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ABSTRACT
Retailers are aiming to enhance customer experience by automat-
ing the checkout process. The key impediment here is the effort to
manually align the product barcode with the scanner, requiring se-
quential handling of items without blocking the line-of-sight of the
laser beam. While recent systems such as Amazon Go eliminate hu-
man involvement using an extensive array of cameras, we propose a
privacy-preserving alternative, RFGo, that identifies products using
passive RFID tags. Foregoing continuous monitoring of customers
throughout the store, RFGo scans the products in a dedicated check-
out area that is large enough for customers to simply walk in and
stand until the scan is complete (in two seconds). Achieving such
low-latency checkout is not possible with traditional RFID read-
ers, which decode tags using one antenna at a time. To overcome
this, RFGo includes a custom-built RFID reader that simultaneously
decodes a tag’s response from multiple carrier-level synchronized
antennas enabling a large set of tag observations in a very short
time. RFGo then feeds these observations to a neural network that
accurately distinguishes the products within the checkout area from
those that are outside. We build a prototype of RFGo and evaluate
its performance in challenging scenarios. Our experiments show
that RFGo is extremely accurate, fast and well-suited for practical
deployment in apparel stores.
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Figure 1: RFGo’s checkout area with RFID antennas

1 INTRODUCTION
Maintaining customer satisfaction, diminishing profit margins and
the need for differentiation from competitors have forced retailers
to embrace technology to optimize their operations. A major pain
point concerns the lengthy checkout process, including both the
wait time in the queue as well as the manual process of scanning
items in succession [12]. Indeed, this issue dominates the many fac-
tors that influence where people choose to shop [10]. We propose
RFGo, the first RFID-based seamless self-checkout system for ap-
parel stores that does not require continuous tracking of customers
with privacy intrusive cameras, with the potential to impact the
multi-billion dollar apparel retail industry.

1.1 Problems with State-of-the-art
The problems with the current checkout process stem from ineffi-
cient barcode scanning. Since barcodes require line-of-sight (LoS),
each item has to be sequentially and manually aligned with the
scanner. Recent solutions utilize an extensive camera deployment
and various other sensors to eliminate manual product scanning. By
using computer vision to continuously monitor the actions of con-
sumers, these sophisticated systems associate items to customers
and allow each customer to simply walk out and get billed. As
pioneered by Amazon Go, several other companies implement sys-
tems centered on the same idea [5]. Using such extensive tracking
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with cameras comes at a price, e.g., for Amazon Go, recent third
party analysis estimates the need for 30,000 cameras per 100,000
sq. ft. store, and 7,000 GPUs during busy times [32]. Per unit cost,
power draw and network planning cost increase quickly with the
resulting datacenter-like processing load. In addition, camera-based
systems are not well suited to distinguish between apparel items
where similar looking items (e.g., two different plain white shirts)
may be priced very differently and hence need to be identified as
such. Further, continuously monitoring shoppers with an extensive
camera network could have privacy implications.

1.2 An RFID-based Self-checkout System
RFGo advocates using passive (i.e., battery-less) RFID tags as op-
posed to identifying products with cameras or barcodes. RFID is
prevalent in apparel retail industry, especially for inventory track-
ing at major brands such as Zara, Uniqlo and Macy’s [7]. Efforts
such as Japan’s Electronic Tag Initiative promote RFID in other re-
tail areas, e.g., convenience stores [29]. Given the decreasing price
trend (two cents per tag [11]), RFID is projected to be more widely
used in retail.

Even though RFID is poised to becomemainstream, there are still
technical barriers for it to be widely deployed in some retail sectors.
For example, it is well known that RFID tags attached to conductive
materials such as metal surfaces (e.g., soda can) or certain liquid
containers (e.g., sports drink) may become inherently unreadable [3,
33]. Typical apparel items are generally not conductive and hence
do not suffer from this problem. For this reason, we focus on the
application of RFGo in apparel retail stores. However, we note that
the technology behind RFGo is applicable to RFID checkout in
general provided that a proper tagging system is in place such that
the tags are not inherently unreadable.

Instead of continuously tracking customer activity throughout
the store, RFGo identifies purchases in a dedicated area (e.g., right
before the store exit) called the checkout area (CA) that is equipped
with RFID antennas. The CA has a dedicated entrance and exit. Each
customer enters the CA with the products (e.g., in a shopping cart
or in hand) and stands briefly inside the CA while other customers
with unchecked items line up behind the entrance in the waiting
area (WA) as in Fig. 1. While the customer stands in the CA, RFGo
scans RFID-tagged products, without requiring the customer to take
them out (e.g., if in a bag) and align them with a specific antenna.
When signaled by RFGo, the customer leaves the CA to the exit
area where no unchecked item is allowed.

RFGo’s goal is to completely and solely identify the products in
the CA, meaning no product is missed from the current customer’s
basket or extra products are identified (e.g., from other’s baskets
in the WA). We define RFGo’s accuracy based on recall and preci-
sion [36]. Recall is the percentage of the products in the customer’s
basket that RFGo correctly identifies to be in the CA (ideal is 100%).
Precision is the percentage of correctly identified products among
those identified by RFGo (again ideal is 100%), which may include
those inside the CA (correct detection) as well as outside the CA
(wrong detection). To avoid making customers stand indefinitely in
the CA and have long lines in the WA, RFGo also needs to identify
products quickly (e.g., within two seconds).

One may think that RFID tag localization [8, 24, 25, 31, 35, 41–
43] may precisely identify the products in the CA. Unfortunately,

recent studies show that localization accuracy is impacted by “even
minor variations in the environment or tag geometry” [33]. Since
customers and products cannot remain absolutely still in and around
the CA, high localization accuracy is not realistic in a typical retail
store.

RFGo has to address several challenges such as not being able to
(1) energize a tag or decode its weak reply, (2) decode a tag reply
when multiple replies collide and (3) precisely localize a tag as
discussed above. We expand on these challenges in Sec. 3.

1.3 Contributions
Our main contribution is the design and implementation of RFGo,
a seamless, fast and highly accurate self-checkout system based on
RFID. RFGo comprises three components that work in harmony.
(1) The physical structure resembling a checkout lane (defined by

two short RF-absorbing walls) accommodates a shopper and her
items. It hosts multiple antennas placed in different positions
and with different orientations to reliably read tags regardless of
their orientation. We also use a dual-area antenna deployment
to cover the area within and outside the CA (e.g., the WA in
Fig. 1). Aswewill show later, the dual-area deployment is critical
to reach the desired checkout accuracy.

(2) The custom-built RFID reader, implemented in GNURadio and
compliant with RFID Gen2 standard, addresses the shortcom-
ings of traditional RFID readers to enable fast checkout. It ex-
tracts multiple observations from a single tag’s reply by simul-
taneously decoding the reply from multiple antennas that are
synchronized at the carrier-level. In contrast, traditional RFID
readers decode tag replies using one antenna at a time, which
requires significantly longer time to capture the same number
of observations than our reader. Our reader also implements
an intelligent acknowledgment policy (see Sec. 4) to improve
the probability of decoding in the absence of standard error-
detection such as cyclic redundancy check (CRC).

(3) The software classifier decides if a tag is inside the CA based on
the observations from our reader (without explicit tag localiza-
tion). We train a neural network-based classifier that extracts
features from the observations and combines them appropri-
ately using supervised learning.
The rest of the paper is organized as follows. In Sec. 2, we in-

troduce our design principles. Sec. 3 describes the main challenges
that RFGo needs to address. Sec. 4 first provides an overview of
RFGo’s components and discusses how they address the challenges
in Sec. 3. Since the custom-built reader is key to achieve extremely
fast checkout, the rest of Sec. 4 is devoted to the design of our reader.
We describe our implementation in Sec. 5 and evaluate RFGo in
Sec. 6. We discuss related work in Sec. 7. Finally, we conclude in
Sec. 8.

2 DESIGN TARGETS AND PRINCIPLES
In this section, we review current RFID-based self-checkout systems
and describe our vision for RFGo.

2.1 Current RFID Self-checkout Systems
RFID is widely used for taking inventory where tags are scanned
by handheld RFID readers (Fig. 2a). Using handheld readers for
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(a) Handheld (b) Cage-based (c) Slot-based

(d) Bin-based (e) Surface-based

Figure 2: Current RFID-based Self-checkout Systems

self-checkout leaves the responsibility of scanning the products
correctly (i.e., completely and solely) to the customer. Recently,
several systems that avoid handheld scanning have been proposed.
One example is a cage-based system where the customer loads
items into a shielded Faraday cage equipped with antennas and
closes the door (Fig. 2b). The system then scans the items in the
cage using high transmit power without the worry of erroneous
reads from outside the cage. Other systems address unwanted reads
by limiting the range of their antennas: examples include slot-based
systems (Fig. 2c) where the products are passed through a slot, bin-
based systems (Fig. 2d) where products are placed in a container,
and surface-based systems (Fig. 2e) where products are laid out on
a planar structure. Although these systems reduce the likelihood of
unwanted reads by controlling the antenna range, they typically
suffer from not being able to read all items due to the limited power.

2.2 Our Vision
We envision a self-checkout system where the customers simply
walk into and stand in the CA while carrying the products they
wish to purchase. In particular, our envisioned system should have
the following properties.

• No manual effort: Two major factors that cause inconvenience
with existing systems is the manual loading/unloading of the
products (e.g., opening/closing the cage door) and manual scan-
ning (e.g., handheld readers). Thus, the system should not require
any extensive human involvement.

• Large checkout area: Small checkout areas limit the items that
fit in them and are inconvenient for buying many items (e.g.,
passing multiple shopping bags through the slot is cumbersome).
Thus, we envision the CA to be large enough to comfortably
accommodate a customer and her products. The CA should also
allow some freedom of movement to the customer without forc-
ing them to stand still or in another particular orientation.

• Unbarricaded checkout area: In addition to being large, the
CA should be unbarricaded e.g., not enclosed by sliding doors or

other large physical obstacles. This is desirable for both, aesthet-
ics, i.e., the CA does not abruptly stand out as a major structure in
an open-floor store design, and physical comfort, i.e., customers
do not feel trapped. To this end, we envision the CA to form a
“lane” demarcated by two waist-level side walls without entry or
exit barriers.

• Speed: In our vision, the time required for (i) the cart identifi-
cation process, and (ii) the payment authentication should be
comparable. Hence, we envision a fast identification process
which takes only a few seconds that is typical for credit card,
phone-based (QR code, NFC) payment authentication and facial-
recognition based payments. Note that since these two tasks are
independent, it could be possible for them to be carried out in
parallel to further speed up the overall process.
Our vision has several implications on the design of RFGo. Hav-

ing no manual scanning and a large CA results in considerable
distance between the antennas and tags. To ensure that all tags are
read within the CA (i.e., there is no blind spot), we need to employ
multiple antennas with sufficient power. Although an increased
power helps reading the tags, it may cause signal spillover to areas
outside the CA resulting in unwanted reads. This problem is exac-
erbated by our vision for an unbarricaded CA. Consequently, it is
quite challenging to determine whether a tag is inside the CA based
on a single reading. For this reason, achieving the desired speed is
challenging too since RFGo needs to collect enough readings from
tags to accurately make a determination.

3 CHALLENGES
In this section, we describe in detail the challenges of designing a
self-checkout system using RFID.

3.1 Blind Spots
We say a stationary tag in a particular position and orientation is
in a blind spot when it is not readable. Blind spots occur either due
to weak illumination, where the tag is not even activated by the
reader; or to weak response, where the tag responds but its reply is
not decodable by the reader. Major factors impacting blind spots
are as follows.
• Illumination: For a passive RFID tag, being illuminated refers
to the ability to harvest enough energy to wake up and respond
to reader commands. The harvested energy is a function of the
transmit power of the reader, the distance between the tag and
the reader and a few other factors (e.g., temperature) [33, 49]. In
addition to waking up, a tag needs to receive reader commands
with enough signal-to-noise ratio (SNR) to decode and respond
to them.

• Orientation: Tags are best read when they are oriented in a way
that maximizes the received power at the tag’s antenna. For a flat
tag, this happens when the signal from the reader is orthogonal
to the plane of the tag’s antenna. Any deviation from this ideal
orientation may greatly reduce the signal strength of the tag’s
response [15, 33, 37].

• Coupling: The signals backscattered by other tags also impact a
particular tag’s readability. For example, a tag that can be detected
when it is the only tag in the reader’s view may not be readable
when other tags are brought in close proximity (without changing
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the observed tag’s position and orientation) due to the mutual
coupling effect [28, 37].

• Multipath: A tag may not be illuminated by the reader when it
is situated in a particular spot with deep fading, i.e., when multi-
ple reflected copies of a signal destructively combine. Similarly,
destructive combining may also happen at the reader antenna for
the reflected copies of a tag’s response affecting its decodability
by the reader.

Note that we define blind spots only from the perspective of the
physical layer and exclude MAC layer factors such as collisions.
While collisions in the tag responses may eventually be resolved
by a random access protocol, a stationary tag in a blind spot may
not be read at all. For this reason, mitigating blind spots inside the
CA is crucial as we expect 100% recall in the checkout process.

3.2 Collision
A response from a tag may not be decodable by the reader when
other tag(s) also respond at the same time due to collision [1, 2, 4, 6,
13, 14]. Although a random access protocol may resolve collisions
if given enough time, a long resolution time is not desirable. Since a
typical retail store may have a large population of tags near the CA
(e.g., other tags on the shelves or tags carried by other customers
in the WA), the tags inside the CA may experience high number
of collisions. This reduces the probability of decoding a tag in a
given time slot and extends the time required to discover all the tags
within the CA [17–23, 27, 30, 38–40, 44–48]. Therefore, mitigating
collisions is also important to achieve 100% recall and fast scan
time.

3.3 Position Uncertainty
RFID Gen2 standard does not have a built-in mechanism for local-
ization of tags. Prior works use multiple antennas to precisely locate
tags (within a decimeter error) based on signal phase: by using angle-
of-arrival [34], multi-lateration [26] and synthetic aperture [43].
However, recent studies show that phase-based localization is im-
pacted by even minor variations in tag geometry and by changes
in the environment (e.g., people moving) [33]. Retail environments
impact localization accuracy as explained below.

• Tag Mobility: Since phase is a function of the physical distance
between a tag and an antenna, customers moving the items in
their shopping bag (e.g., swinging back and forth) introduce
unpredictable phase variations. Since customers cannot be forced
to stand still, it is imperative for the self-checkout system to work
despite the presence of such unpredictable movements.

• Non-stationary environment: Scattering objects in the envi-
ronment create multiple copies of the tag signals that combine
at the reader antenna. Movement of scatterers changes the com-
bined signal and thus the phase measurement from it. The self-
checkout system needs to work within a non-stationary environ-
ment such as people passing nearby the CA or moving within
the CA.

Without precise localization, addressing position uncertainty
is paramount to achieving 100% precision and recall for the self-
checkout application.

4 DESIGN
In this section, we first describe basic RFID communication followed
by RFGo’s design overview. We dedicate most of this section to our
custom-built reader and detail other components in RFGo in Sec. 5.

4.1 Background on RFID Communication
RFID Gen2 communication involves passive (i.e., battery-free) tags
and an active reader device. The reader energizes the tags and sends
commands to them. After harvesting enough energy, tags wake up
to listen for the reader commands and react to them, e.g., by sending
a response. In the so-called inventory mode, each tag responds
with its unique ID called Electronic Product Code (EPC). A simple
inventory session has four phases orchestrated by a Slotted Aloha
protocol: 1) Query: the reader broadcasts a query and indicates
the number of available slots, 2) RN16: if a tag decodes the query,
it chooses a random slot and later responds with a 16-bit random
sequence (called RN16) using FM0 modulation in the selected slot,
3) ACK: in each slot, if the reader decodes an RN16, it sends an
acknowledgment (ACK) containing the same decoded RN16, and
4) EPC: each tag decoding the ACK matches the included RN16
to the RN16 it chose earlier, and replies with its EPC when there
is a match. Since tags randomly choose slots to reply, a slot may
have zero, one or more RN16s that collide at the reader. In contrast,
since it is unlikely that tags generate the same RN16, EPC responses
do not usually collide. RN16s do not have built-in error detection,
making it difficult for the reader to know whether an RN16 was
decoded correctly or not.

4.2 RFGo’s Design Overview
As described before, RFGo includes three main components.
(1) The physical structure clearly demarcates the CA and hosts
multiple RFID antennas placed to mitigate blind spots. We place the
antennas in three main orientations defined by three planes that are
mutually orthogonal (see Fig. 1). We also place the antennas suffi-
ciently apart from each other to form uncorrelated communication
channels; e.g., if a tag is in a deep fading spot with respect to one
antenna, it may not be for another antenna. By utilizing antenna
diversity for transmit (TX) and receive (RX) paths, RFGo reduces
the occurrence of blind spots. Reading a tag not only obtains its
EPC but also reveals important features that may be extracted from
its physical signal (e.g., signal strength). In order to collect better
observations for the tags within and outside the CA, we employ
a dual-area deployment, where two distinct sets of antennas are
placed in such a way that the “inside” (“outside”) antennas primarily
illuminate and read the tags “inside” (“outside”) the CA.
(2) The custom-built reader leverages antenna diversity for the
TX path by employing Time Division Multiple Access (TDMA)
where it activates each antenna in turn to address illumination
issues. For the RX path, it implements two novel features: (1) si-
multaneous decoding of tag replies from multiple antennas via
carrier-level synchronization of the RF chains and (2) an intelligent
acknowledgment policy that sends an ACK for the RN16 that is
most likely to be correct (detailed later in this section)1. Simultane-
ous decoding not only increases the likelihood that a tag reply will

1The astute reader may notice that multiple RFID readers can be used to simultaneously
query the tags and receive responses from them on orthogonal channels (i.e., frequency
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Figure 3: Exemplary RFGo multi-antenna operation

be decoded through receive diversity, but it also provides multiple
readings (or observations) for the tag (same EPC but different signal
features). Recall that collisions only happen during the RN16 phase
where tags randomly choose the same time slot. Due to the lack of
built-in error-detection for RN16s, the reader needs to somehow
choose which RN16 to acknowledge among the colliding ones. By
leveraging parallel decoding of the received RN16 signal at multiple
antennas and analyzing low-level signal metrics, our reader picks
the RN16 with the highest probability of being correctly decoded. If
a “poor” RN16 is ACKed in the absence of such an intelligent policy,
the subsequent EPC response from the tag would not be decoded
and the slot would be wasted.
(3) The software classifier detects items that a customer brings
to the CA. Since tags cannot be precisely localized in typical retail
environments, we rely on a neural network to distinguish the tags
in the CA from others outside the CA by learning from the signal
features exposed by our reader. Recall that our reader simultane-
ously decodes the same EPC on all RX antennas (say 𝑁 ) for each TX
antenna. In contrast, traditional readers have only one RX antenna
for each TX antenna. Hence, after 𝑁 TX antennas are activated, our
reader extracts 𝑁 2 features for each tag from all TX/RX antenna
pairs compared to 𝑁 collected by traditional readers. In addition to
the rich feature vector, the dual-area antenna deployment helps us
capture observations from both tags inside the CA and the ones in
the WA, giving the model even more information from which to
learn.

4.3 Design of RFGo’s Custom-built Reader
As discussed before, we employ multiple TX antennas to mitigate
blind spots. Since the TX antennas are activated one by one in
TDMA fashion, we connect the TX paths of all antennas to a single
TX RF chain through amultiplexer (see Fig. 6). Recall that our reader
decodes a tag reply simultaneously from multiple RX antennas; this
may seem redundant at a first glance. However, receiving a single
reply at different antennas does not mean receiving the same reply
and has two important benefits. First, even though it has the same
EPC, the tag reply yields different observations: the observations
include the signal features (e.g., signal strength) from each decoding
antenna and the set of antennas which have been able to decode
the reply. Second, leveraging the spatial diversity across antennas
allows us to better decode a valid RN16 evenwhen collisions happen.
This is important due to the lack of error-detection (CRC) for RN16s.

division multiple access or FDMA). However, this is not possible with RFID tags since
a concurrent Query command resets any ongoing response on the tag [9].

To enable each antenna both for transmission and reception,
we separate its TX and RX paths using a circulator. Hence, tags
are illuminated by a single TX antenna at a time (TDMA), while
their replies are collected simultaneously through all antennas by
using one RF chain per RX antenna (see Fig. 6). To decode a tag’s
backscattered signal, the coherent detection is far superior than
non-coherent detection particularly due to the short communi-
cation intervals typical for RFID. Traditional readers implement
coherent detection by employing a pair of TX/RX RF chains that
share one local oscillator. To use coherent detection for simultane-
ous reception across all antennas, we need to synchronize all the
RX RF chains at the carrier-level with the single TX RF chain.

Transmission from an antenna comprises transmit frames where
each frame contains several time slots for querying the tags. Fig. 3
shows an example transmission for 2 frames. The slot 𝑖 of frame 𝑘 is
denoted by 𝑠𝑘

𝑖
. During the first frame, the first antenna is the active

transmitter and triggers responses from tags 𝑥1 and 𝑥2 in slot 𝑠13 . In
the second frame, the second antenna is the active transmitter and
triggers responses from the same tags in slot 𝑠24 . Higher decoding
probability is achieved for stronger transmission links, denoted by
thicker lines in Fig. 3. In time slot 𝑠13 , our reader decodes two RN16s
transmitted by 𝑥1 and 𝑥2 using the received signal at antenna 𝑅𝑋2
and 𝑅𝑋4, respectively. In contrast, traditional readers use a single
receiver, e.g., 𝑅𝑋1, while 𝑇𝑋1 is the transmitter. In this example,
there is a high chance that the received signal from both tags collide
at 𝑅𝑋1 and neither one is decoded correctly. Moreover, our reader
achieves better fairness in terms of selecting tags more uniformly,
and discovering the new tags faster by acknowledging one of the
decoded RN16s at random, e.g., in two different time slots where
the same set of tags reply to the query and the active TX is the
same. In contrast, when the same antenna is used both as TX and
RX, the tag with stronger received reply (say due to its proximity
to the antenna) is always favored where the same set of stationary
tags collide in the same time slot.

Hence, leveraging the diversity in RN16 decoding is one of the
important aspects of our custom built reader. In the next section,
we describe different policies for selecting an RN16 for acknowl-
edgment. We defer detailed evaluation of these policies to Sec. 6.

4.4 RN16 Selection Policies
Our reader tries to decode RN16s by collecting the I/Q samples from
each of the synchronized RX RF chains in parallel. Since there is no
explicit error detection, each RXRF chain cannot determinewhether
it decoded an RN16 correctly. To decide which RN16 to acknowledge
in each slot, we have to rely on the collective information from all
RX RF chains. This includes the set of decoded (either correctly or
incorrectly) RN16s and their associated signal attributes. We next
define three policies for selecting an RN16 for acknowledgment,
based on various degrees of the information they use.

(1) Fixed antenna Policy (FP): FP relies on information from a sin-
gle (fixed) RX RF chain to decode an RN16, which is then used
by the reader to generate the ACK.

(2) Majority Voting Policy (MVP): MVP uses the knowledge of the
set of decoded RN16s. MVP selects the RN16 that has the maxi-
mum number of detection events among all the ones decoded
by different RF chains. If two or more RN16s have been decoded
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equal number of times (i.e., majority does not exist), MVP picks
one at random.

(3) Interference Metric Based Policy (IMP): IMP uses the signal at-
tributes for the set of decoded RN16s. We compute a specially
designed interference metric (IM) for each of the simultane-
ously received signals. IM provides a measure of interference in
the received signal. Thereby, IMP selects the RN16 that has the
minimum IM across all decoded RN16s, corresponding to the
RN16 with highest decoding probability (i.e., lowest interfer-
ence). Similar to MVP, IMP randomly selects one RN16 among
all RN16s whose IM are below a threshold. We provide the
detailed description of IM in Sec. 4.5.

4.5 Interference Metric
IMP selects one RN16 from the set of RN16s based on their decod-
ing probabilities. The goal of IM is to estimate the probability of
correctly decoding an RN16 (i.e., packet decoding rate or PDR). We
define IM as the fraction of interference and noise power in the
received signal without explicit knowledge of the received signal,
the interferers, or their powers. The relation between IM and PDR
becomes clear later in this section. Since there is no CRC for an
RN16, one has to decide if the decoded RN16 is "correct" or "not
correct", which is a binary classification problem. A binary classifier
may compare a measure with a threshold to perform the classifica-
tion. The accuracy of a binary classifier is defined as the ratio of the
number of the correct decisions over total number of decisions [36].
The accuracy of a classifier depends on its threshold. Naturally,
the effectiveness of a measure (in a classification problem) is the
maximum accuracy of such binary classifiers taken over all possible
thresholds.

A simple and readily available measure is the received signal
strength (RSS), which can be used to coarsely estimate PDR. Through
a simulation with 32 tags and a frame size of 16 slots, we see that
RSS has a low effectiveness of 0.76, which may be explained as
follows. Since RSS merely represents the total received energy, it
cannot distinguish between a strong signal without interference
(which is decodable) vs. the superposition of many low power in-
terferers (which is not decodable), since both cases yield a high
RSS.

A more sophisticated measure is signal-to-interference and noise
ratio (SINR), which can be obtained if prior knowledge of the signal
and the interferers is available. Indeed, SINR has an effectiveness of
0.97 in the same simulation setup since it directly captures the power
of the useful signal relative to interference and noise. Unfortunately,
SINR is not available for a short packet, such as RN16, with few
preamble bits. Hence, we propose IM, which is computed as follows.

Our custom-built reader decodes a single RN16 packet with high-
est received power among all interfering RN16 signals by treating
the interfering RN16s as noise. After equalization and passing the
received samples through a matched filter, we reconstruct an esti-
mation of the FM0-modulated RN16 symbols which is then used for
decoding. We define a difference sequence by subtracting the even
numbered symbols from the preceding odd numbered ones, e.g.,
(1st symbol - 2nd symbol) followed by (3rd symbol - 4th symbol)
and so on. IM is then the ratio of the standard deviation to the mean
of the absolute value of the difference sequence. Consequently, the
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Figure 4: (a) SINR vs. PDR (b) IM vs. PDR

RN16 bits can be retrieved by comparing the absolute value of the
difference sequence with a threshold. IM is obtained in an interme-
diate step of the decoding and hence its computational complexity
is negligible. In the same simulation setup, we see that IM achieves
an effectiveness of 0.95, very close to that of SINR, without using
any prior knowledge.

Next, we present the relationship of PDR vs. both SINR and IM
and discuss why they are effective. A measure with 100% effective-
ness would have a step-wise behavior. Fig. 4a shows PDR vs. SINR
and confirms that SINR’s high effectiveness is indeed due to its
sharp drop closely resembling a step-wise function. Fig. 4b shows
PDR vs. IM and confirms a similar step-wise behavior. However,
note that the step direction is reversed since lower interference
means lower IM and higher SINR. Fig. 4b also shows that the em-
pirical PDR closely follows the simulation. To find the empirical
PDR vs. IM using our reader, we record the value of IM computed
in RN16 phase along with the outcome of the CRC check obtained
in the EPC phase for each slot. We quantize the IM range into bins.
For all the slots in the same IM bin, the PDR is the percentage of
correctly decoded EPCs in those slots. The empirical PDR may be
modelled as a sigmoid function PDR = 1/(1 + 𝑒𝑥𝑝 ((IM−𝛼)/𝛽)) for
faster computation, which is obtained in Fig. 4b with 𝛼 = 0.5057
and 𝛽 = 0.06766.

5 SYSTEM IMPLEMENTATION
In this section, we detail how we implement each component of
RFGo to realize a fully functional self-checkout system.

5.1 RFGo - Physical Structure
The physical structure of RFGo’s self-checkout lane is defined by
the two side walls that are placed sufficiently apart from each other
to accommodate a customer along with the items to be purchased
(see Fig. 5a). Customers walk in the CA from a defined “entrance”
(as indicated by the arrow direction in Fig. 5a), stay inside for a very
brief time and leave from the opposite side defined as the “exit” (see
Fig. 5b). During this time, RFGo utilizes the custom-built reader to
collect tag readings from several RFID antennas and uses the neural
network-based classifier to determine which tagged items are in
the CA. The sequence of operations including the customer entry,
scanning and output of the classification is collectively referred to
as a checkout “session.”

RFGo employs control sensors and visual indicators to guide the
operation of each session. When a customer enters the CA, a pair

723



RFGo: A Seamless Self-checkout System for Apparel Stores Using RFID MobiCom ’20, September 21–25, 2020, London, United Kingdom

(a) (b) (c)

Figure 5: RFGo’s checkout lane showing (a) the entrance, (b)
the exit, and (c) the user interface

of infrared (IR) sensors detect the motion and trigger the custom-
built reader to start collecting tag readings for the new session.
After analyzing the readings collected within two seconds, the
neural network identifies the tagged items in the CA and displays
them on the billing terminal (see Fig. 5c). The customer then pays
using the QR code scanner and leaves the CA upon seeing the
payment confirmation on the billing terminal. Another pair of IR
sensors detect the customer’s exit, allowing RFGo to accept the next
customer and start a new checkout session. The presence/absence
of an ongoing session is displayed to an approaching customer by
an indicator mounted around the entrance of the lane (see Fig. 5c).
If there is an ongoing checkout session, the approaching customer
is discouraged from entering the lane by displaying a “busy” sign.
Since there are no barricading doors enforcing the boundaries of the
CA, the IR sensors are used to detect several undesirable scenarios.
Examples include a customer entering the lane during an ongoing
session (i.e., ignoring the busy indicator) or a customer leaving the
lane too soon (before the scanning is complete).

To read the tags within the CA, we deploy six antennas as follows:
(a) two antennas in each side wall facing the inside area which
are placed almost at 45◦ angle to the face of the wall and (b) two
antennas under the floor mat placed parallel to the floor facing
upward. We also deploy four antennas to read the tags in the WA:
(a) one antennamounted within each side wall at approximately 20◦
angle facing the WA, and (b) two upward-facing antennas under
the floor mat away from the entrance of RFGo (see Fig. 1). The
side walls have a sturdy metal frame to minimize signal spillover
from the inside antennas. However, RFGo still has to cope with the
spillover from the entrance/exit openings between the side walls
since having an unbarricaded area was a deliberate design choice.

5.2 RFGo - Communications
The block diagram in Fig. 6 details our custom-built reader im-
plementation. The core RFID signal processing is implemented in
GNURadio v3.7.13.5 by significantly extending the code in [16].
The system runs on a Linux machine equipped with 12 cores and
128 GB RAM. The radio front-end is emulated using four USRP
X310 units which are time-synchronized by means of an Octoclock
CDA-2990. Each USRP is equipped with either a UBX or TwinRX
daughterboard that allows for communication within the 902-928
MHz UHF RFID band. RFGo is equipped with six antennas in the
CA and four antennas in theWA for a total of ten antennas. Each an-
tenna separates the TX and RX signals with a circulator. We use five
TwinRX daughterboards to enable ten RX RF chains, where each

Figure 6: Implementation of our custom-built reader.

(a) (b) (c)

Figure 7: (a) Smartrac tags used in our experiments, (b) dense
tag arrangement covering multiple X-Y-Z orientations and
(c) unified cube comprising 27 smaller 6" cubes.

RF chain is connected to one antenna. Since one USRP supports
two daughterboards, we use three USRPs to host the five TwinRX
daughterboards. The fourth USRP hosts one UBX daughterboard
which is the only TX RF chain in the system. The output of the UBX
is connected to a set of multiplexers controlled by a Raspberry Pi
to select the active TX antenna.

In GNURadio, the received I/Q samples pass through an FIR av-
eraging filter (MF ) to mitigate the impact of noise. Then, the Gate
block (G) performs pulse detection to do coarse frame synchroniza-
tion. The frame is forwarded to the Tag Decoder block (TD) which
aligns symbols using preamble-based correlation and decodes the
RN16 and EPC packets. We extend the TD block to compute the IM
(see Sec. 4.4) and estimate the RSS. The TD blocks forward the de-
coded RN16s along with the IM to a central block called the Switch.
The Switch block implements the RN16 selection policies (see Sec.
4.4) and forwards the selected RN16 sequence to the reader block
(R), which generates the ACK based on the forwarded RN16. The R
block is also responsible for generating the Query packets broadcast
to the tags. The Switch block also keeps track of current slots to
switch to another TX antenna in time. To do so, it establishes a UDP
connection with a Raspberry Pi that functions as a micro-controller
to activate specific ports of the multiplexers. At the end of a frame,
the Switch encapsulates the next activated port within the UDP
packet and sends it to the micro-controller.

5.3 RFGo - Classification Software
Recall that our goal is to correctly determine whether a given tag is
inside the CA or not. To do so, we use “soft” features such as RSSI
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and number of readings. Although soft features measured from one
antenna do not reveal the tag’s position, combining several such
features from multiple antennas could yield a reliable estimation of
the tag’s position.

To determine how soft features should be combined from multi-
ple antennas, we train a neural network using the TensorFlow
library in Python. Our neural network model uses three fully-
connected hidden layers to learn the complex non-linear relation-
ships between the features. To train the model, we deploy several
tags in both inside and outside of the CA in arbitrary positions
and orientations (see Fig. 7b). We use the commercially available
Smartrac tags (see Fig. 7a). We then extract features from the tag
readings and feed each tag’s feature vector (specified in Sec. 6) to
the neural network by labeling it as either corresponding to an
“inside” tag or an “outside”. The neural network then computes and
stores the optimal weights for each of its connections by minimiz-
ing the decision error as defined by a loss function. After training,
the model applies the weights to an input feature vector and out-
puts the probability of a tag belonging to the “inside” class. This is
achieved by using one Sigmoid-activated output neuron that emits
a value between 0 and 1; if the output is ≥ 0.5 for a tag’s feature
vector, RFGo considers the particular tag as inside the CA.

6 PERFORMANCE EVALUATION
In this section, we first evaluate our custom-built reader based on
three performance metrics. Packet Decoding Rate (PDR): the
fraction of slots that results in a correctly decoded EPC over the to-
tal number of slots. Multi-decoding Efficiency (MDE): the total
number of decoded EPCs over the total number of slots. Note that
the number of decoded EPCs includes the simultaneous decoding
of the same EPC from multiple antennas. Discovery rate: the per-
centage of the unique EPCs that have been decoded, as a function
of time.

We then evaluate RFGo’s performance for the self-checkout
application based on Recall and Precision metrics, previously in-
troduced in Sec. 1. Note that the “customer basket” and “all products
in the CA” refer to the same set of tags, and the terms “tag” and
“product” are used interchangeably.

6.1 Custom-built Reader Evaluation
Since the tag reading performance within the CA is of utmost
importance for the self-checkout application, we evaluate the afore-
mentioned performance metrics within the CA. For this set of
experiments, we utilize the subset of antennas (six out of ten) posi-
tioned inside the CA to read tags that comprisemultiple orientations
and are placed in close proximity with respect to one another (see
Fig. 7b).

6.1.1 Packet Decoding Rate. To evaluate the effect of simultaneous
reception, we first activate a single TX antenna while receiving
from all 6 antennas. In Fig. 8, we show the impact of different RN16
policies on PDR with varying number of tags. The Slotted Aloha
curve in Fig. 8 assumes a single RN16 reply (i.e., no collision) is
always decodable and any collision is not decodable. Interestingly,
FP using the same antenna for TX and RX performs considerably
better than the one predicted by the slotted Aloha curve (see FP
empirical curve). The reason being that some collisions can be
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recovered, e.g., when the RSSI of a reply is high enough to be
decoded despite other, weaker colliding replies2.

In addition, Fig. 8 reveals that MVP and IMP outperform FP. This
improvement comes from the diversity of decoding the collided
RN16s at multiple RX RF chains. Intuitively, the improvement of
MVP over FP suggests that the existence of a majority is often a
sign of the correctness of the RN16 sequence. On the other hand,
IMP’s higher performance evinces that the proposed metric IM
accurately estimates the decoding probability and smartly selects
the RN16 sequence to acknowledge. From Fig. 8, we note that a
small tag population results in slot underuse and thus the low PDR,
while a large population leads to an increased number of collisions.

In the following, we discuss our probabilistic model and analyze
its results in more detail.

6.1.2 The Proposed Probabilistic Model. To formulate the impact
of recoverable collisions, we develop a probabilistic model based
on the probability of decoding at least one RN16 reply out of 𝑘
colliding RN16 replies in each slot by a policy 𝑃 (denoted by 𝛼𝑃

𝑘
),

for 1 ≤ 𝑘 ≤ 𝑀 , where 𝑀 is the number of tags. Note that when
𝑘 = 1, there is no collision. For 𝑁 slots, the PDR of policy 𝑃 is given
by

PDR(𝑃) =
⌊𝛾𝑀 ⌋∑
𝑘=1

𝛼𝑃
𝑘

(
⌊𝛾𝑀⌋
𝑘

) (
1
𝑁

)𝑘 (
1 − 1

𝑁

) ⌊𝛾𝑀 ⌋−𝑘
(1)

where ⌊𝛾𝑀⌋ is the average number of tags that reply in a time slot.
Note that 0 ≤ 𝛾 ≤ 1 may be interpreted as the average fraction of
the tag population that reply in a frame.

The probabilistic model of FP can be extended to MVP and IMP
as follows. Given 𝛼𝐹𝑃

𝑘
, the probability of not being able to correctly

decode a single RN16 out of 𝑅 received signals is (1 − 𝛼𝐹𝑃
𝑘

)𝑅 , as-
suming decoding independence across the RF chains. Therefore,
the probability that IMP selects a correctly decoded RN16 is given

2It is reasonable to assume that if a tag’s RN16 reply is decodable by an antenna
(despite possible collisions), then its EPC would also be decodable by the same antenna
due to the absence of collisions in the EPC reply stage.
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by 𝛼𝐼𝑀𝑃
𝑘

= 1 − (1 − 𝛼𝐹𝑃
𝑘

)𝑅 . Indeed, with this extension, we see a
very close fit between the IMP model and the IMP empirical curves.

The probability that MVP selects a correct RN16 𝛼𝑀𝑉𝑃
𝑘

may
also be approximated based on 𝛼𝐹𝑃

𝑘
given independence across RF

chains. Consider different cases denoted by 𝐶𝐴𝑆𝐸 (𝑘, 𝑗) where 𝑘
tags are colliding in a given time slot and 𝑗 out of 𝑅 receivers are
able to correctly decode an RN16. The probability of 𝐶𝐴𝑆𝐸 (𝑘, 𝑗) is
given by

𝑃 (𝐶𝐴𝑆𝐸 (𝑘, 𝑗)) =
(
𝑅

𝑗

)
(𝛼𝐹𝑃

𝑘
) 𝑗 (1 − 𝛼𝐹𝑃

𝑘
)𝑅−𝑗 . (2)

The probability 𝛼𝑀𝑉𝑃
𝑘

is then given by

𝛼𝑀𝑉𝑃
𝑘

=

𝑅∑
𝑗=0

𝜆𝑘,𝑗 · 𝑃 (𝐶𝐴𝑆𝐸 (𝑘, 𝑗)) ≈
𝑅∑
𝑗=0

𝜆 𝑗 · 𝑃 (𝐶𝐴𝑆𝐸 (𝑘, 𝑗)) (3)

where 𝜆𝑘,𝑗 is the probability that MVP picks an RN16 among the
correctly decoded RN16s. We consider a coarser approximation by
removing the dependency to𝑘 , leading to 𝜆𝑘,𝑗 ≈ 𝜆 𝑗 .We differentiate
the following cases for 𝜆 𝑗 .
• 𝑗 ≥ 3: There is a high probability that a majority exist in this case
and the RN16 with highest popularity has very high chance of
being correctly decoded. Hence, we approximate (𝜆 𝑗 ≈ 1,∀𝑗 ≥ 3).

• 𝑗 = 2: In this case, there is good chance that the decoded RN16 by
two different RF chains are not the same. Hence, a majority does
not exist andMVP selects one RN16 at randomwith probability of
it being correct 1/𝑅. However, for smaller number of interferers,
there is less chance that these RN16s are different. For example
if 𝑘 = 1, we have 𝜆1,2 = 1. Hence, we use approximated value
𝜆2 ≈ 0.5 taken over all 𝑗 .

• 𝑗 = 1: When only one RF chain correctly decodes an RN16, there
is almost no chance to have majority. Hence, MVP selects one
RN16 at random and the chance of being correct is only 𝜆1 = 1/𝑅.
The FP, IMP, and MVP model curves in Fig. 8 is obtained by

setting 𝛾 = 0.63, i.e., 63% of tags are in average involved in a given
frame, 𝛼𝐹𝑃

𝑘
= 0 for 𝑘 ≥ 5, i.e., more than five collisions is not

salvageable and (𝛼𝐹𝑃1 , 𝛼𝐹𝑃2 , 𝛼𝐹𝑃3 , 𝛼𝐹𝑃4 ) = (1.00, 0.49, 0.25, 0.20). The
corresponding values of 𝛼𝐼𝑀𝑃

𝑘
and 𝛼𝑀𝑉𝑃

1 is obtained from the same
values for 𝛼𝐹𝑃1 . Fig. 8 shows that our probabilistic model fits very
well with the empirical performance.

6.1.3 Multi-Decoding Efficiency (MDE). Improving the number of
observations for every single tag reply by a multiplicative factor
is one of the main advantages of our reader. Fig. 9 illustrates our
evaluation results for MDE using IMP, MVP, and FP by having a
single fixed TX antenna and 6 RX antennas within CA. Fig. 10 shows
the ratio of the MDE to the PDR for different tag populations. Once
again, IMP achieves the best MDE in terms of the overall number
of observations due to its superior RN16 resolution capability. In
addition, the ratio ofMDE to PDR remains almost constant at a value
of 4.5-5 regardless of the RN16 selection policy and tag population.
Recall that the EPC packet never experiences collisions, for only
one tag is acknowledged in a slot. Therefore, the ratio of MDE to
PDR only depends on the average number of RX chains that can
decode a tag’s EPC packet, irrespective of the number of colliding
tags or RN16 selection policy.
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Our evaluation so far has confirmed that IMP has superior per-
formance over MVP and FP. Consequently, we use IMP for the rest
of our evaluations.

6.1.4 Effect of Receive Dimension. We evaluate PDR (see Fig. 11a)
and MDE (see Fig. 11b) for a single active TX antenna and a varying
number of RX antennas, ranging from one to six. By increasing the
number of simultaneously decoding RF chains, the PDR sharply
increases between 1 to 4 RX antennas before exhibiting saturation
for a larger receive dimension. On the contrary, MDE keeps in-
creasing even beyond the saturation point of 4 RX antennas for
PDR as a result of two main factors: the improvement in PDR and
the possibility of decoding from more antennas. Although PDR
experiences no significant improvement for 6 RX antennas with
respect to 4 or 5 RX antennas, a larger number of antennas still
increases the total number of observations by a considerable factor.

6.1.5 Discovery rate. In order to achieve 100% recall, any tag within
the CA must be read, i.e., the discovery rate must be 100% within
a session. For this set of experiments, we place 64 tags randomly
within the CA. One of the major obstacles in tag discovery is the
weak illumination. We activate different TX antennas in TDMA
fashion to address issues related to illumination. Fig. 12a illustrates
the discovery performance by employing a single RX antenna and
different number of TX antennas.We see that increasing the number
of TX antennas from 1 to 6 considerably improves the discovery
rate from about 60% to 98% over a 4s interval.

Next, we analyze the benefit of our simultaneous decoding by
increasing the number of RX antennas from 1 to 6. Our reader
achieves perfect 100% discovery rate within 2.2s, 1.55s, and 0.75s
using 2 (one antenna on each wall), 3 (one antenna on each wall and
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Figure 12: Effect of the number of TX and RX antennas on
the Discovery rate

one on the floor), and 6 TX antennas as shown in Fig. 12b. Hence,
simultaneous decoding increases the discovery rate and reaches
the desired checkout speed.

6.2 Evaluating RFGo’s Checkout Accuracy
In this section, we evaluate RFGo in detail for its checkout accuracy
where the goal is to solely identify all the tags present inside the
CA. Recall that RFGo uses a neural network-based classifier. We
investigate the need for such a sophisticated classifier by first con-
sidering a simpler one that classifies tags as inside the CA when
they are read by at least one of the inside antennas.

We define two regions for any classifier: (a) core region, a region
inside the CAwhere tags are almost surely classified to be inside, and
(b) spillover region, a region outside the core region where tags
may be misclassified as inside. An ideal classifier would satisfy two
conditions: (C1) the core region fully covers the CA, and (C2) the
spillover region is negligible. The transmit power at TX antennas
greatly impacts the ability to meet these conditions. For instance, a
low TX power violates C1 while a high TX power works against C2.
To reduce the spillover region, a system should use the minimum
TX power that ensures C1.

6.2.1 Evaluating Core Region and Spillover Region. To evaluate the
performance of the simple classifier, we conduct experiments in
a grid of 6"×6" cells and locate tags by means of a unified cube
composed of 27 identical smaller cubes. Each of the smaller cubes is
attached one tag, covering various heights and orientations within
each column (see Fig. 7c) and representing an approximation of
possible tag placements within a 3-D volume. By deploying the uni-
fied cube in different positions, we identify the number of classified
tags as inside for each cell among the three tags (on the three 6"
cubes) in the same vertical slice of the unified cube. The readings
are collected using the 6 antennas inside the CA for 2 seconds. As
previous experiments show, RFGo discovers all the tags within 2
seconds.

The result for a snapshot of a typical 2 second experiment is
shown in Fig. 13. The four shades from light to dark indicate the
number of classified tags as inside (from 0 to 3). The result reveals
that the physical structure of the walls effectively eliminates un-
wanted readings on the left and right sides of the CA. However,
there is significant spillover extending far (e.g., 54" in this snapshot)
from the entrance (and towards the exit, not shown for brevity). Our

experiments show that even after using the minimum TX power to
meet C1, the WA has to be pushed far away from the CA to guar-
antee acceptable precision (i.e., to meet C2). Such large separation
between the CA and WA is not practical in most retail stores.

During this experiment, we observed the following: as the unified
cube is placed further from the CA, some tag features such as the
number of readings and their measured RSSIs “generally” decrease.
However, there is no clear relation between RSSI and distance due
to multipath. Nevertheless, it could be possible for a classifier to
utilize these features to distinguish between tags inside and outside
the CA. Using the setup in Sec. 5.3, we train a classifier with a
72-element feature vector for each tag comprised of the number of
readings and average RSSI for each of the 6×6 = 36 TX/RX antenna
pairs inside the CA. When a tag is not read by a given antenna pair,
we set the corresponding number of readings to 0 and the average
RSSI to -80 dBm (lowest observed in our system). After training,
we run the classifier using the readings from the same snapshot to
obtain the number of tags classified as inside in each cell.

Comparing Fig. 13b to Fig. 13a, we see that the classifier indeed
shrinks the spillover region (to 24" from the entrance) but does not
entirely eliminate it. Another undesirable effect is that the classifier
also shrinks the core region. The problem comes from the mis-
classification of tags that are inside as outside (and vice versa) due
to the similarity of their feature vectors at the boundary of the CA.

While the core region in Fig. 13b is acceptable, the spillover re-
gion needs further improvement. To further shrink the spillover
region, RFGo enhances the classifier using our dual-area antenna
deployment. The rationale is that the collective readings from both
inside and outside antennas enhances the features, particularly for
the tags along the physical boundary. We next train a classifier
with the feature vector incorporating readings from all 10 antennas
in RFGo (previous 6 inside plus 4 outside). The dual-area antenna
deployment yields 10×10 = 100 TX/RX pairs instead of 36. We then
apply the classifier on the same snapshot and present the results in
Fig. 13c. We see that with the addition of outside antennas, the clas-
sifier aggressively shrinks the spillover region without sacrificing
more from the core region. With this classifier, the spillover region
is only up to 6" away from the entry and exit boundaries of the CA.

6.2.2 Evaluating Self-checkout Accuracy. In this section, we eval-
uate RFGo’s checkout accuracy by attaching RFID tags to a set of
packaged and loose apparel items such as shirts, socks and pants
as in Fig. 15 placed inside a shopping basket. We consider different
scenarios defined in terms of the number, position and orientation
of tags placed inside the CA. The basket is placed in one of three
different heights- 20cm, 40cm, and 60cm- and is measured from the
ground to the bottom of the basket. The items are either (1) stacked
(Fig. 15a) where the tags are parallel to the ground, i.e., horizontally
orientated (H), (2) placed side-by-side (Fig. 15b) where the tags are
vertically orientated (V), or (3) randomly oriented (R) (Fig. 15c). We
run each scenario 50 times and randomly shuffle the items in the
basket between the runs.

For all scenarios, we place a total of 26 × 2 × 16 = 832 outside
tags in the vicinity of the CA. There are 16 tags attached in differ-
ent orientations to boxes of dimension 18"(L)×18"(W)×24"(H) as
illustrated in Fig. 7b. Fig. 14 illustrates the CA, WA and the location
of the outside boxes in a 6" grid. Fig. 14 also illustrates a guard area
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which is 6" from the side walls and 12" from the entrance. Each dark
square of size 3×3 grid cells represent two boxes stacked together
for a total of 32 tags.

There are 4 possible groups of tags in each run: (a) The tags
placed inside and classified as inside. (b) The tags placed inside and
classified as outside. (c) The tags placed outside and classified as
inside. (d) The tags placed outside and classified as outside. In the
checkout process, the relevant groups are (a), (b) and (c) denoted
by I→I, I→O, and O→I in Table 1, respectively.

Table 1 shows I→I, I→O, and O→I for each scenario aggregated
over 50 runs. Out of 13500 total number of tags that were placed
inside the CA across 900 runs, the total number of tags in I→I is
equal to 13472 which means the recall is 13472/13500 ≈ 0.9979.
The total number of tags in O→I is 30 which yields a precision
of (13472 − 30)/13472 ≈ 0.9977. We noticed that in each run the
number of the tags in the group I→O, or O→I were either zero or
one which means that at most one item was misclassified.

6.2.3 Checkout Experiments with Volunteers. In this section, we
evaluate RFGo with 5 volunteers each carrying a bag of 16 items
that are randomly placed in different orientations for each run. One
volunteer enters the CA and remain there until the scanning is
complete (about 2 seconds), while the other four volunteers line up
in the WA. The volunteers do not need to stand still, they can move
or swing their bag of items and hold the bags in arbitrary heights.

Each volunteer completes 20 checkout sessions for a total of
100 sessions. Out of the 1600 items brought inside the CA, 1595

Orien- Height No. of tags = 20 No. of tags = 10
tation I�I I�O O�I I�I I�O O�I
V 60 997 3 2 500 0 2
H 60 996 4 3 500 0 1
R 60 998 2 1 500 0 1
V 40 997 3 3 500 0 1
H 40 997 3 1 500 0 1
R 40 998 2 2 500 0 1
V 20 996 4 2 500 0 1
H 20 996 4 3 500 0 2
R 20 997 3 2 500 0 1

Table 1: RFGo’s self-checkout accuracy

(a) Vertical (b) Horizontal (c) Random

Figure 15: Item arrangement used in our experiments

belong to the group I�I yielding a recall of 1595/1600 ≈ 0.9968. In
addition, only 3 items are in the group O�I yielding a precision of
(1598 − 3)/1598 ≈ 0.9981.

We also compare the checkout performance of our system using
a traditional reader instead of the custom-built reader in RFGo.
Within the 2 seconds checkout time, the traditional reader suffers
considerably with a recall of 92.9% due to two main shortcomings.
(i) We observe that the traditional reader only discovers around
97% of the tags in the CA in comparison to 100% for our reader
which is due to its simultaneous multi-point decoding capability.
(ii) The classification performance based on the features from the
traditional reader is lower since the number of features are much
smaller. Using our custom-built reader and 10 antennas, each of
100 possible antenna pairs (𝑖, 𝑗), 1 ≤ 𝑖, 𝑗 ≤ 10 provides a feature,
while traditional readers have 10 features only from the (𝑖, 𝑖) pairs.

6.2.4 Impact of Our Custom-built Reader. As demonstrated ear-
lier, the custom-built reader in RFGo allows us to quickly collect
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several tag readings which are then utilized by our model to accu-
rately classify tags. To understand the importance of our reader,
we evaluate RFGo with a traditional RFID reader using the same
number of antennas in TDMA fashion. We emulate the operation
of a traditional reader by decoding tag responses from the same
TX antenna sending the query. The operation of the traditional
reader has slower discovery of tags since spatial diversity across
multiple RX antennas is not leveraged. Further, the total number
of tag readings is significantly less since simultaneous decoding of
tag replies is not implemented. Fig. 16 shows a typical example of
how the discovery progresses over time with both readers. Within
2 seconds, the traditional reader can only discover around 97% of
the tags in the CA while our custom-build reader achieves 100%
discovery well before 2 seconds.

The mono-static operation also impacts the feature vector. In-
stead of containing features from all 100 antenna pairs, the tradi-
tional reader has only 10 TX/RX antenna pairs resulting in a much
smaller set of features for training the model (Fig 17).

7 RELATEDWORK
In this section, we present some of the recent advances in RFID tag
localization and addressing tag collisions. As explained in Sec. 3,
high RFID tag localization accuracy is not realistic in a typical retail
environment where customers and products are constantly moving
in unpredictable patterns. Also, studies addressing collisions do not
tackle issues leading to blind spots such as orientation, coupling,
multipath etc. that also impact the reading probability of a tag’s
response.
• Preventing collisions with hashing: Hashing-based solutions,
where tags are allocated particular response slots based on their
EPC, have been proposed to copewith the reading inefficiencies that
Slotted Aloha incurs when the number of tags increases [1, 6, 17–
19, 44–46, 48].
• Estimating the dimension of colliding sets: Estimating the
number of tags in range based on a probabilistic analysis in every
slot has also been of interest [13, 20–22, 30, 38–40, 47]. However
such approach relies on a known tag set used as a reference. In
addition, it does not provide a solution to fast and reliable extraction
of EPC from the unknown tags.
• Resolving collisions: Other works have leveraged the infor-
mation at the PHY layer, e.g., RSSI, phase, modulation, to assess
whether a collision is present in a slot [13, 14]. Specifically, the FM0
bit flipping property can be used to classify bits from multiple tags

and resolve collisions. Some reading improvement of 40% in [4] to
60% in [2] has been reported for parallel decoding of two colliding
tags. The work in [27] attempts to resolves up to 5 colliding tags
by assessing the linearity of the I/Q clusters to decode the RN16s.
• Enhancing RFID tags: In [25], the authors propose a non-linear
backscattering mechanism to deal with the coupling issue. The
multiple harmonics generated by the reader are backscattered by the
tag using an extra module referred to as NLTL. The enhancement
of tags is at the expense of standard incompatibility and higher
costs, which may hinder deployment in practice.
• Hologram-based Localization: Recent studies leverage the di-
versity offered by the mobility of a tag to create a hologram that
shows the maximum likelihood for each plausible location in a map
[41–43]. The reported accuracy is within few centimeters. Alterna-
tively, the authors in [31] emulate a virtualized antenna array by
moving the transmit and receive antennas achieving an accuracy of
3-6 cm. The assumption of free antenna mobility may not fit certain
deployments. While above studies show impressive localization
accuracy, they do not fully address issues such as tag coupling since
they demonstrate localization with relatively small tag populations.
•Multi-antenna Localization: In [8], authors use moving refer-
ence tags in a plane and localize a target tag by computing the
interference patterns between them, with location error less than 4
cm. In [24], a phase-wrapping method is presented, where multiple
reference tags are deployed a priori to characterize the phase dis-
persion. The goal is to detect misplaced items on shelves in retail
spaces. Aside from relying on reference tags and their ground truth,
these studies do not explicitly tackle dense tag deployments where
tag coupling could impact the reported localization accuracy.
• Computer Vision-assisted Localization: The work [35] uses
computer vision to enhance RFID tag localization and work despite
unknownmoving antenna trajectories. Although the authors report
a few centimeters localization accuracy, the proposed technique
works only for localizing static RFID-tagged objects.

8 CONCLUSIONS
In this paper, we present the design and implementation of RFGo, a
first-of-its-kind self-checkout system based on RFID. Unlike camera-
based approaches that require continuous monitoring of customers
throughout a retail store, RFGo conveniently identifies purchases in
a dedicated area where customers walk in with RFID-tagged prod-
ucts they wish to purchase. RFGo enables a seamless and highly ac-
curate self-checkout experience where transactions are completed
within two seconds without the customers having to manually
place products in a dedicated container. Such a fast checkout speed
is achieved by the custom-built reader that is specially designed to
implement simultaneous decoding of a single tag response from
multiple antennas synchronized at the carrier-level. In addition, our
detailed evaluations demonstrate that RFGo achieves impressive
accuracy in challenging scenarios and thus is ready for practical
deployment.
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