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Abstract
Mobile Robots (MRs), typically equipped with single-antenna ra-

dios, face many challenges in maintaining reliable connectivity

established by multiple wireless access points (APs). These chal-

lenges include the absence of direct line-of-sight (LoS), ineffective

beam searching due to the time-varying channel, and interference

constraints. This paper presents REMARKABLE, an online learning

based adaptive beam selection strategy for robot connectivity that

trains kernelized bandit model directly in real-world settings of

a factory floor. REMARKABLE employs reconfigurable intelligent
surfaces (RISs) with passive reflective elements to create beamform-

ing toward target robots, eliminating the need for multiple APs.

We develop a method to create a beamforming codebook, reduc-

ing the search space complexity. We also develop a reconfigurable
rotational mechanism to expand RIS coverage by rotating its pro-

jection plane. To address non-stationary conditions, we adopt the

bandit over bandit idea that employs adaptive restarts, allowing

the system to forget outdated observations and safely relearn the

optimal interference-constrained beam.We show that our approach

achieves a dynamic regret and the violation bound of
˜O(𝑇 3/4𝐵1/4)

where 𝑇 is the total time, and 𝐵 is the total variation budget which

captures the total changes in the environment without even as-

suming the knowledge of 𝐵. Finally, experimental validation with

custom-designed RIS hardware and mobile robots demonstrates

46.8% faster beam selection and 94.2% accuracy, outperforming

classical methods across diverse mobility settings.

CCS Concepts
•Hardware→ Analysis and design of emerging devices and systems;
• Theory of computation→ Online learning algorithms.
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Figure 1: Illustration of mobile robot connectivity in a factory floor
when; a) multiple APs deployed to mitigate the issue of blockages,
but creating interference amongAPs, b) solution to the issue in (a) via
RIS deployment on the ceiling/wall, and c) REMARKABLE system
architecture presenting beam selection for MRs through RIS.

1 Introduction
Industry 4.0 is set to revolutionize manufacturing and industrial

services through the digital transformation of the field, enabling

real-time decision-making and automation [1]. Technologies such

as the Internet of Things (IoT), artificial intelligence (AI), cloud con-

nectivity, large-scale machine-to-machine communication (M2M),

and networked, mobile robotics are central to the future of man-

ufacturing [2]. These robots can collect and analyze data, making

autonomous decisions with minimal human intervention. However,

such a robot-enabled network architecture demands ultra-fast data

transfer speeds, exceptional reliability, and minimal latency [3].

While network densification is a possible path to achieve these

goals, it involves a significant cost overhead [4], and thus, network

designers need to trade-off permanent infrastructure installations

with reconfigurable platforms that can adapt to robot mobility over

time. Aside of mobility, the harsh propagation environment within

the factory floors increases blockages, results in limited coverage,

and significant path loss. To overcome these challenges, recent

studies have shown that programmable wireless environments that

enable reconfigurability by shaping signal reflections can improve

signal-to-noise ratio (SNR) [5] and expand coverage [6].

In REMARKABLE, we realize such a network architecture with

low-mobility MRs and multiple wireless APs deployed in a robotic

factory floor within a rich-scattering environment. Network re-

configurability for enhancing the APs’ coverage is achieved by
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controlling the propagation environment using software-controlled

reconfigurable intelligent surfaces (RISs) [7–9]. This ensures reliable

connectivity for low-mobility MRs by creating a radio environment

that adapts with the MR location, as in Fig. 1a-b. Yet, this requires

a solution to the problem of adaptive beam selection in dynamic

channel conditions between the AP and the MR, as depicted in Fig.

1c.

1.1 Factory-Floor Networking Challenges
• Problem 1 (blockage and coverage): Consider Fig. 1a, show-
ing a factory floor where the LoS signal is blocked by obstacles.

In absence of LoS conditions, the MR relies on the strongest non-

line-of-sight (NLoS) reflection to establish a communication link

with the AP. NLoS multipath components can cause destructive

interference due to uncontrollable phase reflections, leading to

significant communication disruption. This results in significant

received signal strength (RSS) fluctuations with small robot move-

ments. This issue is exacerbated in single-antenna equipped MRs.

Deploying multiple APs as in Fig. 1a, ensures LoS links and expands

coverage but increases communication overhead and infrastructure

complexity.

• Problem 2 (mobility and beam searching): Narrow beams

formed via phased antenna arrays can mitigate propagation loss, as

well as improve signal reception through increased SNR. Typically,

these beams are formed by adjusting antenna element weights, with

steering directivity and beamwidth defined through a codebook.

The APs equipped with such capabilities exhaustively sweep over

the beams in a codebook to discover the optimal beam with the

highest signal strength. However, exhaustive beam searches create

significant overhead, and MR mobility requires repeated searches

to maintain connectivity.

• Problem 3 (interference): Even with APs forming highly direc-

tional beams towards MRs, in a heterogeneous environment with

multiple APs, the close proximity of MRs can cause excessive in-

terference , degrading network performance [10]. Therefore, beam

selection must be judiciously performed, as some beam candidates

may not be suitable for data transmission.

1.2 Proposed Approach
Our approach aims to tackle problems 1, 2, and 3 for MR connectiv-

ity in factory floor settings by achieving the following steps:

1) We design a passive beamformer using an RIS, a planar ar-

ray of passive reflective elements, each configured to adjust the

amplitude and phase of incident signals. This allows us to create

various beam patterns, which are then used to form a beam code-

book for the beam steering (see Fig. 1c). To address Problem 1 (see
Fig. 1b), several practical challenges must be considered: (i) Instead

of relying on Channel State Information (CSI), our approach uses

a predefined codebook where each codeword corresponds to the

weights of RIS elements. This is necessary because RIS elements

are passive and lack radio chains, making traditional channel esti-

mation impractical. Estimating each channel component—would

be proportional to the number of reflective elements, would create

extreme overhead. Therefore, we develop a method for creating the

desired reflection beam pattern by using a non-uniform phase sam-

pling technique, optimizing each element’s reflection gain while

considering incident and reflection signals. ii) In a planar RIS, edge

elements of RIS contribute less to beamforming, limiting overall

gain—especially in dynamic settings like mobile robots. To address

this challenge, we propose a novel reconfigurable rotation mech-
anism that adjusts the pitch and roll angles along the RIS’s local

coordinate axes, effectively enhancing beam coverage and improv-

ing performance. Given a fixed AP location, this method requires

reflective beam pattern synthesis w.r.t the new angular domain of

RIS. Consequently, we generate a multi-level codebook, each level

corresponding to a specific pair of rotational angles.

2)We study beam selection using codebooks derived from reflec-

tive beam-pattern synthesis. Our goal is to learn online the optimal

beam from the RIS to the MR by casting the task as a kernelized

multi-armed bandit (MAB), with each codeword as an arm. To ad-

dress Problem 2 and Problem 3, we impose an interference constraint

at a neighboring MR. The objective is to select beams that maximize

RSS at the target MR subject to this constraint over a time-varying

channel.Wemodel cross-beam correlations with a Gaussian Process

(GP) bandit and propose a primal–dual GP-Upper Confidence Bound

(UCB) algorithm to balance exploration and exploitation while en-

forcing the interference constraint. To handle non-stationarity, we

add an adaptive restart mechanism inspired by the bandit-over-
bandit framework, which dynamically tunes the restart interval

from feedback. REMARKABLE is theoretically grounded and vali-

dated on a real RIS-enabled robotic testbed—unlike prior theoretical

works [11, 12], which remain untested in practice, and existing RIS

implementations [5, 13, 14], which predominantly target static sce-

narios.

1.3 Summary of Contributions
(1) We create an RIS codebook with beam patterns in multiple di-

rections, enabling the online learning algorithm to find the best

beam without channel estimation. Additionally, we introduce a

reconfigurable rotational mechanism to expand RIS coverage.

(2) We formulate beam selection for an MR as a primal-dual GP-

UCB framework to maximize signal strength while avoiding

interference. To address the time-varying or non-stationarity,
we adopt "bandit over bandit" concept restart strategy, which
adaptively forgets past data by tuning the restart interval via

an adversarial bandit. Our method achieves sub-linear dynamic

regret and constraint violation without prior knowledge of

budget variations, safely learning beam selection even under a

time-varying channel.

(3) We show that we achieve
˜O(𝐵1/4𝑇 3/4) regret and ˜O(𝐵1/4𝑇 3/4)

violation bound where 𝐵 indicates the total change in the en-

vironment (i.e., the change in the reward and the constraint,

defined in Sec. 6.3.1) over𝑇 time steps. We improve the existing

bound of
˜O(𝐵𝑇 3/4) dynamic regret and the dynamic violation

bound achieved in [12].

(4) We demonstrate REMARKABLE in a real-world setting using

USRP X310-B210 SDRs (Software Defined Radios), with MRs

and a PCB-fabricated RIS, as shown in Fig. 1c. Our results show

that REMARKABLE achieves 46.8% improved performance over

classical methods with 94.2% selection accuracy.

(5) We release the software pipeline for the online learning frame-

work and the RIS configuration-orchestration software [15].

2 Related Work
• RIS & Smart Surface: RIS technology and similar concepts like

metasurfaces have recently been proposed to enhance applications
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Figure 2: a) RSS fading at two different locations over 20MHz band-
width; b) Average RSS measured per location where there are obsta-
cles or not.

such as security [16], virtual reality [17], localization and sens-

ing [18], beamforming [5, 19], and over-the-air aggregation [20].

Recent research has focused on optimizing transceivers and RIS

phase-shifts to minimize signal distortion [19, 20], especially with

imperfect CSI estimation [21]. However, these methods assume

knowledge of wireless channels, which is challenging due to RIS’s

limited processing capabilities. Additionally, some practical works

[5, 13, 14, 18, 22] rely on real-time channel estimation, causing over-

head proportional to system size and requiring fast feedback. In

contrast, REMARKABLE uses a predefined RIS codebook, avoiding

such overhead. Similar to our approach, other works consider con-

figuring RIS elements with pre-defined coding patterns [20, 23] and

leveraging an extra degree of freedom by optimizing rotation of

RIS plane/elements to improve system performance [24, 25]. In fact,

the work [11] proposes a hierarchical codebook-generating method

using pattern synthesis, followed by a beam training method using

the two-mainlobe codewords from the designed codebook for beam

sweeping. Unlike these stationary setups that use exhaustive beam

searching, REMARKABLE offers a novel method for faster beam

selection, even considering mobility.

• Beam Selection with Bandit:Online Learning (OL), particularly
MAB frameworks, has become prominent for beam selection due to

its inherent ability to balance exploration and exploitation. Standard

MAB frameworks utilized in beam selection cannot capture the cor-

relation among beam directions. The authors in [26–29] leverage

contextual information to exploit such correlations. However, these

papers do not consider the time-varying channel and interference

constraints that we considered, assuming quasi-static channels;

thereby, driven models cannot capture time-varying channels, most

likely mapped to real-world settings. A recent kernelized MAB

approach [12] addresses time-varying, interference-constrained

channels but neglects RIS settings and lacks real-world implementa-

tion. Our work explicitly incorporates RIS, demonstrates improved

theoretical bounds compared to [12], and provides experimental

validation in practical scenarios.

3 Motivation for Designing REMARKABLE
Before designing REMARKABLE, we conduct preliminary experi-

ments in a factory floor use-case to investigate Problem 1.
• Experimental Setup: Consider a scenario where low-mobility

MRs roam a factory floor to complete assigned tasks (see Fig. 5).

We use a Turtlebot2 robot, which navigates the floor and stops at

target locations to collect data. The data collection part is obtained

at the 5GHz band with 20MHz bandwidth signal by SDR X310

radios equipped with omni-directional VERT2450 tx-rx antennas,

where one of them is mounted on the Thurtlebot, while the other

two are placed in designated areas in the environment as APs to

communicate with the MR.

• Observation: We conducted two factory-floor experiments—one

with obstacles and one without—while the MR navigated and RSS

was measured from each AP at target locations. As shown in Fig.

2a, the AP1–MR channel exhibits frequency-selective fading that

varies with MR position, whereas Fig. 2b shows AP2 providing

better coverage in regions where AP1 is weak, even without obsta-

cles. However, with obstacles, neither AP ensures reliable coverage,

indicating the need for additional APs. This, in turn, introduces in-

terference management challenges and increases overhead in terms

of coordination and communication resources (e.g., bandwidth).

4 REMARKABLE Codebook Design
We aim to create a codebook of beam patterns by optimizing the

phases of RIS’s reflective elements to achieve the desired reflections.

We start by looking at a scenario with a single AP and a single RIS.

The RIS is a planar array with 𝑁 ×𝑁 passive reflective elements that

can be configured for complex-valued amplitude and phase changes.

Moreover, each generated codebook should consist of beams with

predefined beam resolution and cover desired angular space.

4.1 Beam Steering Design
With 𝑁 × 𝑁 layout RIS, we can derive the far-field reflection gain

pattern of the surface w.r.t a specific target angle as:

𝐹 (𝜙𝑟 , 𝜃𝑟 ) =
(𝑁−1)∑︁
𝑚,𝑛=0

𝐺𝑚𝑛 (𝜙𝑖 , 𝜃𝑖 )Γ𝑚𝑛𝑒 𝑗 ( (𝑚𝑢𝑟+𝑛𝑣𝑟 )−(𝑚𝑢𝑖+𝑛𝑣𝑖 ) ) (1)

where 𝑢𝑖 = 𝑘𝑑𝑥𝑐𝑜𝑠𝜙𝑖𝑠𝑖𝑛𝜃𝑖 and 𝑣𝑖 = 𝑘𝑑𝑦𝑠𝑖𝑛𝜙𝑖𝑠𝑖𝑛𝜃𝑖 are 𝑢-𝑣 space

coordinates when the source signal contacts on different reflective

elements from AP with azimuth and elevation angle of 𝜙𝑖 and 𝜃𝑖 .

Similarly, the term𝑢𝑟 = 𝑘𝑑𝑥𝑐𝑜𝑠𝜙𝑟 𝑠𝑖𝑛𝜃𝑟 and 𝑣𝑟 = 𝑘𝑑𝑦𝑠𝑖𝑛𝜙𝑟 𝑠𝑖𝑛𝜃𝑟 rep-

resent when the signal reflects from the surface towards the target

with the azimuth and elevation angle, 𝜙𝑟 and 𝜃𝑟 , respectively. The

reflective elements are placed in half wavelengths along the x and

y directions, 𝑑𝑥 = 𝑑𝑦 = 𝜆/2, also 𝑘 = 2𝜋/𝜆, and 𝜆 is the wavelength
of the operational frequency. Eventually, the signal path follows the

incident angle and impacts the surface. Then, on the surface, it will

be perturbed by the configurations of reflective elements. This is

represented by the term of reflection coefficient, Γ𝑚𝑛 = |Γ𝑚𝑛 |𝑒 𝑗Φ𝑚𝑛
,

wherein the complex-valued amplitude and phase changes are ap-

plied to the incident signal. Assuming the reflection magnitude of

all reflective elements is unity, i.e., |Γ𝑚𝑛 | = 1. Additionally, we de-

note 𝐺𝑚𝑛 (𝜙𝑖 , 𝜃𝑖 ) as radiated gain per reflective element defined as

𝐺𝑚𝑛 (𝜙𝑖 , 𝜃𝑖 ) = (𝑐𝑜𝑠2𝜙𝑖𝑐𝑜𝑠2𝜃𝑖 + 𝑠𝑖𝑛2𝜃𝑖 ) |𝐹𝑒 (𝜙𝑖 , 𝜃𝑖 ) |2 [30]. Here, 𝐹𝑒 is
obtained from estimated full-wave simulation in the Ansys HFSS 3D

electromagnetic simulator. By re-forming Eq.1, we can transform

reflection pattern to:

𝐹 (𝑢𝑟 , 𝑣𝑟 ) =
(𝑁−1)∑︁
𝑚,𝑛=0

𝐴𝑚𝑛 (𝜙𝑖 , 𝜃𝑖 )𝑒 𝑗 (𝑚𝑢𝑟+𝑛𝑣𝑟 ) (2)

𝐴𝑚𝑛 (𝜙𝑖 , 𝜃𝑖 ) = 𝐺𝑚𝑛 (𝜙𝑖 , 𝜃𝑖 ) |Γ𝑚𝑛︸              ︷︷              ︸
𝑎𝑚𝑛

| 𝑒− 𝑗 (𝑚𝑢𝑖+𝑛𝑣𝑖−Φ𝑚𝑛 )︸                 ︷︷                 ︸
𝑒 𝑗Φ

𝑠
𝑚𝑛

(3)

where Φ𝑠𝑚𝑛 = Φ𝑚𝑛−(𝑚𝑢𝑖 +𝑛𝑣𝑖 ) is constant due to fixed locations of
AP and the RIS. From the sampling theory for 2D periodic functions,

the reflection array complex weights, 𝐴𝑚𝑛 can be obtained from

the samples of its radiation pattern |𝐹 (𝑢𝑟 , 𝑣𝑟 ) | as follows:
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(a) (b)

Figure 3: a) Desired and b) generated beampatterns in𝑢-𝑣 coordinates

𝐴𝑚𝑛 (𝜙𝑖 , 𝜃𝑖 ) =
(𝑁−1)/2∑︁

𝑝,𝑞=−(𝑁−1)/2
𝐹 (𝑢𝑝 , 𝑣𝑞)𝑒− 𝑗 (𝑚

′𝑢𝑝+𝑛′𝑣𝑞 )
(4)

In Eq.4,𝑢𝑝 , 𝑣𝑞 are sampling points for the RIS, where𝑢𝑝 = 2𝜋𝑝/𝑁
and 𝑣𝑞 = 2𝜋𝑞/𝑁 . Also,𝑚′ =𝑚−(𝑁 −1)/2 and𝑛′ = 𝑛−(𝑁 −1)/2 for
𝑚,𝑛 ∈ [0, 𝑁 − 1]. In this method, we assign nonuniform phases to

the radiation patterns of RIS at the sampling points via 𝐹 (𝑢𝑝 , 𝑣𝑞) =
|𝐹 (𝑢𝑝 , 𝑣𝑞) |𝑒 𝑗Φ𝑝𝑞

[31], where Φ𝑝𝑞 is the phase assigned to sampling

points (𝑢𝑝 , 𝑣𝑞). Then, we can find optimized phase values needed

to steer the beam in the intended direction by minimizing the Mean

Square Error (MSE) function between desired, 𝐼𝑚𝑛 , and generated,

𝐼𝑚𝑛 , power of reflection array weights such as 𝐼𝑚𝑛 = 𝑎2𝑚𝑛 , that fol-

lows𝑀𝑆𝐸 = 1

𝑁 2

∑(𝑁−1)
𝑚=0

∑(𝑁−1)
𝑛=0

(𝐼𝑚𝑛 − 𝐼𝑚𝑛)2. We apply Gradient

Descent (GD)[32] optimization method to minimize𝑀𝑆𝐸. First, we

define the gradient of 𝑀𝑆𝐸, 𝜕𝑀𝑆𝐸/𝜕Φ𝑝𝑞 w.r.t non-uniform sam-

pling points of the regenerated beam pattern, which is calculated

by chain rule as in
𝜕𝑀𝑆𝐸
𝜕Φ𝑝𝑞

=
∑𝑁−1
𝑚=0

∑𝑁−1
𝑛=0

𝜕𝑀𝑆𝐸
𝜕𝐼𝑚𝑛

𝜕𝐼𝑚𝑛

𝜕Φ𝑝𝑞
. Here, both

derivatives in the chain are derived independently, then we can

have:

𝜕𝑀𝑆𝐸

𝜕Φ𝑝𝑞
=

4

𝑁 2
ℑ
{
𝑒− 𝑗𝜙𝑝𝑞

𝑁−1∑︁
𝑚,𝑛=0

𝑀𝑚𝑛𝑒
𝑗
{
Φ𝑠
𝑚𝑛+Φ𝑓

}}
(5)

where𝑀𝑚𝑛 = 𝑎𝑚𝑛 (𝑎2𝑚𝑛 − 𝐼𝑚𝑛) and Φ𝑓 =𝑚′𝑢𝑝 +𝑛′𝑣𝑝 . Since Eq.5 is
a form of Fourier Transform, we utilize the Fast Fourier Transform

(FFT) techniques to calculate gradients. Then at each iteration, new

non-uniform phase samples are found as:

Φ𝑝𝑞,𝑟+1 = Φ𝑝𝑞,𝑟 + ∇Φ𝑝𝑞,𝑟 = Φ𝑝𝑞,𝑟 − 𝜂𝑔
𝜕𝑀𝑆𝐸

𝜕Φ𝑝𝑞
(6)

where 𝜂𝑔 is the learning rate of the GD optimizer, determining

the step size to converge it to the optimal point. After obtaining

optimized non-uniform phase samples, we can find the phase dis-

tribution of the surface, Φ𝑚𝑛 , by considering the amplitude and

assigned phases, Φ𝑝𝑞 , of the radiation pattern 𝐹 (𝑢𝑝 , 𝑣𝑞) through
Eq.4. Fig. 3 compares the desired and generated pattern at steered

angles of (40°,30°), showing that desired pattern can be achieved

by our method, albeit with some increased side slopes due to the

effect of quantization.

4.2 Beam Coverage Design
Here, we address RIS’s limitation in terms of its angular coverage

and propose a solution to mitigate this by integrating a reconfig-

urable rotational mechanism.

4.2.1 Addressing the Coverage Problem of RIS. The steering capa-
bilities of a planar array RIS are limited by target direction since not

all reflective elements contribute equally to the beam’s reflective

gain, especially if the direction is near the edge of the RIS coverage

area. Additionally, RIS coverage depends on its relative size, making

it challenging to cover the entire angular space. To illustrate, we

simulate a 9×9 inset-fed patch antenna array, measuring beamform-

ing gain at two angular locations. The RIS is placed along the 𝑥-𝑦

plane with the𝑚𝑛𝑡ℎ element at (𝑚𝑑𝑥, 𝑛𝑑𝑦, 0), and measurements

are taken along the 𝑧-axis for azimuth, 𝜙𝑟 , and elevation, 𝜃𝑟 . By ma-

nipulating the phase values of each antenna, we form two distinct

beams toward the targets at (3.3𝑚, 20◦, 40◦) and (3.3𝑚, 66◦, 40◦),
as in (𝑟, 𝜙, 𝜃 ). Fig. 4a-4b show that the larger-azimuth target suffers

a 25% gain loss compared to the one closer to the center, and the

boresight beamwidth narrows undesirably (see Fig. 4b). We pro-

pose enhancing RIS coverage by adding a reconfigurable rotational

mechanism to adjust its orientation through pitch and roll angles.
The yaw angle is not used as the z-axis is the projection axis of RIS.

Implementing this method necessitates rebuilding the codebook

structure and reformulating the beam shaping and steering process.

4.2.2 Beam Synthesis for Rotated RIS. In our scenario, with the

location of the AP fixed, we only need to rotate the RIS to cover

different sectors in the work zone. To achieve this, we first define

the rotation matrices, 𝑅𝑥 (𝛼) and 𝑅𝑦 (𝛽), which rotate the vector

positions by an angle of roll 𝛼 and pitch 𝛽 around the 𝑥-axis and

𝑦-axis. These matrices are 𝑅𝑥 (𝛼) =

[
1 0 0

0 𝑐𝑜𝑠 (𝛼 ) −𝑠𝑖𝑛 (𝛼 )
0 𝑠𝑖𝑛 (𝛼 ) 𝑐𝑜𝑠 (𝛼 )

]
and

𝑅𝑦 (𝛽) =
[
𝑐𝑜𝑠 (𝛽 ) 0 𝑠𝑖𝑛 (𝛽 )

0 1 0

−𝑠𝑖𝑛 (𝛽 ) 0 𝑐𝑜𝑠 (𝛽 )

]
. Notably, we assume the place-

ment of AP satisfies the far-field conditions [33]. Consequently,

the incident angle on each reflective element is given as 𝜙𝑖 and

𝜃𝑖 for a planar array surface. Each element position vector de-

fined as 𝑟𝑚𝑛 = [𝑚𝑑𝑥 , 𝑛𝑑𝑦, 0]′, 𝑟𝑚𝑛 ∈ 𝑅3 and𝑚 = [0, 1, ..., 𝑁 − 1],
𝑛 = [0, 1, ..., 𝑁 − 1], does not change in terms of its position w.r.t

the RIS’s local coordiantes. However, we must calculate the new

incident angles, 𝜙
′
𝑖
and 𝜃

′
𝑖
, after rotating the RIS with the predeter-

mined roll and pitch angles. The derivations for the rotation with

𝛼 over 𝑦-𝑧 plane are, (Z = 𝑐𝑜𝑠𝜙𝑖𝑠𝑖𝑛𝜃𝑖 ):

𝜃
′
𝑖 (𝛼) = 𝑎𝑟𝑐𝑐𝑜𝑠 (𝑠𝑖𝑛𝜙𝑖𝑠𝑖𝑛𝜃𝑖𝑠𝑖𝑛(𝛼) + 𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠 (𝛼))

𝜙
′
𝑖 (𝛼) = 𝑎𝑟𝑔(Z + 𝑗 (𝑠𝑖𝑛𝜙𝑖𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠 (𝛼) − 𝑐𝑜𝑠𝜙𝑖𝑠𝑖𝑛(𝛼))

The derivations for the rotation with 𝛽 over 𝑥-𝑧 plane can be

obtained in a similar manner. Hence, the required 𝑢-𝑣 plane co-

ordinates for generating beams for different directions change to

𝑢
′
𝑖
= 𝑘𝑑𝑥𝑐𝑜𝑠𝜙

′
𝑖
𝑠𝑖𝑛𝜃

′
𝑖
and 𝑣

′
𝑖
= 𝑘𝑑𝑥𝑠𝑖𝑛𝜙

′
𝑖
𝑠𝑖𝑛𝜃

′
𝑖
. Similar definitions ap-

ply to 𝑢
′
𝑟 and 𝑣

′
𝑟 . These terms are used in Eq.1, 2, and 3 to generate

the rest of the codebook. In the final step, the phase distribution of

the RIS, Φ𝑚𝑛 , needs to be obtained from Eq.4 by taking the phasor

form of 𝐴𝑚𝑛 (𝜙
′
𝑖
, 𝜃
′
𝑖
) with the subtraction of 𝑢

′
𝑖
and 𝑣

′
𝑖
related terms

from it. Fig. 4c shows %13 improvements in terms of gain after the

rotation angle of 𝛼 is applied for the same target, shown in Fig. 4b.

4.3 Hierarchy of RIS Codebook
4.3.1 2-bit Phase Quantization. Following the Sec. 4.1, to generate

a beam toward (𝜙𝑟 , 𝜃𝑟 ), phase correction Φ𝑚𝑛 = Φ𝑠𝑚𝑛 + (𝑚𝑢𝑖 +𝑛𝑣𝑖 )
is required for the (𝑚,𝑛)𝑡ℎ reflective element. These obtained phase

correction values are continuous, and they must be mapped to the
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Figure 4: Normalized power gain distribution over 𝑥-𝑧 plane of RIS; while a) the target is close to its center, and b) the edge of its coverage area,
c) after rotational angle is applied for the target at (b), also phase coding patterns at different 𝜙𝑟 and 𝜃𝑟 illustrating; d) the continuous phase
shifts, e) corresponding quantized 2-bit phase values where 𝜙𝑟 = 60

◦, 𝜃𝑟 = 20
◦, 𝛼 = 0

◦ and 𝛽 = 0
◦

predetermined discrete RIS configurations via configurable states

of each reflective element. Although this limitation is necessary to

decrease complexity, it introduces quantization errors. Yang et al.

[34] demonstrate that the reflective gain loss is highly substantial

when the quantization error exceeds [−𝜋
4
, 𝜋
4
], equivalent to at

least 2-bit phase-shift quantization. Hence, we select the phase

configurations from Ω𝑐 = [ 𝑗𝑐𝜋
2
𝑏−1 ; 𝑐 = 0, 1, ..., 2𝑏 − 1] which are the

nearest values to Φ𝑚𝑛 , keeping error [−𝜋
4
, 𝜋
4
], when 𝑏 = 2,

Φ
𝑞
𝑚𝑛 =

⌊
Φ𝑚𝑛
𝜎

⌉
𝜎, 𝜎 =

𝜋

2
𝑏−1 (7)

Fig. 4e shows the output of quantization corresponding to Fig.4d.

4.3.2 Codebook Design. For 𝑅 rotational angles, the size of the

codebook 𝑆𝑟 , 𝑟 ∈ 𝑅 is given by 𝑆𝑟 = 𝑖 ⌊ 𝜅𝜙𝜅𝜃
𝐵𝑊𝜙𝐵𝑊𝜃

⌋, 𝑖 = [1, 2, ..., 𝐼 ],
considering a 3D beam scanning. Here, 𝑖 is a correlation constant

that increases correlation between neighboring beams in 𝐶𝑟 , while

𝜅 denotes RIS angular coverage (e.g., 2𝜋/3 within [−𝜋/3, 𝜋/3] for
our design). Each beam code in 𝐶𝑟 consists of 𝑁 × 𝑁 codewords

representing the required phase configurations of reflective ele-

ments. Implementing mechanical rotation introduces a controlled

overhead (2.4 ms/angle). In our experiments, rotations occur infre-

quently—primarily when robot mobility substantially alters the op-

timal RIS orientation and demands broader angular coverage—thus

balancing the overhead against the achieved coverage gains.

5 REMARKABLE Model
5.1 System Model
5.1.1 RIS-based Channel Model. In REMARKABLE, we consider

the scenario in Fig. 1c, involving an AP with 𝐾 antennas, a single-

antenna MR, and an RIS with𝐴 = 𝑁 ×𝑁 passive reflective elements.

Each element adjusts the amplitude and phase of the incident signal.

Before data transmission, optimal beam selection through AP-RIS

and RIS-MR channels is needed for array gain and high throughput,

assuming no direct AP-MR link due to the cluttered factory floor. Let

𝑤𝑎 ∈ C represent the effect of RIS element 𝑎 on the reflected signal;

𝑊 ∈ 𝐶 be the beamforming weight vector from the predefined

codebook 𝐶 . The received signal at MR through the RIS for the

transmitted pilot signal 𝑥𝑡 at the 𝑡
𝑡ℎ

time slot is:

𝑦𝑡 = 𝒉′𝑾𝒕𝒉
′′𝑥𝑡 + 𝑛𝑡 , (8)

Let 𝑾𝒕 = diag[𝑤1, ...,𝑤𝑎, ...,𝑤𝐴] ∈ C𝐴×𝐴 , 𝒉
′ ∈ C𝐾×𝐴 , and

𝒉
′′ ∈ C𝐴×1 be complex-valued matrices and vectors, with elements

representing channel coefficients between the AP and RIS element

𝑎 and between 𝑎 and MR, respectively. 𝑛𝑡 ∈ C𝐾×1 is the additive
white Gaussian noise (AWGN), with 𝑛𝑡 ∼ CN(0, 𝜎2𝑰𝐾 ).

5.1.2 Time-varying Channel Model. In our setup, the AP and RIS

are fixed, while the robots are mobile. Thus, ℎ′ is quasi-static chan-
nel with coherence time 𝑇𝑆 , and ℎ

′′
is time-varying channel with

𝑇𝑀 , where 𝑇𝑆 ≫ 𝑇𝑀 . Here, we adopt the time-varying geometric

channel model [35] with 𝐿 multipath components between the RIS

and MR. The multipath time-varying channel model at the 𝑝𝑡ℎ time

instance in 𝑇𝑀 is:

𝒉′′𝒑 =

√︂
𝐴

𝐿

𝐿∑︁
𝑙=1

𝛼𝑙𝑒
𝑗2𝜋𝑣𝑙𝑝𝑇𝑀 𝒂(𝜙𝑙 , 𝜃𝑙 ) (9)

where 𝛼𝑙 ∼ CN(0, 1) is the complex channel gain of the 𝑙𝑡ℎ path, 𝑣𝑙
is the Doppler shift, and 𝒂(𝜙𝑙 , 𝜃𝑙 ) is the reflection steering vector in

the direction of 𝜙𝑙 and 𝜃𝑙 , respectively. We can derive the received

signal at 𝑝𝑡ℎ time instance as 𝑌𝑝 = 𝒉′𝑑𝑖𝑎𝑔(𝒉′′𝑝 )𝝎𝒑𝑿 + 𝑵𝑝 , 𝑿 ∈
C1×𝑇𝑀

is transmitted signal sequence and 𝝎𝒑 ∈ C𝐴×1. We assume

MRs cannot estimate the cascaded channel 𝑯𝑝 = 𝒉′𝑑𝑖𝑎𝑔(𝒉′′𝑝 ) from
AP toMR over RIS; thereby, they only observe received signal power

when the AP selects a beam from the RIS codebook𝐶 and transmits

a pilot signal. if the pilot signal 𝑋 is set to be 1, then the received

signal power (RSP) can be expressed as F𝑝 (𝝎𝑝 ) = |
√
𝑠𝑯𝑝𝝎𝑝 +𝑵𝑝 |2.

Note that we convert the received signal power to the RSS by

10𝑙𝑜𝑔(F𝑝 (𝝎𝑝 )) for our experiments. The target user is MRM, but

other MRs, denoted as 𝑖 ∈ I, should not experience interference

from MRM. Received signal power F𝑝,𝑖 (𝝎𝑝 ) for 𝑖𝑡ℎ MR is also

effected by time-varying channel 𝑯𝑝,𝑖 .

5.2 Problem Formulation
We aim to control the beamforming weight vector𝝎𝑝 to find the op-
timal beam that achieves the largest expected RSP, E[F𝑝,𝑚 (𝝎𝑝 )] =
𝑠 |𝑯𝑝,𝑚𝝎𝑝 |2, for MRM while maintaining the expected maximum

RSP, E[𝑚𝑎𝑥
𝑖∈I
{F𝑝,𝑖 (𝝎𝑝 )}] = 𝑚𝑎𝑥

𝑖∈I
{𝑠 |𝑯𝑝,𝑖𝝎𝑝 |2}, for MRs in I less

than a threshold 𝜌 . Given that 𝐻𝑝,𝑚 and 𝐻𝑝,𝑖 are unknown and

environment-dependent, we formulate the beam selection as an on-

line constrained stochastic optimization problem. Let 𝑇 denote the

time slots of equal duration for beam selection before transmitting

data. In time slot 𝑝 ∈ 𝑇 , the AP selects a beamforming weight vector,

𝝎𝑝 , from a set of candidate beams (arms in the bandit), and observes

RSP, F𝑝 (𝝎𝑝 ), from all the MRs. Here, we define 𝑟𝑝 (𝒘𝑝 ) = F𝑝,𝑚 (𝝎𝑝 )
as observed reward and 𝑔𝑝 (𝒘𝑝 ) =𝑚𝑎𝑥

𝑖∈I
{F𝑝,𝑖 (𝝎𝑝 )} as observed util-

ity function, and both are time-varying. Sequentially selected beams

and corresponding sequential rewards with utilities are presented

as {𝒘1,𝒘2, ...,𝒘𝑝 } and {(𝑟1 (𝒘1), 𝑔1 (𝒘1)), ..., (𝑟𝑝 (𝒘𝑝 ), 𝑔𝑝 (𝒘𝑝 ))}, re-
spectively. Our objective is to find a policy, 𝜋 ∈ Π, that maximizes

the expected cumulative reward, i.e., expected RSP, while satisfying
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a constraint on the expected utility:

max

𝝅𝑝 ∈Π
E[𝑟𝑝 (𝝎𝑝 )] s.t. E[𝑔𝑝 (𝝎𝑝 )] ≤ 𝜌 (10)

Here, the AP selects the beam vector based on selection proba-

bility through policy 𝜋𝑝 . Note that such a policy can depend on the

historical information.

6 Adaptive Beam Selection with REMARKABLE
We adopt GP bandits due to their proven effectiveness in beam

alignment tasks [12], particularly over traditional multi-armed ban-

dits. GP bandits capture spatial correlations among beams and adapt

to time-varying channels—key for mobile scenarios with dynamic

channel states. With this motivation, first, we introduce Gaussian

process (GP) kernel to represent the reward and the constraints.

Then, we define a constrained GP-bandit problem to determine

the beamforming vector (cf,(Eq.10)). We next describe the base al-

gorithm to address the static robot case, followed by our novel

modification addressing the non-stationarity.

6.1 Designing Solution with Gaussian Processes
6.1.1 Gaussian Processes. Our RIS codebook contains beamform-

ing vectors for various rotational angles; different beamforming

vectors 𝝎, from different codebooks C𝑟 ∈ 𝐶 can produce similar

beams as the coverage sector of each codebook can partially overlap.

This results in a high correlation between beamforming vectors

(𝜔,𝜔 ′). Since our reward 𝑟𝑝 and utility functions 𝑔𝑝 are unknown

and non-linear, we use Gaussian Processes and their Reproducing

Kernel Hilbert Space (RKHS) to model this correlation, as inspired

by [12]. Note that MAB problem, where each beamforming vector is
an orthogonal arm, cannot model such correlation.

We define a GP over 𝐶 as GP𝐶 (𝜇 (·), 𝑘 (·, ·)) that is completely

specified by a mean function 𝜇 and covariance function (kernel)

𝑘 : ∀𝜔 ∈ 𝐶 . We assume that the reward function without noise

𝑓𝑝 and constrained utility function without noise 𝑧𝑝 come from

a GP, and perturbed with Gaussian noise: 𝑟𝑝 = 𝑓𝑝 (𝜔) + 𝑛𝑝 , with
𝑛𝑝 ∼ N(0, 𝜎2) and 𝑓𝑝 (·) ∼ GP(𝜇𝑝 (·), 𝑘 (·, ·)). Hence, if a beam

vector 𝜔 is selected then 𝑟𝑝 ∼ GP(𝜇𝑝 (𝜔), 𝑘 (𝜔, ·) + 𝜎2). Similar

argument holds for 𝑧𝑝 and 𝑔𝑝 = 𝑧𝑝 (𝜔) + 𝑛𝑝 , with kernel
ˆ𝑘 . We

use GP(0𝑐 , 𝑘 (·, ·)) as a prior distribution over 𝑓𝑝 . Given a set of

sampling points𝐴𝑇 = [𝜔1, ..., 𝜔𝑇 ] within𝐶 , observed rewards 𝑟𝑝 =

[𝑟1, ..., 𝑟𝑇 ]𝑇 , the posterior distribution of 𝑓𝑝 is GP(𝜇𝑝 (·), 𝜎2𝑝 (·)),
where the mean and variance are:

𝜇𝑝 (𝜔) = 𝑘𝑝 (𝑥)𝑇 (𝐾𝑝 + 𝜎2I)−1𝑟1:𝑝 (11)

𝜎2𝑝 (𝜔) = 𝑘 (𝜔,𝜔 ′) − 𝑘𝑝 (𝜔)𝑇 (𝐾𝑝 + 𝜎2𝐼 )−1𝑘𝑝 (𝜔 ′) (12)

with 𝑘𝑝 (𝜔) = [𝑘 (𝜔1, 𝜔), ..., 𝑘 (𝜔𝑇 , 𝜔)]𝑇 , 𝐾𝑝 = [𝑘 (𝜔,𝜔 ′)]𝜔,𝜔 ′∈𝐴𝑝
,

and I is the identity matrix. Similarly, for the constraint 𝑧𝑝 , we

consider the posterior GP(𝜇̃𝑝 , 𝜎̃2𝑝 ) where 𝑟1:𝑝 is replaced by 𝑔1:𝑝 ,

and the kernel 𝑘 is replaced by
˜𝑘 .

6.1.2 Reproducing Kernel Hilbert Space (RKHS). We assume that

𝑓𝑝 belongs to RKHS H𝑘 . In particular, H𝑘 is equipped with the

kernel 𝑘 such that 𝑓𝑝 (𝜔) = ⟨𝑓𝑝 (·), 𝑘 (𝜔, ·)⟩H𝑘
. Similarly, we assume

that the constraint function 𝑧𝑝 also belongs to H
˜𝑘
, i.e., 𝑧𝑝 (𝜔) =

⟨𝑧𝑝 (·), ˜𝑘 (𝜔, ·)⟩H ˜𝑘
. Some examples of kernel functions are square

exponential, Matern etc., [36].

Throughout the rest of this paper, we assume that the functions

are bounded, i.e., | |𝑓𝑝 (𝑥) | |H𝑘
≤ 𝐹 , and | |𝑔𝑝 (𝑥) | |H ˜𝑘

≤ 𝐺 for all

𝑝 . Such assumptions are also common in practice in the wireless

communication [12, 37].

6.1.3 Kernel Selection. We employ the Matern kernel to specify

the RKHS in GP [36] as it shows the best performance:

𝑘𝑀𝑎𝑡𝑒𝑟𝑛 (𝜔,𝜔 ′) =
2
1−𝑣

Γ(𝑣)

(
𝑠
√
2𝑣

𝑙

)
𝐵𝑣

(
𝑠
√
2𝑣

𝑙

)
(13)

Here, 𝑣 > 0 is the hyperparameter that controls the smoothness of

the output, 𝑠 = 𝑑 (𝜔,𝜔 ′) encodes the similarities between two arms

with the Euclidean distance, 𝐵(𝑣) and Γ(𝑣) are the modified Bessel

function and the gamma function, respectively.

6.2 Base Algorithm
We now discuss the base algorithm (inspired from [12]) which we

use to find the beamforming vector in the static case. This algorithm

also forms the basis in the non-stationary case as well where the

robots are mobile.

6.2.1 GP-Upper confidence bound (GP-UCB). Sincewe do not know
𝑓𝑝 and 𝑧𝑝 , rather we are learning. We only get feedback (noisy)

corresponding to selecting the beamforming vector 𝜔 ; we need

to balance between the exploration and exploitation carefully. For

the unconstrained GP-bandit, GP-UCB algorithm is proposed [36]

where the idea is to select the points that have a higher mean

estimate reward (exploitation) or have a higher posterior variance

(exploration as it does not have enough information). Similarly, we

maintain the upper confidence of the 𝑓𝑝 (at time 𝑝) as the following

term
ˆ𝑓𝑝 (𝜔) = 𝜇𝑝−1 (𝜔) + 𝛽𝑝−1𝜎𝑝−1 (𝜔). 𝛽𝑝−1 is the weight factor:

𝐹 + 1

𝜎2

√︁
2 log(1/𝛿) + 2𝛾𝑝−1 where 𝛾 is the information gain

1
and

the 𝛿 is the confidence parameter. Please see [12, 36] for details.

Primal-Dual: Unlike the unconstrained version [36], we con-

sider a constrained optimization problem. Similar to [12], we con-

sider the Lagrangian of Eq.10 as E[𝑟𝑝 (𝜔𝑝 )] − 𝜙 (E[𝑔𝑝 (𝜔𝑝 )] − 𝜌).
We, then seek to solve for the Lagrangian:

max

𝜔
min

𝜙
E[𝑟𝑝 (𝜔)] − 𝜙 (E[𝑔𝑝 (𝜔)] − 𝜌) (14)

Hence, unlike the unconstrained version, we have to develop

the UCB for the Lagrangian for a given dual variable 𝜙 . Since

noise is zero-mean, E[𝑟𝑝 (𝜔)] = E[𝑓𝑝 (𝜔)], E[𝑔𝑝 (𝜔)] = E[𝑧𝑝 (𝜔)].
We, thus, only need to find the lower confidence bound of 𝑧𝑝
as we already obtained UCB for 𝑓𝑝 , for which, we use 𝑧𝑝 (𝜔) =
𝜇̃𝑝−1 (𝜔) − ˜𝛽𝑝−1𝜎̃𝑝−1 (𝑥) where ˜𝛽𝑝−1 = 𝐺 + 1

𝜎2

√︁
2 log(1/𝛿) + 2𝛾𝑝−1.

With probability 1 − 𝛿 , 𝑓𝑝 (𝜔) ≤ ˆ𝑓𝑝 (𝜔), and 𝑧𝑝 (𝜔) ≥ 𝑧𝑝 (𝜔) (from
[12]) ensuring that if we use

ˆ𝑓𝑝 and 𝑧𝑝 , it will be indeed UCB. For the

static channel 𝑓𝑝 and 𝑧𝑝 are drawn from the GP with time invariant

mean. We decide to choose the solution at time 𝑝 as:

𝜔𝑝 = argmax

𝜔∈𝐶
( ˆ𝑓𝑝 (𝜔) − 𝜙𝑧𝑝 (𝜔)) (15)

After selecting a beamforming vector based on Eq.15, all the

posterior mean and variance, 𝜇𝑝 (𝑥), 𝜎𝑝 (𝑥) and 𝜇𝑝 (𝑥), 𝜎̂𝑝 (𝑥) are
updated through Eq.12 based on the received value. Finally, we

update dual variable 𝜙 with the gradient descent in the dual domain

𝜙 = max{𝜙 + 𝜂 (𝑧𝑝 (𝜔𝑝 ) − 𝜌), 0}, where 𝜂 is the learning rate

𝜌

𝐺
√
𝑇
.

1
For matern kernel, 𝛾𝑇 = 𝑇𝑑 (𝑑+1)/(2𝑣+𝑑 (𝑑+1) )

log(𝑇 )
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Algorithm 1 GP kernel bandit for non-stationary

1: Input: 𝑇 (the total time steps), 𝜂′ (learning rate of dual variable)

=𝑌𝑚𝑎𝑥

√︁
𝐼/𝑇 , 𝜁 = min

{√︂
𝐽 log( 𝐽 )
(𝑒 − 1) (𝑇 /𝐼 ) , 1

}
2: Initialization: Number of arms 𝐽 = ⌊ 1

2

log(𝑇 ) ⌋, weight for each arm

𝑗 = 1, . . . , 𝐽 , 𝑤 ( 𝑗 ) = 1, arm selection interval 𝐼 =
√
𝑇 .

3: for 𝑘 = 1, . . . , ⌊𝑇 /𝐼 ⌋ do
4: Initialization: Reward 𝑅 (𝑘 ) = 0, constraint value𝐺 (𝑘 ) = 0.

5: Set the probability for arms 𝑗 = 1, . . . , 𝐽 as

𝑝 ( 𝑗 ) = (1 − 𝜁 ) 𝑤 ( 𝑗 )∑𝐽

𝑙=1
𝑤 (𝑙 )

+ 𝜁
𝐽

(17)

6: Choose arm 𝑗 according to the probability 𝑝 ( 𝑗 ) .
7: Set the restart interval𝑊 = 2

𝑗
.

8: Run the base algorithm with the restart interval𝑊 .

9: Collect the total reward 𝑅 (𝑘 ) and the constraint value𝐺 (𝑘 ) across
the interval 𝐼 .

10: for 𝑗 = 1, . . . , 𝐽 do
11:

𝑤 ( 𝑗 ) =

𝑤 ( 𝑗 ) exp( 𝜁 (𝑅 (𝑘 ) − 𝑌𝐺 (𝑘 ) )(1 +𝑌𝑚𝑎𝑥 )𝐺𝐼 𝐽 𝑝 ( 𝑗 )

)if 𝑗 is selected

𝑤 ( 𝑗 )otherwise .
(18)

12: Update 𝑌 = min(max(𝑌 + 𝜂′ (𝐺 (𝑘 )/𝐼 − 𝜌 ), 0), 𝑌𝑚𝑎𝑥 )

We also clip the dual variable at 𝜙𝑚𝑎𝑥 . Please see Algorithm 1 in

[12] for details of the Base algorithm.

6.2.2 Learning Metric. : For the static-case, we are interested in

minimizing the regret and the violation:

𝑅(𝑇 ) =
𝑇∑︁
𝑝=1

E[𝑟𝜋
∗

𝑝 ] − E[𝑟
𝜋𝑝
𝑝 ],𝑉 (𝑇 ) =

𝑇∑︁
𝑝=1

(E[𝑔𝜋𝑝 ] − 𝜌) (16)

The regret measures the sub-optimality gap between the reward

following the optimal policy 𝜋∗, and the reward following the policy
𝜋𝑝 at time 𝑝 . The violation measures the constraint violation at

time 𝑝 . Here, we seek to have sub-linear growth of 𝑅(𝑇 ) and 𝑉 (𝑇 ),
i.e., 𝑅(𝑇 )/𝑇 → 0 as 𝑇 → ∞ as it will ensure that in most of the

episodes, the policy is feasible and optimal. The following result

signifies that the base algorithm indeed achieves the sub-linear

regret and violation.

Proposition 1 ([12]). With probability 1 − 𝛿 , the base algorithm
achieves 𝑅(𝑇 ) ≤ ˜O(𝑇 1/2), 𝑉 (𝑇 ) ≤ ˜O(𝑇 1/2).
6.3 Addressing Non-Stationary Conditions
We now discuss how we modify the base algorithm to address

the non-stationarity. Our key contribution is adapting the ‘bandit
over bandit’ approach inspired from [38] to the constrained GP-

bandit. We first quantify non-stationarity, discuss existing metric-

dependent methods, and finally introduce our novel approach that

removes this dependency.

6.3.1 Time-varying Budget. Since our scenario is mobile, the chan-

nel conditions are time-varying. These time-varying channels affect

reward/utility; thereby, 𝑓𝑝 and 𝑧𝑝 also vary over time. We assume

that these variations are bounded by 𝐵𝑓 and 𝐵𝑧 . In particular, 𝐵𝑓 :=∑𝑇−1
𝑝=1 max

𝑥



𝑓𝑝 − 𝑓𝑝+1

H𝑘
and 𝐵𝑧 :=

∑𝑇−1
𝑝=1 max

𝑥



𝑧𝑝 − 𝑧𝑝+1

H𝑘
. The

total combined variation budget would be 𝐵 = max{𝐵𝑓 , 𝐵𝑧 }.

6.3.2 Restart Strategy. Similar to [12], to combat non-stationary

conditions, we adopt the restart strategy, which resets the kernels

and forgets previous observations, no longer useful for deciding the

new beamforming vector as perhaps the environment has changed.

Restart enables efficient adaptation by discarding outdated observa-

tions in non-stationary environments. Note that instead of restart,

one can employ sliding window, or weight-based algorithm. The

key algorithmic contribution is selecting the restart interval𝑊

which we explain in the following.

6.3.3 Unknown Variation Budget. Estimating the variation bud-

gets 𝐵𝑓 and 𝐵𝑧 in real time is challenging and channel-dependent;

thus, especially in mobile settings, the restart window𝑊 should be

learned adaptively. We propose Algorithm 1, a bandit-over-bandit

scheme that treats a candidate set 𝐽 = {2𝑗 }⌊0.5 log2𝑇 ⌋
𝑗=1

of restart in-

tervals as outer-loop arms. We partition the horizon 𝑇 into epochs

of length 𝐼 =
√
𝑇 . At epoch 𝑘 , EXP3 [39] selects an arm 𝑗 from

weights 𝑤 𝑗 (𝑘) (updated via Eq. (18)), yielding𝑊 = 2
𝑗
; the base

algorithm (Sec. 6.2) then runs for 𝐼 steps with restarts every𝑊 .

We aggregate reward 𝑅(𝑘) and interference 𝐺 (𝑘) over the epoch,
update arm probabilities using Eq. (17), and update the dual variable

via 𝑌 ← Π[0,𝑌max ] (𝑌 + 𝜂′ (𝐺 (𝑘)/𝐼 − 𝜌)). Arms that induce low re-

ward and/or higher constraint violation (see, (Eq.18)) receive lower

weight and are selected less often in subsequent epochs.

6.4 Performance Metrics
•Regret and Violation: Since the optimal policy can change over

time in a non-stationary environment, we evaluate our algorithm

using dynamic regret Dy − R(𝑇 ) and constraint violation𝑉 (𝑇 ). We

define the dynamic regret as:

DynR(𝑇 ) = E
[ 𝑇∑︁
𝑝=1

(
𝑟
𝜋∗𝑝
𝑝 (𝝎𝑝 ) − 𝑟

𝜋𝑝
𝑝 (𝝎𝑝 )

)]
(19)

The constraint violation metric 𝑉 (𝑇 ) is still given by Eq.16. Com-

pared to regret, bounding dynamic-regret is fundamentally more

challenging. Nevertheless, we obtain sub-linear dynamic-regret and

violation bound.

Theorem 1. Algorithm 1 achieves with probability 1 − 𝛿 ,

DynR(𝑇 ) ≤ ˜O(𝐵1/4𝑇 3/4), 𝑉 (𝑇 ) ≤ ˜O(𝐵1/4𝑇 3/4)

The proof is in our technical report [40] owing to space constraint.

[12] achieves dynamic regret and violation bound of
˜O(𝐵𝑇 3/4)

(Theorem 1 there) where one can choose the worst estimated bud-

get if the budget is unknown. In contrast, our bound achieves

˜O(𝐵1/4𝑇 3/4). Hence, we improve the dependency of the budget.

Note that [12] indicates that even if 𝐵 = 𝑜 (𝑇 1/4), one can have linear
regret and violation. In contrast, our result still achieves sub-linear

regret and sub-liner violation bound as long as the time-varying

budget grows sub-linearly. [12] has also achieved
˜O(𝐵1/4𝑇 3/4) dy-

namic regret and violation, however, it requires the knowledge

of the budget 𝐵 (Corollary 2 there). Our result achieves the same

bound without the information of 𝐵.

For an online setting, it is norm to assume that 𝑇 is known. If 𝑇

is unknown, one can use the doubling ‘trick’ [41], which scales the

regret and violation bound by log(𝑇 ). In particular, one can choose

𝑇 = 2
0, 21, 22, . . . , and run the algorithm until reaching the 𝑇 .

•Selection Accuracy: We also evaluate the selection accuracy by

defining a prediction metric as 𝑃 = 1

𝑇

∑𝑇
𝑛=1

log(1+𝑅𝑆𝑆𝑡 (𝑛) )
log(1+𝑅𝑆𝑆𝑡∗ ) for total
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Figure 5: Experimental testbed with MRs in a lab emulating a factory floor (left). Closeup view of two different reflective elements configured
through the control unit (middle). The schematic of an individual reflective element with multiple delay lines (right).

given time 𝑇 , which measures the throughput ratio between the

policy chosen and the optimal policy.

7 System Implementation of REMARKABLE
7.1 Experimental Testbed
7.1.1 REMARKABLE Setup. Fig. 5 shows two Thurtlebot robots

functioning as MRs. Each includes an Intel NUC running the DSP

application in a Linux-based system and a B210 SDR operating in

the ISM band, equipped with omni-directional antennas. An x310 ra-

dio with a directional antenna serving as an AP, facing the RIS, with

a distance between AP-RIS meeting far-field conditions (2𝐷2/𝜆, D
represents surface size). All radios are connected to OctoClock-G

CDA-2990 for frequency and time synchronization. There is a feed-

back (backhaul) channel between MRs and AP for sending current

observations (RSS) to the AP. The AP’s host machine coordinates

signal transmission and issues directives to the RIS control unit, in-

cluding the selected codeword of 𝝎 for RIS and rotational angles (𝛼

and 𝛽) for servo motors attached to the surface. Note that we tested

only 𝑟𝑜𝑙𝑙 rotation, but both 𝑝𝑖𝑡𝑐ℎ and 𝑟𝑜𝑙𝑙 rotations are feasible for

a ceiling-mounted RIS.

7.1.2 RIS Implementation. The loss-based transmission line con-

cept for phase shifting, previously implemented in [9, 42], was

modified to realize our surface. Our fabricated RISs, shown in Fig. 5,

consist of switchable patch-type antennas designed with the inset

feeding technique [33] operating at the ISM bands of 900MHz and

2.4GHz. The element size can be significantly reduced as operating

at higher frequencies. We deploy two RISs: one with 25 reflective

elements in a 5 × 5 layout and another with 81 elements in a 9 × 9
layout, with antenna spacing of 𝜆/2 to minimize mutual coupling

and grating lobes. Each reflective element connects to four lossless

transmission lines via a single RF switch, allowing phase shifts of 0,

𝜋/2, 𝜋 , and 3𝜋/2 with 2-bit quantization. By selecting the length of

the transmission line, we can alter the impedance of each reflective

element by changing its reflective coefficient, Γ𝑚𝑛 , thereby, intro-
ducing a phase shift to the reflected signal. In control unit, each

element attached to MASWSS0204 RF switches is controlled by an

arduino Mega2560 𝜇-controller who orchestrates the configurations

of elements parallel via SN74HC595 shift registers.

8 Performance Evaluation of REMARKABLE
8.1 Validation of RIS Codebook
We first verify the performance of the RIS codebook by measuring

the RSS at various locations with equal distances from RIS. We

set up a receiver antenna on a tripod at varying heights to cover

angular space in the elevation plane. At each location, we scan

the entire angular range by switching between beams from the

codebook, containing codewords for angular directions in the range

of [−𝜋/2, 𝜋/2] for 𝜙 and [−𝜋/4, 𝜋/4] for 𝜃 , with a resolution of 1
◦
.

An example of the collected data is shown in Fig. 7, comparing

two beam patterns in two different directions. We observe that the

9 × 9 surface achieves an 11dB gain as shown in Fig. 7a, while the

gain drops to 7dB when the beam direction approaches the edge

of coverage. As a result, we determine the coverage area of RIS to

be [−𝜋/3, 𝜋/3]. Moreover, we observe a deviation of 2.3% from the

desired direction due to quantization, still within the beamwidth

of the pattern, around 15
◦ − 20◦. However, this error increases for

the direction in Fig. 7b. Lastly, we can enhance the gain for the

corresponding direction at the edge of the coverage by adjusting

the orientation of RIS as shown in Fig. 7b.

8.2 Stationary Scenario
Here, we employ the testbed illustrated in Fig. 5 (see Sec. 7.1) to

assess the performance of the proposed beam selection algorithm

while the robots are stationary at different locations. One robot is

designated as the target, while the other is constrained by inter-

ference threshold, 𝜌 . 𝜌 from Eq.10 is determined through multiple

measurements in the environment. Two different sizes of code-

books are employed in this experiment: the first one includes two

rotation angles with 𝑆𝑟 = 16 and a total of 𝑆 = 32 for codebook

𝐶𝐵1 = {𝐶1,𝐶2}, and the other has 𝑆𝑟 = 32 with a total of 𝑆 = 64 for

codebook 𝐶𝐵2 = {𝐶3,𝐶4} (see Sec. 4.3). For each codebook, 𝐶𝐵1

and 𝐶𝐵2, we interchange the roles of robots, such as swapping the

second one as the target, and repeat the experiment 200 times. We

employ the base algorithm, GP-UCB-C, (see Sec. 6.2) and plot the

regret and reward, as in Fig. 6a-6b. Our findings demonstrate that

the algorithm finds the optimum policy for both codebook sizes

and rapidly converges to the best policy without violating 𝑉 (𝑇 ).
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(a) (b) (c) (d) (e)
Figure 6: Performance evaluation of proposed approaches with different experiment settings: at stationary conditions a) Time-average (TA)
rewards with variation, from multiple measurements, b)TA regret and TA violation performances; at non-stationary conditions c) Comparison
of three different methods (see Sec. 6.3), and d)TA violation and TA rewards, e) TA regret under different mobility settings.

(a) (b)

(c) (d)
Figure 7: Validation of codebook design; a) measured beam pattern
at (-35°,-19°), b) after changing the orientation of RIS ( MR was out-
side of the coverage at (65°,-13°)); c) Comparison of REMARKABLE’s
SNR performance against multi-AP scneraio; and d) Comparing the
performance of REMARKABLE and exhaustive search (ES) w.r.t se-
lection accuracy and beam selection time.
As this is a real-time experiment, obtaining the best policy while

running the algorithm is not feasible. Consequently, we conduct

two consecutive epochs: one for beam selection using the proposed

approach and another utilizing an exhaustive search technique to

find the best policy.

8.3 Non-stationary Scenario
In this study, the MRs travel along a pre-determined path and send

their observations (RSS) to the AP. We first conduct the experiment

with our base algorithm (GP-UCB-C) (without restart strategy). The
results (Fig. 6c-6d) show thatGP-UCB-C has a significant increase in

TA-regret (DynR(𝑇 )/𝑇 ) due to changes in the channel, specifically

starting around 300, even if with non-violated constraint. We then

apply the restart strategy GP-UCB-RE proposed in [12] with an

upper estimate on the budget. While this restart strategy fails but

still beats the baseline as it ultimately restarts and the TA-regret

starts decreasing. Finally, our proposed approach Algorithm 1 (GP-

UCB-A) has the best performance (Fig. 6c-6d) compared to other two

baselines as it can quickly adapt to the change in the environment.

In particular, our proposed approach has the lowest TA-regret even

when the environment changes while also finding feasible solution.

The last experiment corresponds to a time-varying channel with

different channel coherence times as we adjust the speed of the MR

frommin to the allowedmax speed as in [0.15𝑚/𝑠, 0.3𝑚/𝑠, 0.45𝑚/𝑠].
Fig. 6e presents that our approach Alg.1 adaptively selects the best

optimum beams over time-varying channel quickly which is evident

from its TA-regret performance.

8.4 Comparison with Classical Methods
Here, we first compare REMARKABLE’s SNR performance with the

classical multi-AP deployment, and then evaluate REMARKABLE

against classical methods in terms of the beam selection time, and

selection accuracy from Sec. 6.4. For benchmarking, REMARKABLE

is compared with exhaustive search (ES)—the widely adopted base-

line in mmWave protocols (e.g., IEEE 802.11ad/ay)—to highlight

the efficiency of our approach without resorting to full codebook

scans, rather than against complex learning methods such as rein-

forcement learning, which demands extensive training. As shown

in Fig. 7c, the MR suffers an SNR drop when encountering obstacles

or interference, whereas REMARKABLE maintains reliable links

with consistent SNR. Despite RIS-induced cascaded path loss, RE-

MARKABLE consistently achieves high SNR levels, underscoring

the robustness of the design. Furthermore, we define a term of time
slot as the end-to-end latency of each selected beam, comprising:

(i) the beam searching latency of the employed algorithm, includ-

ing both selection and real-time execution; (ii) feedback latency

between the MR and AP, where the MR reports the observed RSS to

the AP; and (iii) control latency between the AP and the RIS, where

the AP transmits the selected codewords to the RIS. The control

latency for transmitting a single codeword to the RIS is 208 µs, the

average feedback latency over the wireless backhaul is 8.1 ms, and

the beam searching latency is approximately 23.8 ms for codebook

CB1 (higher for ES). When using ES, 32 time slots are needed to ex-

amine all beams from 𝐶𝐵1 and select the one with the highest RSS,

resulting in a guaranteed overhead delay. In contrast, REMARK-

ABLE averages 18 time slots (based on multiple experiments) to find

the best beam with our adaptive algorithm GP-UCB-A1. After first

initiated restart, GP-UCB-A2 achieves adaptation in only 10 slots,

whereas ES2 must re-scan. Finally, Fig. 7d shows that REMARK-

ABLE achieves a 46.8% improvement in beam selection time while

maintaining 94.2% accuracy. Note that this study primarily focuses

on low-mobility scenarios, while high-mobility cases are left for

future work with further latency optimization.

Time Complexity Analysis: The codebook design (see Sec

4) is performed offline, which significantly supports scalability of

the hardware. As we use gradient-descent, its time complexity is

O(𝑆𝐼𝑁 2
log𝑁 ), where 𝑆 is the codebook size, 𝑁 2

the number of

RIS elements, and 𝐼 the number of gradient descent iterations. At
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runtime, the codebook size affects the online complexity of the

bandit algorithm. Specifically, computing the mean and variance re-

quires matrix inversion with worst-case complexity 𝑂 (𝑊 2), where
𝑊 is the restart interval. Evaluating GP-UCB over 𝑆 codebook car-

dinality results in overall complexity 𝑂 (𝑆𝑊 2). Since𝑊 ≤
√
𝑇 , the

runtime remains linear in both 𝑆 and 𝑇 . Through empirical RIS

measurements, the runtime is 25% fraction of the total end-to-end

latency reported in Sec 8.4. This implies that the practical runtime

overhead is suitable for real-world environments. Designing faster

algorithms and potentially hardware-accelerated solutions remains

an important future direction, especially in high-mobility settings.

9 Conclusions and Future Work
We demonstrate optimal beam selection for robot connectivity

under interference-constrained, time-varying channels. Our RIS

codebook enables selectionwithout channel estimation, and a recon-

figurable mechanism extends coverage. Using an adaptive bandit-

over-bandit restart strategy, REMARKABLE safely learns optimal

beams in dynamic conditions, achieving 46.8% faster selection and

94.2% accuracy—outperforming classical methods. Characterizing

the lower bound on the dynamic regret and violation is an impor-

tant future work. Extending this framework to multiple robots and

multiple RIS also constitutes an important future research direction.
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