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Abstract

Mobile Robots (MRs), typically equipped with single-antenna ra-
dios, face many challenges in maintaining reliable connectivity
established by multiple wireless access points (APs). These chal-
lenges include the absence of direct line-of-sight (LoS), ineffective
beam searching due to the time-varying channel, and interference
constraints. This paper presents REMARKABLE, an online learning
based adaptive beam selection strategy for robot connectivity that
trains kernelized bandit model directly in real-world settings of
a factory floor. REMARKABLE employs reconfigurable intelligent
surfaces (RISs) with passive reflective elements to create beamform-
ing toward target robots, eliminating the need for multiple APs.
We develop a method to create a beamforming codebook, reduc-
ing the search space complexity. We also develop a reconfigurable
rotational mechanism to expand RIS coverage by rotating its pro-
jection plane. To address non-stationary conditions, we adopt the
bandit over bandit idea that employs adaptive restarts, allowing
the system to forget outdated observations and safely relearn the
optimal interference-constrained beam. We show that our approach
achieves a dynamic regret and the violation bound of O(T3/4B1/%)
where T is the total time, and B is the total variation budget which
captures the total changes in the environment without even as-
suming the knowledge of B. Finally, experimental validation with
custom-designed RIS hardware and mobile robots demonstrates
46.8% faster beam selection and 94.2% accuracy, outperforming
classical methods across diverse mobility settings.
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Figure 1: Illustration of mobile robot connectivity in a factory floor
when; a) multiple APs deployed to mitigate the issue of blockages,
but creating interference among APs, b) solution to the issue in (a) via
RIS deployment on the ceiling/wall, and ¢) REMARKABLE system
architecture presenting beam selection for MRs through RIS.

1 Introduction

Industry 4.0 is set to revolutionize manufacturing and industrial
services through the digital transformation of the field, enabling
real-time decision-making and automation [1]. Technologies such
as the Internet of Things (IoT), artificial intelligence (AI), cloud con-
nectivity, large-scale machine-to-machine communication (M2M),
and networked, mobile robotics are central to the future of man-
ufacturing [2]. These robots can collect and analyze data, making
autonomous decisions with minimal human intervention. However,
such a robot-enabled network architecture demands ultra-fast data
transfer speeds, exceptional reliability, and minimal latency [3].
While network densification is a possible path to achieve these
goals, it involves a significant cost overhead [4], and thus, network
designers need to trade-off permanent infrastructure installations
with reconfigurable platforms that can adapt to robot mobility over
time. Aside of mobility, the harsh propagation environment within
the factory floors increases blockages, results in limited coverage,
and significant path loss. To overcome these challenges, recent
studies have shown that programmable wireless environments that
enable reconfigurability by shaping signal reflections can improve
signal-to-noise ratio (SNR) [5] and expand coverage [6].

In REMARKABLE, we realize such a network architecture with
low-mobility MRs and multiple wireless APs deployed in a robotic
factory floor within a rich-scattering environment. Network re-
configurability for enhancing the APs’ coverage is achieved by
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controlling the propagation environment using software-controlled
reconfigurable intelligent surfaces (RISs) [7-9]. This ensures reliable
connectivity for low-mobility MRs by creating a radio environment
that adapts with the MR location, as in Fig. 1a-b. Yet, this requires
a solution to the problem of adaptive beam selection in dynamic
channel conditions between the AP and the MR, as depicted in Fig.
1lc.

1.1 Factory-Floor Networking Challenges

e Problem 1 (blockage and coverage): Consider Fig. 1a, show-
ing a factory floor where the LoS signal is blocked by obstacles.
In absence of LoS conditions, the MR relies on the strongest non-
line-of-sight (NLoS) reflection to establish a communication link
with the AP. NLoS multipath components can cause destructive
interference due to uncontrollable phase reflections, leading to
significant communication disruption. This results in significant
received signal strength (RSS) fluctuations with small robot move-
ments. This issue is exacerbated in single-antenna equipped MRs.
Deploying multiple APs as in Fig. 1a, ensures LoS links and expands
coverage but increases communication overhead and infrastructure
complexity.

e Problem 2 (mobility and beam searching): Narrow beams
formed via phased antenna arrays can mitigate propagation loss, as
well as improve signal reception through increased SNR. Typically,
these beams are formed by adjusting antenna element weights, with
steering directivity and beamwidth defined through a codebook.
The APs equipped with such capabilities exhaustively sweep over
the beams in a codebook to discover the optimal beam with the
highest signal strength. However, exhaustive beam searches create
significant overhead, and MR mobility requires repeated searches
to maintain connectivity.

o Problem 3 (interference): Even with APs forming highly direc-
tional beams towards MRs, in a heterogeneous environment with
multiple APs, the close proximity of MRs can cause excessive in-
terference , degrading network performance [10]. Therefore, beam
selection must be judiciously performed, as some beam candidates
may not be suitable for data transmission.

1.2 Proposed Approach

Our approach aims to tackle problems 1, 2, and 3 for MR connectiv-
ity in factory floor settings by achieving the following steps:

1) We design a passive beamformer using an RIS, a planar ar-
ray of passive reflective elements, each configured to adjust the
amplitude and phase of incident signals. This allows us to create
various beam patterns, which are then used to form a beam code-
book for the beam steering (see Fig. 1c). To address Problem 1 (see
Fig. 1b), several practical challenges must be considered: (i) Instead
of relying on Channel State Information (CSI), our approach uses
a predefined codebook where each codeword corresponds to the
weights of RIS elements. This is necessary because RIS elements
are passive and lack radio chains, making traditional channel esti-
mation impractical. Estimating each channel component—would
be proportional to the number of reflective elements, would create
extreme overhead. Therefore, we develop a method for creating the
desired reflection beam pattern by using a non-uniform phase sam-
pling technique, optimizing each element’s reflection gain while
considering incident and reflection signals. ii) In a planar RIS, edge
elements of RIS contribute less to beamforming, limiting overall
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gain—especially in dynamic settings like mobile robots. To address
this challenge, we propose a novel reconfigurable rotation mech-
anism that adjusts the pitch and roll angles along the RIS’s local
coordinate axes, effectively enhancing beam coverage and improv-
ing performance. Given a fixed AP location, this method requires
reflective beam pattern synthesis w.r.t the new angular domain of
RIS. Consequently, we generate a multi-level codebook, each level
corresponding to a specific pair of rotational angles.

2) We study beam selection using codebooks derived from reflec-
tive beam-pattern synthesis. Our goal is to learn online the optimal
beam from the RIS to the MR by casting the task as a kernelized
multi-armed bandit (MAB), with each codeword as an arm. To ad-
dress Problem 2 and Problem 3, we impose an interference constraint
at a neighboring MR. The objective is to select beams that maximize
RSS at the target MR subject to this constraint over a time-varying
channel. We model cross-beam correlations with a Gaussian Process
(GP) bandit and propose a primal-dual GP-Upper Confidence Bound
(UCB) algorithm to balance exploration and exploitation while en-
forcing the interference constraint. To handle non-stationarity, we
add an adaptive restart mechanism inspired by the bandit-over-
bandit framework, which dynamically tunes the restart interval
from feedback. REMARKABLE is theoretically grounded and vali-
dated on a real RIS-enabled robotic testbed—unlike prior theoretical
works [11, 12], which remain untested in practice, and existing RIS
implementations [5, 13, 14], which predominantly target static sce-
narios.

1.3 Summary of Contributions

(1) We create an RIS codebook with beam patterns in multiple di-
rections, enabling the online learning algorithm to find the best
beam without channel estimation. Additionally, we introduce a
reconfigurable rotational mechanism to expand RIS coverage.

(2) We formulate beam selection for an MR as a primal-dual GP-
UCB framework to maximize signal strength while avoiding
interference. To address the time-varying or non-stationarity,
we adopt "bandit over bandit" concept restart strategy, which
adaptively forgets past data by tuning the restart interval via
an adversarial bandit. Our method achieves sub-linear dynamic
regret and constraint violation without prior knowledge of
budget variations, safely learning beam selection even under a
time-varying channel.

(3) We show that we achieve (j(Bl/4T3/4) regret and (j(Bl/4T3/4)
violation bound where B indicates the total change in the en-
vironment (i.e., the change in the reward and the constraint,
defined in Sec. 6.3.1) over T time steps. We improve the existing
bound of O(BT3/%) dynamic regret and the dynamic violation
bound achieved in [12].

(4) We demonstrate REMARKABLE in a real-world setting using
USRP X310-B210 SDRs (Software Defined Radios), with MRs
and a PCB-fabricated RIS, as shown in Fig. 1c. Our results show
that REMARKABLE achieves 46.8% improved performance over
classical methods with 94.2% selection accuracy.

(5) We release the software pipeline for the online learning frame-
work and the RIS configuration-orchestration software [15].

2 Related Work

o RIS & Smart Surface: RIS technology and similar concepts like
metasurfaces have recently been proposed to enhance applications
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Figure 2: a) RSS fading at two different locations over 20MHz band-
width; b) Average RSS measured per location where there are obsta-
cles or not.
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such as security [16], virtual reality [17], localization and sens-
ing [18], beamforming [5, 19], and over-the-air aggregation [20].
Recent research has focused on optimizing transceivers and RIS
phase-shifts to minimize signal distortion [19, 20], especially with
imperfect CSI estimation [21]. However, these methods assume
knowledge of wireless channels, which is challenging due to RIS’s
limited processing capabilities. Additionally, some practical works
[5,13, 14, 18, 22] rely on real-time channel estimation, causing over-
head proportional to system size and requiring fast feedback. In
contrast, REMARKABLE uses a predefined RIS codebook, avoiding
such overhead. Similar to our approach, other works consider con-
figuring RIS elements with pre-defined coding patterns [20, 23] and
leveraging an extra degree of freedom by optimizing rotation of
RIS plane/elements to improve system performance [24, 25]. In fact,
the work [11] proposes a hierarchical codebook-generating method
using pattern synthesis, followed by a beam training method using
the two-mainlobe codewords from the designed codebook for beam
sweeping. Unlike these stationary setups that use exhaustive beam
searching, REMARKABLE offers a novel method for faster beam
selection, even considering mobility.

e Beam Selection with Bandit: Online Learning (OL), particularly
MAB frameworks, has become prominent for beam selection due to
its inherent ability to balance exploration and exploitation. Standard
MAB frameworks utilized in beam selection cannot capture the cor-
relation among beam directions. The authors in [26-29] leverage
contextual information to exploit such correlations. However, these
papers do not consider the time-varying channel and interference
constraints that we considered, assuming quasi-static channels;
thereby, driven models cannot capture time-varying channels, most
likely mapped to real-world settings. A recent kernelized MAB
approach [12] addresses time-varying, interference-constrained
channels but neglects RIS settings and lacks real-world implementa-
tion. Our work explicitly incorporates RIS, demonstrates improved
theoretical bounds compared to [12], and provides experimental
validation in practical scenarios.

3 Motivation for Designing REMARKABLE

Before designing REMARKABLE, we conduct preliminary experi-
ments in a factory floor use-case to investigate Problem 1.

e Experimental Setup: Consider a scenario where low-mobility
MRs roam a factory floor to complete assigned tasks (see Fig. 5).
We use a Turtlebot2 robot, which navigates the floor and stops at
target locations to collect data. The data collection part is obtained
at the 5GHz band with 20MHz bandwidth signal by SDR X310
radios equipped with omni-directional VERT2450 tx-rx antennas,
where one of them is mounted on the Thurtlebot, while the other
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two are placed in designated areas in the environment as APs to
communicate with the MR.

e Observation: We conducted two factory-floor experiments—one
with obstacles and one without—while the MR navigated and RSS
was measured from each AP at target locations. As shown in Fig.
2a, the AP1-MR channel exhibits frequency-selective fading that
varies with MR position, whereas Fig. 2b shows AP2 providing
better coverage in regions where AP1 is weak, even without obsta-
cles. However, with obstacles, neither AP ensures reliable coverage,
indicating the need for additional APs. This, in turn, introduces in-
terference management challenges and increases overhead in terms
of coordination and communication resources (e.g., bandwidth).

4 REMARKABLE Codebook Design

We aim to create a codebook of beam patterns by optimizing the
phases of RIS’s reflective elements to achieve the desired reflections.
We start by looking at a scenario with a single AP and a single RIS.
The RIS is a planar array with N X N passive reflective elements that
can be configured for complex-valued amplitude and phase changes.
Moreover, each generated codebook should consist of beams with
predefined beam resolution and cover desired angular space.

4.1 Beam Steering Design

With N x N layout RIS, we can derive the far-field reflection gain
pattern of the surface w.r.t a specific target angle as:
(N-1)
F(¢r,0r) = Z Gunn (1, 0 Typpe! ((mter+nor) = (muptnon)) (1
m,n=0
where u; = kdycos@;sind; and v; = kdysing;sin; are u-o space
coordinates when the source signal contacts on different reflective
elements from AP with azimuth and elevation angle of ¢; and 6;.
Similarly, the term u, = kdxcos¢,sinfy and v, = kdysing,sin0, rep-
resent when the signal reflects from the surface towards the target
with the azimuth and elevation angle, ¢, and 6,, respectively. The
reflective elements are placed in half wavelengths along the x and
y directions, dx = dyy = 1/2, also k = 27/A, and 4 is the wavelength
of the operational frequency. Eventually, the signal path follows the
incident angle and impacts the surface. Then, on the surface, it will
be perturbed by the configurations of reflective elements. This is
represented by the term of reflection coefficient, Tmn = |Tyn|e/®mn,
wherein the complex-valued amplitude and phase changes are ap-
plied to the incident signal. Assuming the reflection magnitude of
all reflective elements is unity, i.e., |[yn| = 1. Additionally, we de-
note Gmn (¢;, 0;) as radiated gain per reflective element defined as
Gmn (¢, 0;) = (cosz¢icos29i + sinzﬁi)lFe(g{)i, 6;)|? [30]. Here, F, is
obtained from estimated full-wave simulation in the Ansys HFSS 3D
electromagnetic simulator. By re-forming Eq.1, we can transform
reflection pattern to:

(N-1)
F(uy,vy) = Z Amn (¢i, 0;) ¢ (mur+nor) @)
m,n=0
Amn($i,01) = G (1, 0) [Ty | 7 (st~ Smn) - (3)
—

amn ejqﬁnn

where @3, = ®mp — (mu; +nv;) is constant due to fixed locations of
AP and the RIS. From the sampling theory for 2D periodic functions,
the reflection array complex weights, A.,;, can be obtained from

the samples of its radiation pattern |F(u,,v,)| as follows:
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Figure 3: a) Desired and b) generated beam patterns in u-o coordinates
(N-1)/2
Amn($0) = > Flupog)e™/mirtmea)  (g)
pg=—(N-1)/2

InEq.4, up, vq are sampling points for the RIS, where uy, = 27p/N
andog = 277q/N. Also,m’ = m—(N-1)/2andn’ = n—(N-1)/2for
m,n € [0, N — 1]. In this method, we assign nonuniform phases to
the radiation patterns of RIS at the sampling points via F(up,vg) =
[F (up, vq)lej@f’q [31], where @4 is the phase assigned to sampling
points (up,vq). Then, we can find optimized phase values needed
to steer the beam in the intended direction by minimizing the Mean
Square Error (MSE) function between desired, fmn, and generated,
Imn, power of reﬂection array weights such as Iy = amn, that fol-
lows MSE = Z(N 1) Zﬁgo_l) mn = Lnn)?. We apply Gradient
Descent (GD)[32] optimization method to minimize MSE. First, we
define the gradient of MSE, 9MSE/d®pq w.r.t non-uniform sam-

pling points of the regenerated beam pattern, which is calculated

aMSE N-15N-1 IMSE 9lmn
Zm 0 Zn 20 DLy B . Here, both

derivatives in the cham are derived mdependently, then we can

have:
5 {

where My = amn (a2, - In) and Pr= m’up +n’vp. Since Eq.5 is
a form of Fourier Transform, we utilize the Fast Fourier Transform
(FFT) techniques to calculate gradients. Then at each iteration, new
non-uniform phase samples are found as:

by chain rule as in

OMSE
a0y N2

N-1 _
~jpq Z anej{q);nnﬂbf}} (5)

m,n=0

OMSE

—_— 6
Ng 9pg (6)

Ppgre1 = Ppgr + VOpqr = Ppgr =
where 74 is the learning rate of the GD optimizer, determining
the step size to converge it to the optimal point. After obtaining
optimized non-uniform phase samples, we can find the phase dis-
tribution of the surface, ®,,,, by considering the amplitude and
assigned phases, @4, of the radiation pattern F(up,vq) through
Eq.4. Fig. 3 compares the desired and generated pattern at steered
angles of (40°,30°), showing that desired pattern can be achieved
by our method, albeit with some increased side slopes due to the
effect of quantization.

4.2 Beam Coverage Design

Here, we address RIS’s limitation in terms of its angular coverage
and propose a solution to mitigate this by integrating a reconfig-
urable rotational mechanism.

4.2.1 Addressing the Coverage Problem of RIS. The steering capa-
bilities of a planar array RIS are limited by target direction since not
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all reflective elements contribute equally to the beam’s reflective
gain, especially if the direction is near the edge of the RIS coverage
area. Additionally, RIS coverage depends on its relative size, making
it challenging to cover the entire angular space. To illustrate, we
simulate a 9x9 inset-fed patch antenna array, measuring beamform-
ing gain at two angular locations. The RIS is placed along the x-y
plane with the mn'" element at (mdx, ndy, 0), and measurements
are taken along the z-axis for azimuth, ¢, and elevation, 6,. By ma-
nipulating the phase values of each antenna, we form two distinct
beams toward the targets at (3.3m, 20°,40°) and (3.3m, 66°,40°),
asin (r, @, 0). Fig. 4a-4b show that the larger-azimuth target suffers
a 25% gain loss compared to the one closer to the center, and the
boresight beamwidth narrows undesirably (see Fig. 4b). We pro-
pose enhancing RIS coverage by adding a reconfigurable rotational
mechanism to adjust its orientation through pitch and roll angles.
The yaw angle is not used as the z-axis is the projection axis of RIS.
Implementing this method necessitates rebuilding the codebook
structure and reformulating the beam shaping and steering process.
4.2.2 Beam Synthesis for Rotated RIS. In our scenario, with the
location of the AP fixed, we only need to rotate the RIS to cover
different sectors in the work zone. To achieve this, we first define
the rotation matrices, Ry(a) and Ry(f), which rotate the vector
positions by an angle of roll « and pitch # around the x-axis and

1 0 0
y-axis. These matrices are Ry(a) = [0 cos(a) —sin(a)} and
0 sin(a) cos(a)
cos(f) 0 sin(p)
Ry(B) = 0 1 0 [. Notably, we assume the place-
—sin(B) 0 cos(p)

ment of AP satisfies the far-field conditions [33]. Consequently,
the incident angle on each reflective element is given as ¢; and
0; for a planar array surface. Each element position vector de-
fined as rmp = [mdy, ndy,0]’, rmn € R¥andm = [0,1,..,N — 1],
n=[0,1,..,N — 1], does not change in terms of its position w.r.t
the RIS’s local coordiantes. However, we must calculate the new
incident angles, ¢; and 9;, after rotating the RIS with the predeter-
mined roll and pitch angles. The derivations for the rotation with
a over y-z plane are, (Z = cos¢;sin0;):
9;.(0() = arccos(sing;sinf;sin(a) + cosbfjcos(a))

qﬁ;-(a) = arg(Z + j(singisinbicos(a) — cosg;sin(a))

The derivations for the rotation with f over x-z plane can be
obtained in a similar manner. Hence, the required u-v plane co-
ordinates for generating beams for different directions change to
u; = kdxcos¢;sin9; and u;. = kdxsin¢;sin9;. Similar definitions ap-
ply to ulr and v/r. These terms are used in Eq.1, 2, and 3 to generate
the rest of the codebook. In the final step, the phase distribution of
the RIS, ®,;,,,, needs to be obtained from Eq.4 by taking the phasor
form of Amn(gﬁ;, 6;) with the subtraction of u; and u; related terms
from it. Fig. 4c shows %13 improvements in terms of gain after the
rotation angle of « is applied for the same target, shown in Fig. 4b.

4.3 Hierarchy of RIS Codebook

4.3.1  2-bit Phase Quantization. Following the Sec. 4.1, to generate
a beam toward (¢, 0,), phase correction @, = D3, + (mu; +no;)
is required for the (m, n)!" reflective element. These obtained phase
correction values are continuous, and they must be mapped to the
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predetermined discrete RIS configurations via configurable states
of each reflective element. Although this limitation is necessary to
decrease complexity, it introduces quantization errors. Yang et al.
[34] demonstrate that the reflective gain loss is highly substantial
when the quantization error exceeds [~%, Z], equivalent to at
least 2-bit phase-shift quantization. Hence, we select the phase
configurations from Q. = [2],,”[1 ;¢ =0,1,..,2° — 1] which are the

nearest values to @y, keeping error [-%, ], when b = 2,

ol = 0. O':L
mn ’ ob—1

Fig. 4e shows the output of quantization corresponding to Fig.4d.

™)

4.3.2  Codebook Design. For R rotational angles, the size of the
codebook Sy, r € Ris given by S, = ’I-Bv}\cl(/)],;eng i=1(1,2..,1],
considering a 3D beam scanning. Here, i is a correlation constant
that increases correlation between neighboring beams in C,, while
k denotes RIS angular coverage (e.g., 27/3 within [-n/3, 7/3] for
our design). Each beam code in C, consists of N X N codewords
representing the required phase configurations of reflective ele-
ments. Implementing mechanical rotation introduces a controlled
overhead (2.4 ms/angle). In our experiments, rotations occur infre-
quently—primarily when robot mobility substantially alters the op-
timal RIS orientation and demands broader angular coverage—thus
balancing the overhead against the achieved coverage gains.

5 REMARKABLE Model

5.1 System Model

5.1.1 RIS-based Channel Model. In REMARKABLE, we consider
the scenario in Fig. 1c, involving an AP with K antennas, a single-
antenna MR, and an RIS with A = N X N passive reflective elements.
Each element adjusts the amplitude and phase of the incident signal.
Before data transmission, optimal beam selection through AP-RIS
and RIS-MR channels is needed for array gain and high throughput,
assuming no direct AP-MR link due to the cluttered factory floor. Let
wq € Crepresent the effect of RIS element a on the reflected signal;
W € C be the beamforming weight vector from the predefined
codebook C. The received signal at MR through the RIS for the

transmitted pilot signal x; at the ¢ h time slot is:
RW'Wih" x; + ny, ®)

, and

Yt =

Let Wy = diag[wi, ..., Wq, ..., wa] €
h e CcAXlpe complex-valued matrices and vectors, with elements
representing channel coefficients between the AP and RIS element
a and between a and MR, respectively. n; € CKX1 is the additive
white Gaussian noise (AWGN), with n; ~ CN (0, 6Ik).

CAXA, h' € CKXA
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5.1.2  Time-varying Channel Model. In our setup, the AP and RIS
are fixed, while the robots are mobile. Thus, h’ is quasi-static chan-
nel with coherence time Ts, and h”’ is time-varying channel with
Ty, where Ts > Tyr. Here, we adopt the time-varying geometric
channel model [35] with L multipath components between the RIS
and MR. The multipath time-varying channel model at the pth time
instance in Ty is:

L
A :
W=NT El_ll a7 1P M a( gy, 0;)

where a; ~ CN(0, 1) is the complex channel gain of the I*? path, o,
is the Doppler shift, and a(¢;, 6;) is the reflection steering vector in
the direction of ¢; and 0;, respectively. We can derive the received
signal at p time instance as Y, = W diag(hy)wpX + Np, X €

©)

C™>TM s transmitted signal sequence and wp € CA*1, We assume
MRs cannot estimate the cascaded channel Hy, = h'd iag(h;,') from
AP to MR over RIS; thereby, they only observe received signal power
when the AP selects a beam from the RIS codebook C and transmits
a pilot signal. if the pilot signal X is set to be 1, then the received
signal power (RSP) can be expressed as 75 (wp) = |VsHpwp + Np 2.

Note that we convert the received signal power to the RSS by
10log(Fp(@p)) for our experiments. The target user is MR M, but
other MRs, denoted as i € 7, should not experience interference
from MR M. Received signal power % ;(wp) for ith MR is also
effected by time-varying channel Hp ;.

5.2 Problem Formulation

We aim to control the beamforming weight vector wy, to find the op-
timal beam that achieves the largest expected RSP, E[Fp,m(@wp)] =
s|Hp,mwp|?, for MR M while maintaining the expected maximum
RSP, E[rinea}c{ﬁ,,i(wp)}] = rl(zea;c{s|Hp,iwp |2}, for MRs in T less

than a threshold p. Given that Hy ,, and Hp; are unknown and
environment-dependent, we formulate the beam selection as an on-
line constrained stochastic optimization problem. Let T denote the
time slots of equal duration for beam selection before transmitting
data. In time slot p € T, the AP selects a beamforming weight vector,
wp, from a set of candidate beams (arms in the bandit), and observes
RSP, Fp (wp ), from all the MRs. Here, we define rp, (wp) = Fp,m(wp)
as observed reward and g, (wp) = rl(zgaja_c{?},,i(wp)} as observed util-

ity function, and both are time-varying. Sequentially selected beams
and corresponding sequential rewards with utilities are presented
as {w1,wa, .., wp} and {(r1(w1), g1(W1)), ..., (rp(Wp), gp(wp))}, re-
spectively. Our objective is to find a policy, 7 € II, that maximizes
the expected cumulative reward, i.e., expected RSP, while satisfying
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a constraint on the expected utility:

max Elry(@p)] st Blgp(wp)] < p (10)
ﬂpE

Here, the AP selects the beam vector based on selection proba-
bility through policy 7. Note that such a policy can depend on the
historical information.

6 Adaptive Beam Selection with REMARKABLE

We adopt GP bandits due to their proven effectiveness in beam
alignment tasks [12], particularly over traditional multi-armed ban-
dits. GP bandits capture spatial correlations among beams and adapt
to time-varying channels—key for mobile scenarios with dynamic
channel states. With this motivation, first, we introduce Gaussian
process (GP) kernel to represent the reward and the constraints.
Then, we define a constrained GP-bandit problem to determine
the beamforming vector (cf,(Eq.10)). We next describe the base al-
gorithm to address the static robot case, followed by our novel
modification addressing the non-stationarity.

6.1 Designing Solution with Gaussian Processes

6.1.1 Gaussian Processes. Our RIS codebook contains beamform-
ing vectors for various rotational angles; different beamforming
vectors w, from different codebooks C, € C can produce similar
beams as the coverage sector of each codebook can partially overlap.
This results in a high correlation between beamforming vectors
(w, ®"). Since our reward rp and utility functions g, are unknown
and non-linear, we use Gaussian Processes and their Reproducing
Kernel Hilbert Space (RKHS) to model this correlation, as inspired
by [12]. Note that MAB problem, where each beamforming vector is
an orthogonal arm, cannot model such correlation.

We define a GP over C as GP ¢ (u(+), k(-,-)) that is completely
specified by a mean function y and covariance function (kernel)
k : Yo € C. We assume that the reward function without noise
fp and constrained utility function without noise z, come from
a GP, and perturbed with Gaussian noise: rp = fp(a)) +np, with
ny, ~ N(0, 0?) and () ~ GP(up(-),k(-,-)). Hence, if a beam
vector w is selected then rp, ~ GP(up(w), k(w,-) + 6?). Similar
argument holds for z, and g, = zp(®) + np, with kernel k. We
use GP (0, k(-,-)) as a prior distribution over f,. Given a set of
sampling points At = [wj, ..., @] within C, observed rewards rp =
[ri, ... rr]T, the posterior distribution of f, is GP (pp(+), 012,(~)),
where the mean and variance are:

pip (@) = kp() T (Kp +0°1) " Mryyp

o5 (w) = k(w,0") = ky ()T (Kp + 0*1) "kp (o)

(11)
(12)

with kp () = [k(01,0), ... k(o1 0)]T, Kp = [k(0,0")] w0 ea,s
and [ is the identity matrix. Similarly, for the constraint z,, we
consider the posterior GP (fip, 6'12,) where ryp is replaced by g1.p,
and the kernel k is replaced by k.

6.1.2  Reproducing Kernel Hilbert Space (RKHS). We assume that
fp belongs to RKHS Hy. In particular, Hj is equipped with the
kernel k such that f,(w) = (f5(-), k(w, ))n, . Similarly, we assume
that the constraint function z, also belongs to Hg, ie, zp (w) =
(zp (), l;(w, '))H,;- Some examples of kernel functions are square
exponential, Matern etc., [36].
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Throughout the rest of this paper, we assume that the functions
are bounded, i.e., ||fp(x)|lg, < F, and ||9p(x)||H,~< < G for all
p. Such assumptions are also common in practice in the wireless
communication [12, 37].

6.1.3  Kernel Selection. We employ the Matern kernel to specify
the RKHS in GP [36] as it shows the best performance:

ol )

By

T(o)\ I l
Here, v > 0 is the hyperparameter that controls the smoothness of
the output, s = d(w, ") encodes the similarities between two arms
with the Euclidean distance, B(v) and I'(v) are the modified Bessel
function and the gamma function, respectively.

6.2 Base Algorithm

We now discuss the base algorithm (inspired from [12]) which we
use to find the beamforming vector in the static case. This algorithm
also forms the basis in the non-stationary case as well where the
robots are mobile.

kmatern(w, (U/) = (13)

6.2.1  GP-Upper confidence bound (GP-UCB). Since we do not know
fp and zp, rather we are learning. We only get feedback (noisy)
corresponding to selecting the beamforming vector w; we need
to balance between the exploration and exploitation carefully. For
the unconstrained GP-bandit, GP-UCB algorithm is proposed [36]
where the idea is to select the points that have a higher mean
estimate reward (exploitation) or have a higher posterior variance
(exploration as it does not have enough information). Similarly, we
maintain the upper confidence of the f, (at time p) as the following
termﬁ,(w) = pp-1(w) + Pp-10p-1(w). Pp-1 is the weight factor:
F+ #w/Z log(1/0) + 2yp—1 where y is the information gain! and
the J is the confidence parameter. Please see [12, 36] for details.

Primal-Dual: Unlike the unconstrained version [36], we con-
sider a constrained optimization problem. Similar to [12], we con-
sider the Lagrangian of Eq.10 as E[rp(wp)] — ¢(E[gp(wp)] = p).
We, then seek to solve for the Lagrangian:

max rrgnE[rp(w)] - $(Elgp(w)] = p) (14)

Hence, unlike the unconstrained version, we have to develop
the UCB for the Lagrangian for a given dual variable ¢. Since
noise is zero-mean, E[rp(w)] = E[fp(0)], E[gp(@)] = E[zp(w)].
We, thus, only need to find the lower confidence bound of Zp
as we already obtained UCB for ﬁ, for which, we use Zp (w) =

fip-1() = Pp-16p-1(x) where fp_1 = G+ L+/21og(1/6) + 2fp-1.
With probability 1 -6, f,(w) < ji,(a)), and zp () > Zp(w) (from
[12]) ensuring that if we use fo and 2y, it will be indeed UCB. For the
static channel f, and z;, are drawn from the GP with time invariant
mean. We decide to choose the solution at time p as:

wp = argmax(fy () = $zp(©)) (15)

After selecting a beamforming vector based on Eq.15, all the
posterior mean and variance, 1, (x), op(x) and fp(x), 6p(x) are
updated through Eq.12 based on the received value. Finally, we
update dual variable ¢ with the gradient descent in the dual domain

P
GVT

¢ = max{¢ + n(Zp(wp) — p),0}, where 1 is the learning rate

For matern kernel, y = T4(d+1)/(20+d(d+1)) log(T)
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Algorithm 1 GP kernel bandit for non-stationary

1: Input: T (the total time steps), n’ (learning rate of dual variable)

_ymaxm,§—mln{ (e - 1)(7/1)’1}

1
2: Initialization: Number of arms J = |_§ log(T) |, weight for each arm

j=1,...,J, w(j) = 1, arm selection interval I = VT.
3: fork=1,..., |T/I] do
4:  Initialization: Reward R(k) = 0, constraint value G(k) = 0.
5: Set the probability for arms j =1,.. ., J as

(j) g
(N=(-O—rLl_ 42
rU §Z w7

Choose arm j according to the probability p(j).

Set the restart interval W = 27,

Run the base algorithm with the restart interval W.

Collect the total reward R(k) and the constraint value G (k) across
the interval I.

17)

0o %o R

10: forj=1,...,]do
11:
. J(R(k) —YG(K)) ... ..
w(j) = w(j) exp(m)lf] is selected (18)
w(j)otherwise .

122 Update Y = min(max(Y + ' (G(k)/I — p),0), Yrmax)

We also clip the dual variable at ¢y, qx. Please see Algorithm 1 in
[12] for details of the Base algorithm.

6.2.2 Learning Metric. : For the static-case, we are interested in
minimizing the regret and the violation:

R(T) = ZE V(T)-Z(E gl-p) (6

The regret measures the sub—optlmahty gap between the reward
following the optimal policy 7*, and the reward following the policy
7p at time p. The violation measures the constraint violation at
time p. Here, we seek to have sub-linear growth of R(T) and V(T),
ie, R(T)/T — 0as T — oo as it will ensure that in most of the
episodes, the policy is feasible and optimal. The following result
signifies that the base algorithm indeed achieves the sub-linear
regret and violation.

ProposITION 1 ([12]). With probability 1 — 8, the base algorithm
achieves R(T) < O(T'2), V(T) < O(TY/?).

6.3 Addressing Non-Stationary Conditions

We now discuss how we modify the base algorithm to address
the non-stationarity. Our key contribution is adapting the ‘bandit
over bandit’ approach inspired from [38] to the constrained GP-
bandit. We first quantify non-stationarity, discuss existing metric-
dependent methods, and finally introduce our novel approach that
removes this dependency.

6.3.1 Time-varying Budget. Since our scenario is mobile, the chan-
nel conditions are time-varying. These time-varying channels affect
reward/utility; thereby, f}, and z, also vary over time. We assume
that these variations are bounded by B and B. In particular, By :=

T-1 —vT-1
Zp:l max ”ﬁ’ - ﬁ""l”%{k and B; := Zp:l
total combined variation budget would be B = max{By, B;}.

mj;(ix HZP - zp+1||ﬂk.The

6.3.2 Restart Strategy. Similar to [12], to combat non-stationary
conditions, we adopt the restart strategy, which resets the kernels

107

MobiHoc "25, October 27-30, 2025, Houston, TX, USA

and forgets previous observations, no longer useful for deciding the
new beamforming vector as perhaps the environment has changed.
Restart enables efficient adaptation by discarding outdated observa-
tions in non-stationary environments. Note that instead of restart,
one can employ sliding window, or weight-based algorithm. The
key algorithmic contribution is selecting the restart interval W
which we explain in the following.

6.3.3 Unknown Variation Budget. Estimating the variation bud-
gets By and B; in real time is challenging and channel-dependent;
thus, especially in mobile settings, the restart window W should be
learned adaptively. We propose Algorithm 1, a bandit-over-bandit
scheme that treats a candidate set J = {2/ }]Lils log, T
tervals as outer-loop arms. We partition the horizon T into epochs
of length I = VT. At epoch k, EXP3 [39] selects an arm j from
weights w;(k) (updated via Eq. (18)), yielding W = 2/; the base
algorithm (Sec. 6.2) then runs for I steps with restarts every W.
We aggregate reward R(k) and interference G(k) over the epoch,
update arm probabilities using Eq. (17), and update the dual variable
Yo ] (Y + 1/ (G(K)/I = p)). Arms that induce low re-
ward and/or higher constraint violation (see, (Eq.18)) receive lower
weight and are selected less often in subsequent epochs.

of restart in-

viaY « Il

6.4 Performance Metrics

eRegret and Violation: Since the optimal policy can change over
time in a non-stationary environment, we evaluate our algorithm
using dynamic regret Dy — R(T) and constraint violation V(T). We

define the dynamic regret as:
T

DynR(T) = E[ Z (rgp (wp) — r;" (wp))] (19)
p=1
The constraint violation metric V(T) is still given by Eq.16. Com-
pared to regret, bounding dynamic-regret is fundamentally more
challenging. Nevertheless, we obtain sub-linear dynamic-regret and
violation bound.
THEOREM 1. Algorithm 1 achieves with probability 1 — 9,

DynR(T) < O(BVAT3/%),  v(T) < O(BY/*T%/%)

The proof is in our technical report [40] owing to space constraint.

[12] achieves dynamic regret and violation bound of O(BT3/%)
(Theorem 1 there) where one can choose the worst estimated bud-
get if the budget is unknown. In contrast, our bound achieves
O(BY/*T3/%). Hence, we improve the dependency of the budget.
Note that [12] indicates that even if B = o(T'/*), one can have linear
regret and violation. In contrast, our result still achieves sub-linear
regret and sub-liner violation bound as long as the time-varying
budget grows sub-linearly. [12] has also achieved O(BY/AT3/4) dy-
namic regret and violation, however, it requires the knowledge
of the budget B (Corollary 2 there). Our result achieves the same
bound without the information of B.

For an online setting, it is norm to assume that T is known. If T
is unknown, one can use the doubling ‘trick’ [41], which scales the
regret and violation bound by log(T). In particular, one can choose
T=292122 .  andrunthe algorithm until reaching the T.
eSelection Accuracy: We also evaluate the selection accuracy by

M for total

defining a prediction metric as P = & Zn 1 Tlog(1+RS5")
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Figure 5: Experimental testbed with MRs in a lab emulating a factory floor (left). Closeup view of two different reflective elements configured
through the control unit (middle). The schematic of an individual reflective element with multiple delay lines (right).

given time T, which measures the throughput ratio between the
policy chosen and the optimal policy.

7 System Implementation of REMARKABLE

7.1 Experimental Testbed

7.1.1  REMARKABLE Setup. Fig. 5 shows two Thurtlebot robots
functioning as MRs. Each includes an Intel NUC running the DSP
application in a Linux-based system and a B210 SDR operating in
the ISM band, equipped with omni-directional antennas. An x310 ra-
dio with a directional antenna serving as an AP, facing the RIS, with
a distance between AP-RIS meeting far-field conditions (2D?/A, D
represents surface size). All radios are connected to OctoClock-G
CDA-2990 for frequency and time synchronization. There is a feed-
back (backhaul) channel between MRs and AP for sending current
observations (RSS) to the AP. The AP’s host machine coordinates
signal transmission and issues directives to the RIS control unit, in-
cluding the selected codeword of w for RIS and rotational angles («
and f) for servo motors attached to the surface. Note that we tested
only roll rotation, but both pitch and roll rotations are feasible for
a ceiling-mounted RIS.

7.1.2 RIS Implementation. The loss-based transmission line con-
cept for phase shifting, previously implemented in [9, 42], was
modified to realize our surface. Our fabricated RISs, shown in Fig. 5,
consist of switchable patch-type antennas designed with the inset
feeding technique [33] operating at the ISM bands of 900MHz and
2.4GHz. The element size can be significantly reduced as operating
at higher frequencies. We deploy two RISs: one with 25 reflective
elements in a 5 X 5 layout and another with 81 elementsina 9 X 9
layout, with antenna spacing of A/2 to minimize mutual coupling
and grating lobes. Each reflective element connects to four lossless
transmission lines via a single RF switch, allowing phase shifts of 0,
7/2, 7, and 377/2 with 2-bit quantization. By selecting the length of
the transmission line, we can alter the impedance of each reflective
element by changing its reflective coefficient, I}y, thereby, intro-
ducing a phase shift to the reflected signal. In control unit, each
element attached to MASWSS0204 RF switches is controlled by an
arduino Mega2560 p-controller who orchestrates the configurations
of elements parallel via SN74HC595 shift registers.
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8 Performance Evaluation of REMARKABLE

8.1 Validation of RIS Codebook

We first verify the performance of the RIS codebook by measuring
the RSS at various locations with equal distances from RIS. We
set up a receiver antenna on a tripod at varying heights to cover
angular space in the elevation plane. At each location, we scan
the entire angular range by switching between beams from the
codebook, containing codewords for angular directions in the range
of [-/2,7/2] for ¢ and [—n/4, = /4] for 6, with a resolution of 1°.
An example of the collected data is shown in Fig. 7, comparing
two beam patterns in two different directions. We observe that the
9 x 9 surface achieves an 11dB gain as shown in Fig. 7a, while the
gain drops to 7dB when the beam direction approaches the edge
of coverage. As a result, we determine the coverage area of RIS to
be [—x/3, r/3]. Moreover, we observe a deviation of 2.3% from the
desired direction due to quantization, still within the beamwidth
of the pattern, around 15° — 20°. However, this error increases for
the direction in Fig. 7b. Lastly, we can enhance the gain for the
corresponding direction at the edge of the coverage by adjusting
the orientation of RIS as shown in Fig. 7b.

8.2 Stationary Scenario

Here, we employ the testbed illustrated in Fig. 5 (see Sec. 7.1) to
assess the performance of the proposed beam selection algorithm
while the robots are stationary at different locations. One robot is
designated as the target, while the other is constrained by inter-
ference threshold, p. p from Eq.10 is determined through multiple
measurements in the environment. Two different sizes of code-
books are employed in this experiment: the first one includes two
rotation angles with S, = 16 and a total of S = 32 for codebook
CB1 = {C1,Cy}, and the other has S, = 32 with a total of S = 64 for
codebook CB2 = {C3,C4} (see Sec. 4.3). For each codebook, CB1
and CB2, we interchange the roles of robots, such as swapping the
second one as the target, and repeat the experiment 200 times. We
employ the base algorithm, GP-UCB-C, (see Sec. 6.2) and plot the
regret and reward, as in Fig. 6a-6b. Our findings demonstrate that
the algorithm finds the optimum policy for both codebook sizes
and rapidly converges to the best policy without violating V(T).
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Figure 6: Performance evaluation of proposed approaches with different experiment settings: at stationary conditions a) Time-average (TA)
rewards with variation, from multiple measurements, b)TA regret and TA violation performances; at non-stationary conditions c¢) Comparison
of three different methods (see Sec. 6.3), and d)TA violation and TA rewards, e) TA regret under different mobility settings.
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Figure 7: Validation of codebook design; a) measured beam pattern
at (-35°,-19°), b) after changing the orientation of RIS ( MR was out-
side of the coverage at (65°,-13°)); ¢) Comparison of REMARKABLE’s
SNR performance against multi-AP scneraio; and d) Comparing the
performance of REMARKABLE and exhaustive search (ES) w.r.t se-
lection accuracy and beam selection time.

As this is a real-time experiment, obtaining the best policy while
running the algorithm is not feasible. Consequently, we conduct
two consecutive epochs: one for beam selection using the proposed
approach and another utilizing an exhaustive search technique to
find the best policy.

8.3 Non-stationary Scenario

In this study, the MRs travel along a pre-determined path and send
their observations (RSS) to the AP. We first conduct the experiment
with our base algorithm (GP-UCB-C) (without restart strategy). The
results (Fig. 6¢-6d) show that GP-UCB-C has a significant increase in
TA-regret (DynR(T)/T) due to changes in the channel, specifically
starting around 300, even if with non-violated constraint. We then
apply the restart strategy GP-UCB-RE proposed in [12] with an
upper estimate on the budget. While this restart strategy fails but
still beats the baseline as it ultimately restarts and the TA-regret
starts decreasing. Finally, our proposed approach Algorithm 1 (GP-
UCB-A) has the best performance (Fig. 6¢c-6d) compared to other two
baselines as it can quickly adapt to the change in the environment.
In particular, our proposed approach has the lowest TA-regret even
when the environment changes while also finding feasible solution.
The last experiment corresponds to a time-varying channel with
different channel coherence times as we adjust the speed of the MR
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from min to the allowed max speed asin [0.15m/s, 0.3m/s, 0.45m/s].
Fig. 6e presents that our approach Alg.1 adaptively selects the best
optimum beams over time-varying channel quickly which is evident
from its TA-regret performance.

8.4 Comparison with Classical Methods

Here, we first compare REMARKABLE’s SNR performance with the
classical multi-AP deployment, and then evaluate REMARKABLE
against classical methods in terms of the beam selection time, and
selection accuracy from Sec. 6.4. For benchmarking, REMARKABLE
is compared with exhaustive search (ES)—the widely adopted base-
line in mmWave protocols (e.g., IEEE 802.11ad/ay)—to highlight
the efficiency of our approach without resorting to full codebook
scans, rather than against complex learning methods such as rein-
forcement learning, which demands extensive training. As shown
in Fig. 7c, the MR suffers an SNR drop when encountering obstacles
or interference, whereas REMARKABLE maintains reliable links
with consistent SNR. Despite RIS-induced cascaded path loss, RE-
MARKABLE consistently achieves high SNR levels, underscoring
the robustness of the design. Furthermore, we define a term of time
slot as the end-to-end latency of each selected beam, comprising:
(i) the beam searching latency of the employed algorithm, includ-
ing both selection and real-time execution; (ii) feedback latency
between the MR and AP, where the MR reports the observed RSS to
the AP; and (iii) control latency between the AP and the RIS, where
the AP transmits the selected codewords to the RIS. The control
latency for transmitting a single codeword to the RIS is 208 s, the
average feedback latency over the wireless backhaul is 8.1 ms, and
the beam searching latency is approximately 23.8 ms for codebook
CB1 (higher for ES). When using ES, 32 time slots are needed to ex-
amine all beams from CB1 and select the one with the highest RSS,
resulting in a guaranteed overhead delay. In contrast, REMARK-
ABLE averages 18 time slots (based on multiple experiments) to find
the best beam with our adaptive algorithm GP-UCB-A;. After first
initiated restart, GP-UCB-A; achieves adaptation in only 10 slots,
whereas ES; must re-scan. Finally, Fig. 7d shows that REMARK-
ABLE achieves a 46.8% improvement in beam selection time while
maintaining 94.2% accuracy. Note that this study primarily focuses
on low-mobility scenarios, while high-mobility cases are left for
future work with further latency optimization.

Time Complexity Analysis: The codebook design (see Sec
4) is performed offline, which significantly supports scalability of
the hardware. As we use gradient-descent, its time complexity is
O(SIN?log N), where S is the codebook size, N? the number of
RIS elements, and I the number of gradient descent iterations. At
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runtime, the codebook size affects the online complexity of the
bandit algorithm. Specifically, computing the mean and variance re-
quires matrix inversion with worst-case complexity O(W?), where
W is the restart interval. Evaluating GP-UCB over S codebook car-
dinality results in overall complexity O(SW?2). Since W < VT, the
runtime remains linear in both S and T. Through empirical RIS
measurements, the runtime is 25% fraction of the total end-to-end
latency reported in Sec 8.4. This implies that the practical runtime
overhead is suitable for real-world environments. Designing faster
algorithms and potentially hardware-accelerated solutions remains
an important future direction, especially in high-mobility settings.

9 Conclusions and Future Work

We demonstrate optimal beam selection for robot connectivity
under interference-constrained, time-varying channels. Our RIS
codebook enables selection without channel estimation, and a recon-
figurable mechanism extends coverage. Using an adaptive bandit-
over-bandit restart strategy, REMARKABLE safely learns optimal
beams in dynamic conditions, achieving 46.8% faster selection and
94.2% accuracy—outperforming classical methods. Characterizing
the lower bound on the dynamic regret and violation is an impor-
tant future work. Extending this framework to multiple robots and
multiple RIS also constitutes an important future research direction.
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