are originated during

the simulation. The Centralized (lowest with αEU
i = 0)

scheme attempts to maximize the number of connected EU

devices on the AtG link, and for this reason, it outperforms

the other two centralized schemes in terms of CI (Figure 5(c)).

Vice versa, the Centralized (lowest with αcritical
i = 0) scheme

attempts to preserve connectivity among RUs on the AtA

links, and for this reason it creates a reduced number of

clusters compared to the other two centralized algorithms

(Figure 5(c)). Our distributed algorithm takes into account both

the connectivity of the aerial mesh and to EU ground devices

through the two components of αi (Equations 8 and 10), to

give the best performance both in terms of CI and of number

of cluster partitions.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we have explored ways to ensure connectivity

among End User (EU) devices in post-disaster scenarios

through the utilization of aerial mesh networks composed by

Repairing Units (RUs). A swarm mobility algorithm, based

on virtual spring model, has been proposed to allow the

RUs explore the scene and self-organize into a multi-hop

network. In addition, a distributed scheduling algorithm has

been described to tackle the limited flying autonomy of RUs

while guaranteeing a persistent coverage. We are further ex-

ploring implementation of the algorithm into a real testbed and

analyzing the impact of antenna orientations on the network.

2Lighter colors indicate more frequent areas, darker colors indicate less
frequent area, white color indicates areas with probability lower than 0.01.
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