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Robust 60GHz Beamforming for UAVs:
Experimental Analysis of Hovering, Blockage and

Beam Selection
Sara Garcia Sanchez and Kaushik R. Chowdhury, Senior Member, IEEE

Abstract—Unmanned aerial vehicle (UAV) mounted millimeter
wave (mmWave) base stations as well as aerial backhaul links will
enable on-demand deployment of network resources. However,
prior work has shown aerial links are prone to frequent disrup-
tion caused by (i) constant hovering due to GPS inaccuracies that
impacts narrow beam-widths, (ii) blockages in the direct line of
sight, and (iii) sub-optimal beam selection, especially if reduced
angular sectors are searched in a highly dynamic environment.
This paper characterizes the impact of each of these phenomena
for aerial mmWave links and proposes methods to distinctly
identify when they occur in isolation or in combination during
deployment. Furthermore, it also proposes corrective actions
at the UAV, appropriate for the specific type(s) of impacting
events: physical displacement from its earlier location, angular
rotation around its vertical axis, or beamwidth adjustment. Our
approach relies on exploiting the information contained in the
angular domain of a large dataset of experimentally collected
beam-selection outcomes, under the above practical scenarios. We
incorporate GPS accuracy models and antenna radiation patterns
to create a robust model of potential outages. We then propose
device-agnostic algorithms that jointly optimize UAVs physical
movement and the beamforming procedure. Experimental results
obtained by mounting a pair of 60 GHz channel sounders on
M600 DJI UAVs, reveal loss reduction of up to 74.7%, translated
into 260% physical layer bit-rate improvement compared to the
classical 802.11ad standards-defined approach.

Index Terms—obstacle detection, optimal beam, hovering,
robust UAV deployments, mmWave

I. INTRODUCTION

Millimeter wave (mmWave) frequency band (30-300 GHz)
permits several GHz of channel bandwidth as compared to
the congested sub-6 GHz band, resulting in Gbps data rates
over the wireless channel. Despite the benefits of achieving
high capacity links, such networks must be carefully deployed
to cover capacity demand spikes [1]. Dense deployments of
mmWave base stations can become prohibitive in terms of
cost, and thus, candidate fixed infrastructure sites, such as
rooftops and light-poles, cannot be selected without a lengthy
planning phase. We propose the use of unmanned aerial
vehicle (UAV) mounted mmWave access points that can be
rapidly deployed to locations of interest. UAVs can be moved
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Fig. 1: Situations leading to low performance in UAV links
and proposed solutions: (a) misalignment loss, (b) best out of
range beam and (c) blockage.

on-demand basis to adapt to the changing network traffic, as
well as to connect areas impacted by disasters, where existing
infrastructure is damaged, and rapid ground access may not
be safe or feasible [2]. Such UAVs can form both, UAV-to-
UAV backhaul links, as well as UAV-to-Ground last mile links,
towards a holistic end-to-end high bandwidth connection.

A. Challenges in UAV mmWave Links

When a UAV is programmed to hover at a particular
location, it experiences a continuous motion around the target
coordinates, as UAVs often rely on inaccurate GPS signals
for localization. Such hovering motion cannot be exactly
predicted; our analysis shows this phenomenon to cause large
impact on the communication performance leading to 91%
physical layer bitrate (PHY-bitrate) drop.

Hovering impacts mmWave links in two distinct ways,
mainly due to the necessity of using directed energy towards
the receiver (Rx) via beamforming. First, when the beams
are narrow, the resulting hovering-induced positional changes
involving rotation, such as yaw, and linear motion, results
in beam misalignment (see Fig.1(a)). Second, as commercial
GPS resolution inaccuracy is in the order of 1-1.5 meters, the
two UAVs assigned to the desired coordinates and forming an
aerial link may not exactly face each other. The situation wors-
ens when modified beamforming is used to explore a reduced
angular range for decreasing latency [3] [4]. The combined
effect of these two phenomena may result in the possibility that
the best pair of beams, achieving the highest signal strength
at the receiver among all possible angular directions (shaded
in Fig.1(b)), is never evaluated. This undesirable situation
may cause the selection of a sub-optimal pair of beams that
continue to be maintained over time as they appear to be
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the best among the limited, explored options. Widening the
angular range, or performing a partial rotation around the UAV
vertical axes are better options than settling for a sub-optimal
pair of beams, which drastically decreases link performance
by a factor of „ 100% for the most severe cases.

Another challenge is the possibility of the unexpected pres-
ence of obstacles blocking the Line-of-Sight (LoS) between
transmitter (Tx) and receiver [5] [6], specially in UAV-to-
Ground links and when UAVs are deployed on-demand in
previously unexplored areas. This can be caused by UAVs
external to the network, mobile cameras, infrastructure or
even human blockage (see Fig.1(c)). In our we observe that
blockage causes large additional attenuation leading to an
average PHY-bitrate drop of 1.45 Gbps. Moreover, recent
works state that overcoming blockage in UAV links remains an
open challenge [7]. It is generally difficult to assume a priori-
knowledge of the deployment environment for UAVs, such as a
directory of obstructions in a dynamic environment [2]. More-
over, due to the need for recharging [8], UAVs cannot remain
in position beyond 0.5-1hr duration currently [9]. However,
for static deployments, radios can be permanently installed in
the same area, enabling environmental data collection on-site
and learning [10].

Current mmWave WiFi standards 802.11ad/ay try to over-
come low link performance by detecting a sudden power drop.
Following this step, they initialize a beam searching procedure,
in which different pairs of transmitter-receiver beams defined
within a known code-book are successively swept, and their
performance is evaluated [3]. After this evaluation, which we
refer to as beam-sweeping, the protocol selects the best pair of
beams for communication and this choice remains fixed until
the next outage. However, if this expensive procedure that can
take from hundreds of ms up to a few seconds to complete
[11] (and blocks link layer traffic) is called often, there is
significant impact on the overall throughput [4]. In UAV links,
when power drop is caused by blockage or hovering-related
mobility, repeating the beam-sweeping phase may not result in
improvement [12]. For instance, in presence of blockage and
the absence of alternative Non-Line-of-Sight (NLoS) paths for
re-establishing the link, any new pair of chosen beams would
still be affected by the obstacle. As shown in Fig.1(c), instead
of a new attempt, the UAV pair has much better chance of
circumventing the obstacle if they move to a slightly different
location, avoiding repetitive beam-sweeping. Thus, we believe
that identifying the origin of low performance can help in
designing tailored solutions for each such case.

B. Contributions

The main contributions of this paper are as follows:
1) Through experiments conducted with 60GHz channel

sounding equipment mounted on a pair of DJI M600
UAVs, we create a dataset of path loss collected during
the beam-sweeping procedure defined by the 802.11ad
protocol running on the sounder radios. We propose
detection techniques for misalignment loss shown in
Fig.1(a), out of range beams in Fig.1(b), and blockage
due to aerial or ground-based tests in Fig.1(c). To do

so, we exploit the information contained in the angular
domain, applying different processing techniques to our
dataset, including filtering, gradient calculation, correla-
tion with a theoretical estimation assuming LoS using
feature tracking from image processing, and supervised
Machine Learning (ML) classification. We also provide
a technique to determine whether link performance can
be enhanced by exploiting the angular domain, otherwise
avoiding unnecessary computation.

2) We introduce a stochastic analytical approach to rapidly
identify the cause for link degradation when several of the
effects in Fig.1 occur in combination. To this extent, and
based on our experimental observations, we characterize
UAV hovering displacement as a bi-modal distribution,
and demonstrate its superiority compared to the Gaussian
model used in the literature through measured data.

3) We design and experimentally validate a two-stage algo-
rithm in order to (i) establish robust communication links
right after UAV deployment in previously unexplored
areas and (ii) re-establish performance levels in active
links that experience sudden power drop.

4) We propose a method to issue a multi-modal correc-
tion that issues mobility directives as well as adapts
beamforming parameters. Furthermore, our approach is
formulated considering the unique impact of the above
three cases of: misalignment, out-of-range beam and
blockage in a stochastic sense.

The paper is organized as follows. Section II presents related
work in the field. In Section III, we introduce a theoretical path
loss estimation that we leverage in Section IV, where detection
techniques and solutions are presented for all three effects in
Fig.1, when they occur in isolation. In Section V, we extend
the above methods when several effects simultaneously occur.
Our proposed link recovery algorithm is given in Section VI,
whereas performance evaluation is included in Section VII.
We draw conclusions in Section VIII.

II. RELATED WORK

Over the last few years, a number of works aim to detect
the presence of blockage in mmWave links [13] [14], while
other solutions attempt to overcome its negative impact on
link throughput [15] [10] [16] [3] [12]. In [15], the authors
perform real-time beam readjustment after blockage detection,
under the assumption of quasi-static links, by first creating a
path skeleton. In [10], the authors detect and predict blockage
according to historical data in a 5G cellular network. However,
assuming the availability of environmental information for
UAV-based systems may not always be practical. [16] proposes
predictive handover to counter human blockage by using rein-
forcement learning and leveraging the knowledge of pedestrian
locations. As it assumes the source of blockage is part of
the network, this restricts the applicability of the solution
to specific scenarios. [3] performs out-of-band inference to
reduce in-band overhead for establishing the best directional
mmWave beam in presence of blockage. While the results are
promising in their implementation, the setup requires addi-
tional wireless hardware that impacts UAV load capacity and
battery constraints. [14] is the closest work to our approach
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(a) LoS, hovering
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(b) Blockage
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(c) Out of range
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Fig. 2: Experimental path loss angular distribution lE for (a),(b),(c) three UAV-to-UAV scenarios and (d) a static case.

on obstacle detection that assumes neither environmental in-
formation nor additional hardware. The radio monitors a single
beam link over time, and associates blockage with Signal
to Noise Ratio (SNR) drop in static environments. However,
hovering-related motion in UAV links also causes power drops,
which are comparable to the attenuation produced by strong
blockages [17]. Thus, the approach in [14] may lead to false
positives. In [12], the authors determine whether link quality
drop is due to mobility or blockage and present simulation
results for different ML algorithms. They conclude the need
of offline training data in order to achieve high accuracy, not
practical for UAV scenarios. In addition, assumptions such
as, error-free GPS localization data or imported diffraction
models from sub-6GHz equations applied to mmWave, need
to be experimentally validated in real systems. Moreover, none
of the aforementioned works focus on detecting, identifying,
and addressing the cause for low link performance specific to
point-to-point UAV links.

Specific to UAV communication, several works have studied
robust and dynamic deployments [18], positioning for flexible
coverage [19] [20] and presence of blockage and impact of
directionality through simulations [5] [6]. The work in [5]
relies on UAVs in order to create alternative mmWave links to
overcome blockage, whereas [6] uses multi-UAV coordination
to maximize the achievable sum-rates in presence of obstacles.
Instead, our focus is to ensure robust deployment and operation
for a single UAV point-to-point link, without any supporting
network infrastructure. In [21], the authors present simulation
results for beam tracking in vehicular communications to
overcome obstacles by leveraging information contained in the
angular domain. Other recent works on UAV-mmWave com-
munications recognize the importance of including blockage
in their formulations [22], and propose to consider this in their
future work.

III. THEORETICAL ESTIMATION OF PATH LOSS ANGULAR
DISTRIBUTION

In order to identify the cause for observed low link per-
formance, our proposed solution exploits the information con-
tained in the angular domain for the path loss data collected
during the standard beam-sweeping procedure, denoted as
lE , and compares it with a theoretical estimation lT . For an
intuitive feel of this approach, consider the plots in Fig.2,
showing lE for LoS conditions during hovering (a), blockage
(b), best out of range beam (c), and LoS conditions for
a static setup (d). The x-axis represents beam index for

transmitter mtx “ t1...Mtxu and y-axis for the receiver
mrx “ t1...Mrxu, where Mtx,Mrx are their respective total
number of beams. Each beam index corresponds to a different
angular direction in the azimuth dimension θ, which we call as
beam pointing angle. Thus, Fig.2 shows the measured path loss
lE for a total of PM“MtxMrx pair of beams evaluated during
beam-sweeping. This data also includes the pair of beams pms
that are finally chosen after beam-selection concludes. Our
hypothesis is that the information contained in lE is sufficient
to distinguish the cause for low performance in UAV links,
for all the scenarios in Fig.1.

In order to test the above hypothesis, we next present the
theoretical estimation of the angular distribution of path loss
lT that corresponds to the outcomes shown in Fig.2. This
estimation provides angular data for PN“NtxNrx pair of
beams, under the assumption of LoS conditions. We then
use this estimation in our proposed algorithm to (i) identify
whether low performance can be mitigated by exploiting the
angular domain, and (ii) apply our blockage detection method.
We provide a table of notations (Table X), at the end of the
manuscript.

A. Estimation of Angular Path Loss Distribution

We perform our estimation in two steps:
1) Approximated Free Space Path Loss (FSPL) Calculation:

Using the distance between transmitter and receiver from GPS
measured coordinates rd, we first calculate ČFSPL, as the
estimated FSPL, which remains constant for all PN pair of
beams. The FSPL error bounds for a given rd due to GPS error
is denoted as εT . Thus, we use the distance range bounded by
rd˘ εT in our ČFSPL calculation.

2) Angular Refinement: We then refine the estimated
ČFSPL value for each pair of beam considered for the theoret-

ical estimation. To do so, we include additional misalignment
loss as beams point to different angular directions during
the beam-sweeping procedure. We illustrate this in Fig.3 (a),
where transmitter and receiver radios sweep their beams over
three different angular directions, evaluating a total of nine
pair of beams. For each evaluated pair, ltx and lrx represent
additional loss compared to perfect alignment at transmitter
and reciever sides. This alignment condition occurs when
transmitter and receiver point towards their broadside direc-
tion θbs (maximum of radiation pattern normal to the plane
containing the array), being θbs “ 0° under the assumption
that transmitter and receiver are perfectly aligned and facing
each other. In Fig.3 (a), maximum alignment corresponds to
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Fig. 3: (a) Misalignment loss for transmitter ltx and receiver
lrx for beams (3-3), compared to perfect beams alignment
for beams (2-2) which point towards the antenna broadside
direction, normal to the plane containing the array, θbs= 0°.

(b) Ideal, Static and Aerial radiation patterns, θ3dB=2.8°.

the case when transmitter and receiver are both evaluating the
performance for pair of beams 2. Thus, we use the difference
between the estimated path loss in this case and the estimated
path loss for all other eight pair of beams to build lT . Given the
high dependency of ltx and lrx on antenna radiation pattern
ftxpθq, frxpθq, we characterize and incorporate them in our
theoretical estimation.

B. Proposed Antenna Radiation Pattern Characterization

Phased arrays are commonly used to provide analog beam-
forming gain at mmWave frequencies [2]. We use antenna
array synthesis to estimate the spatial distribution of the elec-
tric field, with knowledge of the phase values for each array
element and the antenna configuration. For azimuth steering,
horizontal polarization, uniform amplitude and spacing, and
assuming all elements as equal and no coupling between
elements, we estimate the total electric field ET as [23]

ET “ E0pAF q “ E0p

S
ÿ

s“1

ejps´1qp 2πfc dscosθ`βqq, (1)

where the ET radiated by S elements is a function of the elec-
tric field radiated by a single element E0 and the Array Factor
(AF). The latter depends on the difference in phase excitation
between radiating elements β, and their separation distance
ds, where c is the speed of light in vacuum. Alternatively,
the antenna radiation pattern function can be numerically
calculated by using electromagnetic analysis software pack-
ages [24]. These methods approximate the electromagnetic
field by solving Maxwell equations on multiple small regions
of an antenna three-dimensional (3D) model, for which, the
electromagnetic field in each region is assumed to be constant.

For maximum accuracy, we measure the antenna radiation
pattern in a radio frequency (RF) anechoic chamber by emu-
lating flying conditions, for a discrete set of angles θ P Z in
the range of r´30°, 30°s and angular resolution of 1°.

We mount the transmitting channel sounder on the UAV and
turn the rotors on. The receiver channel sounder is mounted
on a tripod. We compare the measured radiation pattern with a
setup in which both channel sounders are mounted on tripods.
We observe additional losses of 9.5 dB for the former case due

to signal reflection from the UAV airframe, which we denote
as LAfr. We show both radiation patterns in Fig.3 (b), along
with an ideal beampattern simulated according to (1).

Given hardware-related effects, the antenna radiation pat-
terns ftxpθq, frxpθq do not remain constant as the main lobe
points to different angular directions during beam-sweeping
[24]. Thus, a total of Ntx ` Nrx radiation patterns must
be characterized for an accurate loss estimation. To mini-
mize overhead, we only characterize the central beam at the
transmitter side and assume all other beams are equal. We
also study the impact of this approximation on the accuracy
achieved by our solution.

C. Path Loss Estimation

Next, we provide a formal definition for the theoretical
path loss estimation lT , according to the following system
parameters: the operation frequency fc, GPS distance between
transmitter and receiver rd, and GPS error εT , which define
the estimated ČFSPL, the available antenna radiation patterns
ftxpθq, frxpθq, the total number of pair of beams considered
on the theoretical estimation PN , the angular step between
consecutive pair of beams δ, and the airframe-related loss
LAfr.

We refer to each of the PN pair of beams by their beam
indices (ntx,nrx) or by their pointing angles (θntx ,θnrx), for
transmitter and receiver respectively. We denote the best pair
of beams over lT as pns, with pointing angles (θnstx ,θnsrx).

The pointing angles are a function of the beam-sweeping
angular step δ and the beam-sweeping angular range θr, this
is θntx “ δpntxq P θr with ntx P Z`. In order to consider
the angular step as metric for spatial resolution, we ensure
δpntxq,δpnrxq P R` Y t0u, and define it as

δpntxq “

$

’

&

’

%

θntx ´ θntx´1, ntx ´ nstx ą 0

θntx ´ θntx`1, ntx ´ nstx ă 0

0, ntx ´ nstx “ 0.

(2)

Note that the last case ensures transmission in the broadside
direction. Taking a step function with constant angular step
δpntxq “ δ, we define the pointing angles as

θntx “ δpntx ´ nstxq P rδp
1´ PN

2
q, δp

PN ´ 1

2
qs. (3)

We estimate misalignment loss at the transmitter side ltx
for pointing angle θntx as the difference between the trans-
mitter antenna radiation pattern ftx, evaluated at θntx , and its
maximum value corresponding to ftxpθbsq,

ltxpθntxqrdBs “ ftxpθbsq ´ ftxpθntxq. (4)

Misalignment loss at the receiver side lrxpθnrxq is obtained
from an equivalent expression of (4).

We estimate the total path loss for a pair of beams with
pointing angles (θntx ,θnrx) in a UAV-to-UAV link as

lT pθntx , θnrxq “
ČFSPL`2LAfr`ltxpθntxq`lrxpθnrxq, (5)

where the addition of the last two terms correspond to total
misalignment loss. The airframe-induced loss is 2LAfr, as
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both transmitter and receiver are mounted on UAVs. We scale
it down by a factor of 2 for UAV-to-Ground links. Notice
that when transmitter and receiver beams point towards the
broadside direction, θntx , θnrx “ θbs, misalignment losses
ltxpθntxq, lrxpθnrxq are null, and the loss for this particular
pair of beams is simply given by ČFSPL and LAfr, according
to (5). The latter can be derived from the spatial data obtained
during initialization, as discussed in Section IV-A. This is, the
difference between FSPL for a reference distance and the
measured value, when beams are perfectly aligned and under
LoS conditions.

In Fig.4(a), we show the result of our theoretical estimation
using the aerial radiation pattern presented in Fig.3(b) for a
total of 1024 different pair of beams. We consider an angular
range θr “ r22.4°, 23.8°s and a constant angular step δ “ θ3dB

2
of 1.4°, where θ3dB is the antenna half-power beamwidth. We
approximate the centroid of the measured cluster as the point
of minimum path loss, corresponding to the pair of beams
achieving best alignment.

D. Experimental Validation

In order to validate our theoretical formulation, we contrast
lT with experimental data collected for two different outdoor
open environments under LoS conditions, a grassland open-
area shown in Fig.2(d), and a parking lot. In both cases, we
perform beam-sweeping with the channel sounders separated
a distance of 6 meters, facing each other.

In Fig.4(b), we compare lT with the measured path loss in
both scenarios. The theoretical path loss estimation error is
calculated for a distance deviation of εT “ ˘1.5 meters, as
this is the maximum longitudinal displacement a M600 UAV
model can experience, as we later discuss in Section V-B1.
The experimental path loss error εE is hardware related, with
a value of up to 4 dB. The x-axis has ordered pair of beams
for increasing path loss according to the theoretical model.
Thus, the left side of the plot contains the pair of beams closer
to the centroid of the cluster. We apply a moving filter to
the experimental data to smooth measurement errors and view
general trends. We observe that lT is accurate for the pair of
beams close to the centroid. The divergence at the extremities
is due to increased difference between radiation patterns as we
move far from the central beam that we characterized.

In the next section, we present our proposed solution that
leverages the theoretical estimation of lT described here.
Furthermore, we propose a simple solution to detect and re-
establish best-case link performance.

IV. ENSURING RESILIENT LINK PERFORMANCE

In Fig.1, we described the main reasons for low performance
in mmWave UAV links as (a) misalignment loss, (b) best out
of range beam selection, (c) presence of blockage between
transmitter and receiver, or a combination of them. In this
section, we design detection and solution techniques for each
of these three effects if they occur in isolation. To do so, we
leverage the theoretical estimation given in Section III, and
exploit the information contained in the angular dimension
of the in-flight experimental path loss data collected. Then,
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Fig. 4: (a) Theoretical path loss estimation lT for 1024 pair
of beams. (b) Experimental validation of lT .

in Sections V and VI, we extend our approach to scenarios
where multiple effects happen simultaneously, through a low
complexity solution.

A. Input Parameters

Our approach assumes no knowledge of the obstacle loca-
tion and no prior environmental information. Our inputs are:

1) Theoretical estimation of the path loss angular distribu-
tion: as we described in Section III. We use lT for obstacle
detection (IV-D), and solution triggering (V-A).

2) GPS approximated location data: This gives a rough
estimation for d̃, that we use to perform beamwidth adjustment
to existing hovering conditions (IV-B).

3) Experimental path loss angular distribution in an open-
environment, under LoS conditions: based on the data we
show in Fig.2(d). This is required as a one-time initialization
step, subject to the change of major operational conditions,
such as hardware. We discuss further this issue in Sections
IV-C and IV-D.

We next present the individual solutions for the different
causes of performance degradation.

B. Misalignment Loss

The first effect we aim to overcome is misalignment loss
caused by the use of directional beams under hovering condi-
tions. Even when the best beam-pairs are selected in the ab-
sence of blockage, misalignment loss still causes drastic power
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drop. Our solution involves adjusting the antenna beamwidth
based on current hovering conditions as

θ3dB “ 2atanp
maxt∆du

rd
q, (6)

where ∆d is the hovering displacement range (range of motion
as the UAV hovers around the targeted coordinates), that we
later characterize in Section V-B1. We provide guidance on
which value should be assumed in Sections V-B4 and VI-A.

C. Best Out of Range Beam

The second effect we consider is illustrated in Fig.1(b),
which we refer to as out of range. To detect this situation,
we rely on information contained within the path loss angular
distribution of experimental data lE . In particular, under out
of range conditions, the centroid of lE is not part of the
collected data (see Fig.2(c)). For detection, we propose to
analyse the decreasing behavior of lE with respect to the
transmitter and receiver pointing angles pθmtx , θmrx). To this
extent, we calculate the averaged value of the projection of
the negative gradient vector of lE over each pointing direction
θmtx , θmrx , where lE is considered as a 2D discrete function.
For the transmitter case,

¯∇lEpθmtx q “
ř

θmtx
ă ˆθmtx ,´∇lEpθmtx , θmrxq ą

PM
, (7)

which is equivalent for the receiver ¯∇lEpθmrx q, where
ˆθmtx ,

ˆθmrx are the transmitter and receiver pointing unit
vectors, ∇ is the gradient operator, ă,ą the inner product
operator, and ´∇lE is the direction that results in the greatest
decrease in path loss. Since we are interested in the angular
distribution tendency of lE caused by potential out of range
situations, we filter lE prior to calculating the gradient. This
minimizes the effect of the radiation pattern (and potential
presence of obstacles) on the calculated gradient.

According to (7), a positive value of ¯∇lEpθmtx q implies that
the averaged value of the negative gradient over all PM pair of
beams, points to the positive angular region of the transmitter
` ˆθmtx . Thus, there is a tendency for lE to decrease towards
this angular direction, where we expect the centroid to be
located. Analogously, for negative values of ¯∇lEpθmtx q, the
centroid is expected to be located towards the negative angular
region of the transmitter ´ ˆθmtx . This reasoning is equivalent
for ¯∇lEpθmrx q at the receiver side. In this case, our proposed
solution involves rotating the transmitter and/or receiver UAVs
toward the direction where the centroid is expected to be, to
maintain the same pair of beams and thus, avoid breaking
the communication link. If ¯∇lEpθmtx q,

¯∇lEpθmrx q are null, we
conclude that the averaged value of ´∇lEpθmtx , θmrxq in each
dimension is compensated over all pair of beams, in which
case, the centroid is located at the middle of lE , and thus,
rotation is not required.

In order to avoid rotation when ¯∇lEpθmtx q,
¯∇lEpθmrx q are

not null but „ 0, we estimate both values for the experimental
path loss angular distribution required as input mentioned in
Section IV-A3, where transmitter and receiver are facing each
other. We only start the UAV rotation for values much higher
(x10 times) than the calculated values that we set as thresholds

TABLE I: Out of Range Solution

Condition Action: Rotation
| ¯∇lEpθmtx q |ą ξthptxq, ´ ¯∇lEpθmtx q ą 0 Transmitter to ` ˆθmtx
| ¯∇lEpθmtx q |ą ξthptxq, ´ ¯∇lEpθmtx q ă 0 Transmitter to ´ ˆθmtx
| ¯∇lEpθmrx q |ą ξthprxq, ´ ¯∇lEpθmrx q ą 0 Receiver to ` ˆθmrx
| ¯∇lEpθmrx q |ą ξthprxq, ´ ¯∇lEpθmrx q ă 0 Receiver to ´ ˆθmrx

ξthptxq, ξthprxq. In Table I, we summarise required actions
according to different conditions, where rotation to `θ̂m,´θ̂m
correspond to clockwise and counter-clockwise UAV motion
respectively.

D. Blockage

Although the presence of an obstacle in the LoS path cannot
be detected by evaluating a single pair of beams, as discussed
in Section II, we can infer such a condition by exploiting
information in the angular domain. In our approach, we
compare the in-flight measured path loss angular distribution
lE (e.g in Fig.2), with the theoretical estimation lT (Fig.4(a)),
calculated according to Section III. Since we estimate lT
assuming LoS conditions, the degree of similarity between
estimation and measurement is the metric we use to identify
whether the link is established under LoS conditions, or suffers
from blockage.

1) Normalized Cross-Correlation as Similarity Metric:
Given that lT and lE do not necessarily have the same dimen-
sion, we quantify their degree of similarity as the maximum
value of the normalized cross-correlation between them. We
adapt this approach from feature tracking in image processing
[25].

We consider an image (lE) of dimension Mtx ˆMrx, and
a feature (a subset of the theoretical data lT ) of dimension
Ntx ˆ Nrx, being Mtx ě Ntx,Mrx ě Nrx. The roles of lE
and lT as image and feature are interchangeable. However,
we prefer to limit the size of lT , considering it as feature,
as it suffers from estimation errors as we move away from
its centroid due to the lack of a full characterization for all
radiation patterns, as illustrated in Fig.4(b). The approach is
based on the Euclidean distance, defined as

d2
lE ,lT “

ÿ

θm

rlEpθmq ´ lT pθm ´ θwqs
2, (8)

where θm “ pθmtx , θmrxq are the pointing angles for the
image, and θw “ pθwtx , θwrxq is the position of a window
w containing the feature. The sum in (8) is performed over
the image pointing angles within the window. The normalized
cross-correlation for a given θm, θw is then defined as

xcross “

ř

θm
rlEpθmq ´ l̄Eθw srlT pθm ´ θwq ´ l̄T s

t
ř

θm
rlEpθmq ´ l̄Eθw s

2
ř

θm
rlEpθmq ´ l̄Eθw s

2u0.5
,

(9)
where xcross P R, and l̄Eθw and l̄T are the averaged experi-
mental and theoretical path loss respectively, calculated within
the window where the feature lT is located. The result @θm, θw
is the matrix Xcross P RpMtx`Ntx´1,Mrx`Nrx´1q.

In feature tracking, maximum cross-correlation occurs when
the feature is aligned with itself on the image. In our
case, maximum cross-correlation occurs under LoS conditions,
where the centroids of lT and lE are aligned. However,
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TABLE II: Radiation Pattern Effect on maxtXcrossplT , lEqu

Scenario Aerial Radiation Pattern Ideal Radiation Pattern
Grassland 0.808 0.698

Parking Lot 0.812 0.631

when blockage occurs, the centroid of the latter is obscured,
causing correlation to drop. This does not even guarantee that
maximum cross-correlation corresponds to proper alignment
between feature and image. Thus, from the maximum value of
the normalized cross-correlation matrix Xcross over all point-
ing angles θm, θw, calculated from (9), we determine whether
links are established under LoS or blockage conditions.

Our motivation to use (9) as similarity metric is due to
several reasons: First, this approach is robust against measure-
ment anomalies, as it does not consider a single data point
for determining maximum similarity, but rather, leverages
angular information from multiple pair of beams. Second,
normalization allows for comparison, which is required for
obstacle detection. Third, the subtraction of the path loss
average values l̄Eθw , l̄T , makes xcross invariant to changes
in the image power all pixels are equally affected [25], or
in our case, all PN pair of beams. This is crucial, as errors
in lT are expected, such as FSPL estimation errors caused by
relying on inaccurate localization system measurements, or by
not considering the effect of unfavorable weather conditions,
as we later discuss in Section V-A, among others.

2) Parameters Affecting Cross-Correlation: In order to
distinguish between LoS and blockage conditions from the
xcross value, we first analyse its dependency with the antenna
radiation pattern, data dimension and multipath conditions:
‚ Radiation Pattern. Although the normalized cross-

correlation xcross defined as in (9) is not affected by
errors equally affecting all PN pair of beams, its value
is subject to local errors, i.e., those affecting a limited
region of lT . Moreover, since lT relies on the knowledge
of the antenna radiation pattern, if we fail to accurately
characterize its angular power distribution, the correlation
value between estimation and measurement drops. To
illustrate this, we present in Table II the maximum value
of the cross-correlation matrix maxtXcrossplT , lEqu for
the grassland and parking scenarios, already introduced in
Section III-D, for the aerial and ideal radiation patterns
shown in Fig.3(b). As the ideal radiation pattern locally
differs from the real case, correlation drops. The correlation
value for the aerial radiation pattern can be brought closer
to 1 with a full characterization of all pair of beams for
transmitter and receiver, as we stated in Section III-B.

‚ Data Dimension. We can reduce the data dimensions in the
image lE , either by reducing the angular beam-sweeping
range θr or by increasing the angular step between two con-
secutive beams δ. However, limiting the number of beams
evaluated during beam-sweeping or the angular resolution,
decreases the amount of information available in the angular
domain. This affects centroid alignment between image lE
and feature lT under LoS conditions, and thus, decreases
maximum correlation achieved in the absence of blockage.
A better approach to reduce data dimension is by consid-
ering a subset of the theoretical path loss estimation lT ,
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Fig. 5: maxtXcrossplT , lEqu as function of lT dimension.

TABLE III: Data Dimension Effect on maxtXcrossplT , lEqu

Radiation
Pattern

Data Dimension
pNrx ˆNtxq

maxtXcrossplT , lEqu

Aerial 9x7 0.808
Ideal 9x9 0.804

specially if our radiation pattern characterization lacks ac-
curacy. In Fig.5, we show the maxtXcrossplT , lEqu value for
different lT data dimension, for the grassland scenario. The
squared area corresponds to successful centroids alignment
within a an angular resolution of δ “ 1.4°. Notice that
maximum correlation is achieved for the lowest possible
dimension, however, centroid alignment is not successful.
In Table III, we show the dimensions with proper alignment
and the corresponding correlation between aerial and ideal
radiation patterns. Since the aerial radiation pattern is a
better characterization, less data is sufficient to ensure cen-
troid alignment and high correlation under LoS. For similar
reasons, and since the radiation pattern we characterized
is on the transmitter side (see Section III-B), receiver
data dimension in the aerial case is higher compared to
transmitter.

‚ Multipath. In presence of rich multipath, commonly ex-
pected in UAV-to-Ground links, the measured data lE does
not only depends on the antenna radiation pattern and data
dimension, but also on the presence of scatterers, their
locations, shapes and materials [2]. We illustrate this effect
in Fig.6, comparing lE for measured path loss between (a)
an open environment and (b) a scenario where there exits a
nearby wall causing reflection. Since multipath caused by
the wall locally alters the path loss angular distribution,
it is an additional factor -other than blockage-, causing
correlation drop. Thus, as the theoretical path loss estimation
given in Section III assumes LoS, the correlation drop
caused by multipath could be interpreted as the presence
of an obstacle, leading to false positives for blockage
detection. To overcome this, we propose the use of a simple
supervised ML method, described next. With this approach,
data collected during multiple deployments is leveraged to
enhance the obstacle detection accuracy in the longer term.

3) Naı̈ve Bayes Classifier for Obstacle Detection: In this
section, we propose the use of a binary classifier in order
to distinguish between LoS (class1 = ’LoS’) and blockage
(class2 = ’block’). We collect labelled maxtXcrossplT , lEqu
values during multiple deployments to create a dataset of
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(a) (b)

Fig. 6: Measured path loss for (a) open and (b) rich multipath
environments, for all transmitter beams, broadside at receiver.

observations D. We then use a simple supervised ML approach
to classify new values into one of the two classes. We chose
Naı̈ve Bayes classifier, as it requires small amount of data to
achieve high accuracy and returns classification probabilities
as confidence metric. Since our method has a single feature,
maxtXcrossplT , lEqu, the independence assumption holds.
From Bayes theorem, the posteriori probability of blockage
P pblock|Dq based on the dataset of observations D is given
by

P pblock|Dq “ P pD|blockqP pblockq
P pDq

, (10)

with P pD|blockq the likelihood function, P pblockq the prior
probability of blockage, and P pDq the evidence. (10) is
equivalent for the ’LoS’ class. We then determine

#

LoS : if P pLoS|Dq ě P pblock|Dq
Blockage : if P pLoS|Dq ă P pblock|Dq.

(11)

V. IDENTIFYING CAUSES OF LINK DEGRADATION

In Section IV, we proposed detection techniques and solu-
tions for all three effects presented in Fig.1, when they happen
in isolation. However, a combination of these effects may
simultaneously happen. Moreover, low link performance may
also be caused by other factors such as air moisture, rain or
ground absorption in UAV-to-Ground links, which we do not
model in our work so far. Thus, our approach first involves
(A) solution triggering, which determines whether or not our
solutions are applicable for enhancing link performance. If
so, a second step (B) performs an analytical estimation that
determines which of the different effects in Fig.1 may be
likely causing low performance, and thus, which techniques
from Section IV we should prioritize. The specific steps of
the algorithm are given in Section VI.

A. Solution Triggering

External environmental conditions affect equally all pair of
beams or angular directions, and thus, our solutions (motion,
rotation, or beamwidth increase) are not expected to result in
meaningful gains. From the similarity metric defined in (9)
in Section IV-D1, the xcross value is invariant to changes
on the image power, when changes equally affects all pair
of beams. Thus, when low performance is detected, and yet,
the maxtXcrossplT , lEqu value is high, link degradation is
caused by an effect producing the same power drop on all
pair of beams. In this case, we choose not to trigger further

(a) (b)

Fig. 7: (a) UAV displacement in lateral dimension under
moderate hovering conditions, flight-time of 9 minutes. (b)
Parameters for calculation of PoR.

TABLE IV: Hovering Range Characterization

Hovering conditions ∆dpmq Source
Moderate r´0.6, 0.6s Experimental

Strong r´1.5, 1.5s Specifications

calculations. On the contrary, when the maxtXcrossplT , lEqu
value is low, link degradation is caused by an effect that locally
alters the path loss angular distribution.

In contrast with the cases where different effects occur in
isolation (see Section IV), when several effects simultaneously
occur, low values of maxtXcrossplT , lEqu are not necessarily
associated with blockage. Out of range may also be the cause
for a hidden centroid, when the centroid is not part of the
experimental path loss distribution that leads to a drop in cor-
relation. Since the cause for low maxtXcrossplT , lEqu values
may be blockage, out of range, or a combination of both, we
need to rapidly identify the cause for link degradation.

B. Stochastic Analytical Approach

Next, we provide a hovering characterization used to derive
closed-form expressions for the probabilities of blockage, LoS,
best out of range beam, and insufficient beamwidth for given
hovering conditions, based on in-flight parameters available
during operation.

1) Hovering Characterization: To derive a stochastic ex-
pression for UAV hovering, we first characterize the hovering
displacement range ∆d for what we denote as moderate
hovering conditions, which are conducive for safe and reliable
operation. To this extent, we collect UAV localization data
for scenarios with no buildings within a radius of 15 meters,
strong satellite signal reception (SNR ą35 dB) from at least
4 satellites, and maximum wind speed of 17 miles/hour. For
enhanced accuracy in the hovering characterization, we collect
data using an EMLID Real-Time Kinematic GPS (RTK-GPS)
unit, which uses averaged measurements from a ground station
in order to correct GPS error achieving cm-level accuracy.
Additionally, we provide the maximum ∆d for what we denote
as strong hovering conditions, determined by the maximum
hovering the DJI M600 model experiences, according to its
specifications [26]. Table IV shows the ∆d value for both
cases, applicable to linear motion along lateral and longitudinal
dimensions.
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Once ∆d is characterized, we formulate a stochastic model
for it. Recent works assume hovering follows a Gaussian
distribution [27], given by

∆d „ N pµ, σ2q, (12)

with mean µ centered at the true UAV coordinates and typical
deviation σ “ p

maxt∆du

3 q related to the maximum hovering
displacement range.

In contrast, our experimental observations show that hov-
ering is better modeled as a bimodal distribution, similar to
GPS [28] for the limited UAV flight-time (typically ă 10-12
minutes with load in our case). We prove this in Fig.7(a),
where we show collected hovering data using a RTK-GPS
unit. The signal distribution is contrasted with lower accuracy
UAV-mounted GPS sensor data collected during the same
experiment. Thus, we characterize hovering as a dual-mode
Gaussian Mixture Model (GMM), with probability density
function given by [29]

∆d „ v1N pµ1, σ
2
1q ` v2N pµ2, σ

2
2q, (13)

with v1 ` v2 “ 1, and where µ1, µ2 are each mode means,
and σ1, σ2 selected such that [µ1 ´ 3σ1, µ2 ` 3σ2s “

r´maxt∆du,maxt∆dus, µ1 ď µ2, to ensure maximum hov-
ering range follows values in Table IV. Given the unpredictable
nature of GPS signals, the mean values µ1, µ2 are randomly
located within ∆d. According to their location, the lower
bound for hovering displacement corresponds to

∆d „ 0.5N pµ, maxt∆du

3

2

q ` 0.5N pµ, maxt∆du

3

2

q, (14)

with µ as the true coordinates. We note that this case is equiv-
alent to a Gaussian distribution with σ “ maxt∆du

3 . Moreover,
the upper bound for hovering displacement corresponds to a
bimodal distribution where the separation between µ1, µ2 is
maximum. Considering a minimum hovering range ∆dmin ,

∆d „ v1N pµ1, ∆d
2
minq ` v2N pµ2, ∆d

2
minq, (15)

with mean values µ2 “ ´µ1 “ maxt∆du ´ ∆dmin. We
validate the upper and lower bounds for hovering displacement
in Section VII-E. Unlike GPS errors, the lack of accuracy
in the Inertial Measurement Unit (IMU) sensors results in
rotational displacement [30]. Thus, in addition to improved
UAV linear displacements estimation, our hovering model can
also account for rotational displacements ∆θr (such as yaw,
see Fig.1(a)). We first transform rotational ∆θr into linear
displacement ∆dr via ∆d “ dtan∆θ (see Fig.7(b)). Then,
we calculate the joint Probability Density Function (PDF) in
the linear dimension ∆dT as

fp∆dT q “

ż 8

´8

ż 8

´8

fp∆dqfp∆drq

δDp∆dT ´∆d´∆drqd∆drd∆d,

(16)

where fp∆dq and fp∆drq are the PDFs of ∆d and ∆dr
respectively, and δD is the Dirac delta function defined as

δp∆DdT q “

#

1, if ∆dT “ ∆d`∆dr

0, otherwise.
(17)

We normalize (16) as

fN p∆dT q “
fp∆dT q

ş8

´8
fp∆dT qd∆dT q

. (18)

Note that (16) is needed, since beam misalignment caused
by linear displacement (e.g ∆d to the left), can be compen-
sated by rotational displacement (e.g ∆θr ” ∆dr to the right).
Thus, fN p∆dT q represents the probability density function of
∆dT “ ∆d`∆dr,@∆d,∆dr, defined in order to account for
possible compensation in the linear dimension.

2) Probability of Blockage and LoS: Based on the
Naı̈ve Bayes Classifier described in Section IV-D3, we
calculate the probability of blockage Pblock for a given
maxtXcrossplT , lEqu value as

Pblock “
P pblock|Dq

P pblock|Dq ` P pLoS|Dq
. (19)

Note that (19) assumes that blockage occurs in isolation.
The probability of LoS PLoS , is given by

PLoS “ 1´ Pblock. (20)

3) Probability of Out of Range: We estimate the probability
that the best pair of beams are not evaluated during the beam-
sweeping procedure for a UAV-to-Ground link PoRpUGq as

PoRpUGq “ P p| ∆d ą Ă∆d |q “

#

P p∆d ą Ă∆dq, ∆d ą 0

P p∆d ă ´Ă∆dq, ∆d ă 0,

(21)

where Ă∆d P R` is the estimated lateral displacement covered
by half the beam-sweeping angular range θr

2 (see Fig.7(b)). We
associate ∆d P R´ to lateral displacement to the left side of
the UAV with respect to its forward direction axis, as we show
in Fig.7(b), and ∆d P R` to lateral displacement to the right
side. Considering the mapping between angular displacement
range θr and lateral displacement Ă∆d, we write (21) as

PoRpUGq “ P p| ∆d ą prd˘ εT qtanp
θr
2
q |q. (22)

We calculate the out-of-range probability by numerically
integrating the PDF of the hovering displacement fp∆dq,
characterized in Section V-B1 as

PoRpUGq “

ż
Č´∆d

´8

fp∆dqd∆d `

ż 8

Ą∆d

fp∆dqd∆dq, (23)

or equivalently,

PoRpUGq “ 1´

ż
Ą∆d

´Ą∆d

fp∆dqd∆d. (24)

The previous formulation is also applicable to UAV-to-UAV
pUUq links. For this, we combine the individual PDF from
each UAV fp∆dpUAV1qq and fp∆dpUAV2qq, and estimate the
joint PDF fp∆dCq as

fp∆dCq “

ż 8

´8

ż 8

´8

fp∆dpUAV1qqfp∆dpUAV2qq

δDp∆dC ´∆dpUAV1q ´∆dpUAV2qqd∆dpUAV2q
d∆dpUAV1q

.

(25)
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This calculation is equivalent to (16)-(18). With this ap-
proach, we reduce the UAV-to-UAV case to an equivalent
UAV-to-Ground link, where one of the UAVs is seen as
static, and the second UAV motion is given by the joint PDF
in (25), with maximum displacement range maxt∆dCu “
maxt∆dpUAV1qu `maxt∆dpUAV2qu. Notice that the product
in (25) assumes independent hovering motion between UAV
transmitter and receiver. We support this assumption with the
insights learnt from our experiments, where we compared the
behaviour between co-located and separated GPS receivers,
and observed how distance decorrelates rapid fluctuations on
GPS signals (and consequently, motion during hovering for
separated UAVs).

4) Probability of Insufficient Beamwidth: The probability
of insufficient beamwidth PiB for certain hovering conditions
can be estimated from (21), with Ă∆d the estimated lateral
displacement covered by half the beamwidth θ3dB

2 .

VI. ALGORITHM FOR OVERCOMING LINK DEGRADATION

In this section, we formally describe the algorithm that
takes the most appropriate action(s) for (i) establishing a
robust communication link right after UAV deployment in
a previously unexplored area (Fig.8), and (ii) re-establishing
performance levels in an active link that experiences a sudden
power drop (Fig.9). We leverage the theoretical path loss
estimation introduced in Section III, and well as detection
techniques from Sections IV and V. We include pseudo-
code for our approach in Algorithms 1 and 2. In addition,
we provide a stochastic complexity analysis as well as a
discussion on latency and signaling overhead for our solution.

A. Algorithm Description

1) Deployment Stage, (Fig.8, Algorithm 1): Right after
UAVs deployment at their targeted GPS coordinates, trans-
mitter and receiver perform beam-sweeping, select the best
pair of beams for communication pms “ pmstx,msrxq and
generate the angular distribution of the experimental path loss
lE .

We detect sub-optimum link performance if the loss for
the selected pair of beams lEpθmstx , θmsrxq is not within the
range of expected values given by our theoretical estimation
lT pθbstx ,θbsrx), calculated according to (5). In this case, we
calculate the maxtXcrossplT , lEqu value and estimate the
probability of LoS from (19) and (20). From this value, we de-
termine whether our solution can help boost link performance
and should be triggered, according to Section V-A. If not, we
maintain the current link without any further computations. In
affirmative case, we estimate PoR (Section V-B3), according to
(21)-(25). We recall that the value of PoR considers both UAV
hovering models, as well as the beam-sweeping angular range
θr. Thus, from its value, we determine the probability that
low link performance is due to the best pair of beams being
out of range, given current flying conditions and beamforming
parameters.

If PoR differs from zero, we check whether the best pair
of beams was not evaluated during beam-sweeping, from the

¯∇lEpθmtxq, ¯∇lEpθmrxq values ((7) in Section IV-C), in which

Algorithm 1 Deployment Stage

Input: rdÐ GPS location data.
Input: Experimental path loss distribution lE Ð beam-sweeping.
Input: Selected beams pair pms “ pmstx,msrxqÐ beam-sweeping
Input: Evaluated angular range θR Ð beam-sweeping
Input: Theoretical path loss estimation range lT prd˘ εT q Ð (5).
Input: Dataset of observations D
Output: Beamwidth θ3dB and set of UAV required actions.
1. Check for reduced link performance.

2. if lEpθmstx , θmsrxq R lT pθnstx , θnsrxq,
3. Determine whether to trigger solution.
4. Calculate maxtXcrossplT , lEqu Ð (9).
5. Obtain P pLoS|Dq, P pblock|Dq
6. maxtXcrossu, p10q, F ig.11.
7. Determine whether LoS conditions.
8. if P pLoS|Dq ă P pblock|Dq Ð (11),
9. Estimate PoRpθRq Ð Section V-B3.
10. if PoR ‰ 0,
11. calculate | ¯∇lEpθmtx q |, | ¯∇lEpθmrx q |Ð (10).
12. if | ¯∇lEpθmq |ă ξth,
13. Label maxtXcrossuas LoS.
14. else
15. Rotate transmitter and/or receiver Ð Table I.
16. if lEpθmstx , θmsrxq P lT pθnstx , θnsrxq,
17. Label maxtXcrossuas LoS.
18. else
19. Assume blockage and laterally move UAVs.
20. Label maxtXcrossuas blockage.
21. end
22. end
23. end
24. end
25. end
26. return θ3dB for moderate hoveringÐ Section V-B4, Table IV.

case, the UAV is rotated according to Table I. If after rotation,
the link is re-established, we add the maxtXcrossplT , lEqu
value labelled as ’LoS’ to the ML dataset of observations D.
If the link is not re-established, or if PoR „ 0, we move one
or both UAVs to achieve LoS conditions. If after motion, link
performance is re-established and PoR „ 0, we confirm that
blockage was the cause for low link performance, and we add
the maxtXcrossplT , lEqu value labelled as ’block’ to D.

Finally, and with independence of the angular range θr and
resolution δ utilized during beam-sweeping, we calculate the
Inverse of the Cumulative Distributive Function (ICDF) of PiB
(Section V-B4), and adjust the beamwidth θ3dB to cover the
maximum displacement range ∆d under moderate hovering
conditions to achieve PiB „ 0.

2) Operation Stage (Fig.9, Algorithm 2): In operation
stage, (see Fig.9), we assume a high performance link was es-
tablished prior to power drop. Thus, we associate performance
degradation to blockage, misalignment loss or a combination
of both.

Based on our experimental observations, hovering causes
large misalignment loss in aerial links. Thus, we initially
assume low performance is due to an underestimation of the
hovering conditions. We increase θ3dB (V-B4) to cover ∆d

under strong hovering conditions, according to the hovering
model provided in Section V-B1 and values given in Ta-
ble IV. This approach potentially allows to re-establish link
performance without triggering a new beam-sweeping and
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Fig. 8: Algorithm for robust links during deployment.

Algorithm 2 Operation Stage

Input: rdÐ GPS location data.
Input: lEref pmstx,msrxq after beam alignment.
Input: Current lEpmstx,msrxq.
Output: Beamwidth θ3dB and set of UAV required actions.
1. Check for power drop.

2. if lEpθmstx , θmsrxq ‰ lEref pmstx,msrxq
3. return θ3dB for strong hoveringÐ Section V-B4, Table IV.
4. end
5. Check for restored link.
6. if lEpθmstx , θmsrxq ‰ lEref pmstx,msrxq
7. Trigger new beam-sweeping.
8. Calculate maxtXcrossplT , lEqu Ð (9).
9. Obtain P pLoS|Dq, P pblock|Dq Ð
10. maxtXcrossu, p10q, F ig.11.
11. Determine whether LoS conditions
12. if P pLoS|Dq ă P pblock|Dq Ð (11),
13. Assume blockage and laterally move UAVs.
14. Label maxtXcrossuas blockage.
15. end
16. end

interrupting communication. If the link is not re-established,
we trigger beam-sweeping lE , and run the obstacle detection
method, similarly to deployment stage, following the theoret-
ical analysis given in Section V-B2.

B. Algorithm Complexity Analysis

The algorithm steps with higher complexity order as follow:
‚ maxtXcrossplT , lEqu achievable with OpMtx ¨Mrxq [25].
‚ PoR with complexity Opρ´1q „ Opρq, with ρ´1 additions

and products, and ρ the dimension of the discrete function
to be integrated (numerical resolution), and ICDF(PiB) with
complexity „ Opρ` 2ρlogpρqq, as sorting is required.

‚
¯∇lEpθmtxq, ¯∇lEpθmrxq with complexity of „ OpMtx¨Mrxq

as it requires 2MtxpMrx´1q`2MrxpMtx´1q subtractions
and MtxpMrx´1q`MrxpMtx´1q divisions and additions.

‚ lT with complexity OpNtx ¨Nrxq, with last three terms in (5)
computed offline, and ČFSPL calculated once, and added to
all PN “ Ntx ¨Nrx pair of beams.

‚ Beam-sweeping procedure with OpMtx ¨Mrxq.
Table V summarizes this computation complexity. In Ta-

ble VI, we show the required computations for the link to
be reestablished in a probabilistic manner. From Table VI,
notice that by leveraging our stochastic analysis in Section

Fig. 9: Algorithm for robust links during operation.

TABLE V: Complexity Analysis

Reference Computation Complexity
(i) maxtXcrossplT , lEqu, p9) OpMtx ¨Mrxq [25]
(ii) PoR, (24) Opρq
(iii) ICDF pPiBq, Sec. V-B4 Opρ` 2ρlogpρqq

(iv) ¯∇lEpθmtxq,
¯∇lEpθmrxq, (7) OpMtx ¨Mrxq

(v) lT , (5) OpNtx ¨Nrxq
(vi) Beam-sweeping OpMtx ¨Mrxq

V-B, we reduce the number of high complexity computations
required to identify the cause for low performance in the
deployment stage. Moreover, in the operation stage, we reduce
the complexity required to reestablish the link (from quadratic
to logarithmic), avoiding to trigger a new beam-sweeping with
probability PLoSPiB .

C. Discussion on Algorithm Latency and Signaling Overhead

In the standard solution, a potential sub-optimal pair of
beams remains fixed after beam-selection. In contrast, our
approach help establish or recover high throughput links.
To achieve this, we use the Robot Operating System (ROS)
framework to establish communication between UAVs, as
well as between on-board sensors and the UAV’s own com-
puting module (NVIDIA Jetson TX2). Through ROS-based
messaging, both UAVs perform synchronized and coordinated
motion in a distributed manner. Specifically, ROS follows a
publish-subscribe model to communicate the UAV sources that
generate (and publish data), and the UAV ends that retrieve this
data (by subscribing to that topic). The 3-dB beamwidth and
motion directives estimated at the UAV receiver are published
on ROS topics called 3-dB Elevation Beamwidth and motion
directives. The transmitter UAV subscribes to these topics and
reads the angular rotation and 3-dB beamwidth commands.
Then, both transmitter and receiver use their IMU, GPS and
mmWave sensors together with the received commands to
achieve the desired coordinated motion and 3-dB beamwidth
adjustment.

From our experimental findings, localised ROS messag-
ing within a UAV typically introduces a latency below 1
ms, less than the inter-UAV ROS messaging delay of « 5
ms. Given the low complexity of our algorithmic solution
presented in Section VI-B, the delay caused by calculations
performed on top of the standard beam-sweeping approach is
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TABLE VI: Stochastic Computational Analysis

Stage Probability Condition Computations
(from Table V)

Deployment PLoS PLoS ą Pblock (i),(iii),(v)
Deployment Pblockp1´ PoRq PLoS ă Pblock (i),(ii),(iii),(v)

and PoR „ 0
Deployment PblockPoR PLoS ă Pblock (i),(ii),(iii),(iv),(v)

and PoR ‰ 0
Operation PLoSPiB PLoS ą Pblock (iii)

and PiB ‰ 0

Operation PblockPiB`
pPLoS ă Pblock
and PiB ‰ 0q

(i),(iii),(v),(vi)

p1´ PiBq or pPiB „ 0q

upper bounded by 10 ms. Thus, UAV mechanical steering,
which takes at most 100-200 ms for angular rotation below
10°, is the highest contributor to latency. Even though our
solution takes additional time (upper bounded by hundreds
of ms), during this time the link is not disrupted, but rather
gradually enhanced as the UAVs rotate or change location.
Moreover, given the long time-span of hovering, UAVs are
not expected to significantly change location within several
seconds. Therefore, the throughput achieved with our solution,
even delay before converging on the best beam alignment, is
always higher compared with the standard.

Regarding the overhead introduced by the use of ROS, only
the 3-dB beamwidth (float number) and the motion direction
(integer number, 1: right, 0: left) are shared though ROS topics
on a wireless WiFi channel. These, along with their headers
(timestamp, sequence number and frame), require less than 50
bps.

VII. RESULTS AND PERFORMANCE EVALUATION

In this Section, we evaluate the performance for the algo-
rithm presented in Section VI. To this extent, we first present
the experimental set-up in VII-A, and classify collected data
according to their temporal scale in VII-B. In VII-D and VII-C
we show results for each individual detection technique pro-
posed in Section IV. Then, in VII-E, we validate the hovering
model introduced in Section V-B1, and present results for the
stochastic analysis used for complexity reduction. We evaluate
the algorithm performance in Section VII-F.

A. Experimental Set-up

To run our experiments, we mount a Terragraph mmWave
channel sounder on each of the two DJI M600 UAVs used to
setup a UAV-to-UAV link. Each UAV can carry up to 15.5 Kg,
and the total payload weight including six batteries, channel
sounder unit and the mounting hardware is close to 14 Kg.
This gives an effective flight time of 10-12 minutes.

The channel sounders operate the WiFi 802.11ad standard,
allowing us to perform beam-sweeping and beam-selection
during flight to find the best pair of beams for communication.
Both channel sounders are connected to a central computer
through an Ethernet switch, to synchronize transmissions and
log measurements at the receiver. The chosen channel is
centered at 60.48 GHz and has a bandwidth of 2.16 GHz.

Terragraph channel sounders perform only azimuth steering.
To ensure high received signal power, we select the narrowest
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Fig. 10: Minus gradient direction on measured angular data
(a) reference data for threshold setting, (b) not out of range,
centroid (main beam) within evaluated range (c) out of range
(d) out of range, centroid is a secondary side lobe.

possible beamwidth θ3dB of 2.8°, unless otherwise specified.
For all experiments, we maintain a distance of 6 meters
between transmitter and receiver.

B. Relative Time Scales Magnitude

The time scale magnitude refers to the complete time-span
the radios take to perform beam-sweeping and collect lE .
In the WiFi standard 802.11ad, this process can take from
hundreds of ms up to a few seconds to complete [11]. During
such time, transmitter, receiver and obstacle change of location
is negligible, given the long time-span effect of hovering.
We denote this condition as Small Temporal Scale (STS).
We however, chose to extend the algorithm evaluation to a
more general case, in which transmitter, receiver, and obstacle
locations may randomly vary during the beam-sweeping time
and within the hovering maximum displacement range. We
denote these conditions as Large Temporal Scale (LTS).

To evaluate our work performance under LTS, we operate
beam-sweeping with a time-span of 2 minutes, in which
different subsets within the angular beam-sweeping range θr
are evaluated every few seconds. Under these conditions, lE
is perturbed, as hovering UAVs change location during data
collection. We demonstrate that, even under these conditions,
our algorithm is still capable of determining the cause of loss
with high accuracy.

C. Out of Range Detection Performance

In this Section, we show the performance for the out of
range detection technique proposed in Section IV-C. We first
determine the threshold values ξthptxq, ξthprxq using lE in
Fig.2(d), as reference (offline characterization). The threshold



IEEE INTERNET OF THINGS. SPECIAL ISSUE ON INTERNET OF UAVS OVER CELLULAR NETWORKS 13

TABLE VII: Out of Range Performance

lE Condition Required rotation
10(b) | ¯∇lEpθmtx q |“| ´0.048 |ă 0.98 Transmitter: none

| ¯∇lEpθmrx q |“| 0.107 |ă 0.39 Receiver: none
10(c) | ¯∇lEpθmtx q |“| ´0.057 |ă 0.98 Transmitter: none

| ¯∇lEpθmrx q |“| ´0.56 |ą 0.39 Receiver to ´ ˆθmrx
10(d) | ¯∇lEpθmtx q |“| 2.39 |ą 0.98 Transmitter to ` ˆθmtx

| ¯∇lEpθmrx q |“| 0.37 |ă 0.39 Receiver: none

values are set as x10 (ąą criteria) the obtained values
¯∇lEpθmtx q,

¯∇lEpθmrx q from (7).
Fig.10(a), shows the result of the gradient calculation for the

reference scenario in Fig.2(d), where the arrows point towards
the centroid, in the ´∇lE direction (direction of greatest path
loss decrease). Notice that, as the centroid is located towards
the middle of lE , the averaged value of ´∇lE over all pair of
beams, is „ 0.

To evaluate the method performance, we show results for
UAV-to-UAV experimental data. In Fig.10 (b) we show a case
where the centroid is within the angular range evaluated during
beam-sweeping, thus, contained in lE . In contrast, in Fig.10(c)
the centroid is out of the beam-sweeping angular range. Table
VII shows the required actions for both cases according to
Table I. For the former case, no rotation is required, whereas
for the latter, rotation of the receiver towards its negative
angular direction is needed. We can observe from Figs.10(b)
and (c) that our proposed actions match both situations.

To further evaluate the algorithm, we present a more com-
plex case in Fig.10 (d), where the centroid is located towards
the middle of lE , but corresponds to the antenna secondary
side lobe thus, providing sub-optimal performance. Our results
in Table VII prove that, even in this scenario, our method still
detects the required rotation for the transmitter, when sufficient
angular information is contained in lE .

D. Obstacle Detection Performance

In this Section, we show the performance for the obstacle
detection technique introduced in Section IV-D3. To create
the dataset of observations D, we use experimental data
collected over multiple scenarios lE , including open areas, rich
multipath environments, presence and absence of blockage,
and small and large time scale conditions. From these data,
and our theoretical estimation lT (Section III), we calculate
the maxtXcrossplT , lEqu value from (9). The labelled values
for all scenarios are represented in Fig.11, which we use to
build the decision boundaries of the Naı̈ve Bayes classifier.
In Table VIII, we show the classification decision for each
scenario, given by (11), along with its confidence ratio defined
in (19) and (20). From these results, we successfully detect
the presence and absence of blockage with high confidence
for most of the scenarios considered.

In order to show a limitation of the proposed detection
method, we include a case where the detection method fails
in Table VIII. In this case, a static human blocked the whole
angular range θr, equally attenuating all angular directions.
Given the lack of diversity in the angular domain, our proposed
solution fails, according to the definition given in (9). Despite

TABLE VIII: Obstacle Detection Performance

Scenario Time
Scale

True
label

max
tXcrossu

Naı̈ve Bayes
Classifier
(Confidence)

Parking Lot STS ’LoS’ 0.812 ’LoS’(99.92%)
Grassland STS ’LoS’ 0.808 ’LoS’(99.9%)
Rich LTS ’block’ 0.502 ’block’(99.14%)
Multipath STS ’LoS’ 0.693 ’LoS’ (77.07%)

STS ’block’ 0.73 ’LoS’ (94.2%)
LTS ’block’,M100 0.6 ’block’ (90.39%)
LTS ’block’,M100 0.574 ’block’ (95.31%)
LTS ’block’,M100 0.638 ’block’ (72.41%)

UAV Arena LTS ’block’,M100 0.655 ’block’ (58%)
LTS ’block’,Pillar 0.601 ’block’ (90%)
LTS ’LoS’ 0.677 ’LoS’ (62.77%)
LTS ’LoS’ 0.691 ’LoS’ (75.6%)
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Fig. 11: Labelled values of maxtXcrossplT , lEqu for different
scenarios used in Naı̈ve Bayes classifier for obstacle detection.

this, our algorithm as defined in Figs.8 and 9 prevents from
adding this data to D, as new data is added only when taking
an action leads to link performance enhancement.

E. Hovering Model Validation and Stochastic Approach

In order to present results for the stochastic analytical
approach presented in Section V-B, we estimate the probability
of out of range PoR given by (24). In Fig.12(a) we show
the ICDF(PoR) for UAV-to-Ground links, and ∆d selected for
moderate hovering conditions according to Table IV. For the
term fp∆dq in (24), we utilize the Gaussian and bi-modal
hovering models given by (12) and (13). Moreover, since
for the bi-modal case, the two modes mean values within
fp∆dq are unpredictable, we run a 100 iteration Monte Carlo
simulation in which we randomly select their values, and
adjust each mode variance in order to cover maxt∆du. We
then calculate the averaged PoR over all iterations.

In order to determine which model -Gaussian or bi-modal-
performs better, we compare their performance with the PoR
calculated using as fp∆dq the experimental hovering distri-
bution characterized from collected RTK-GPS data, shown in
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Fig. 12: Estimated PoRpθrq for moderate hovering conditions,
d “ 6 m, and (a) UAV-to-Ground links (b) UAV-to-UAV links.
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Fig. 13: PiBpθ3dB , dq for (a) UAV-to-Ground and (b) UAV-to-
UAV links, d (m) = {50, 25, 15, 10, 6} from left to right.

Fig.7(a). From Fig.12(a), we observe that the bi-modal dis-
tribution best fits experimental data. Additionally, we validate
the upper and lower bounds for the bi-modal distribution given
in (14) and (15). Fig.12(b) shows equivalent results for UAV-
to-UAV links, where fp∆dq in (24) is obtained from the joint
PDF for both UAVs, after normalizing (25).

This stochastic analysis can be used as a proactive technique
to adjust θr to expected hovering prior to deployment, and
minimize PoR. However, we choose not to constraint the
system to use a specific θr, and instead, detect out of range for
any given value, making our approach compatible with other
existing works θr reduction.

In Fig.13, we present similar results for the ICDF(PiB)
and multiple distances between transmitter and receiver. From
this analysis, we determine the required θ3dB to prevent
misalignment loss with certain targeted probability, for a given
distance, type of link and hovering conditions. In Table IX,
we provide the required θ3dB for PiB ă 5%, for multiple
conditions, including strong hovering, according to Table IV.

For UAV-to-UAV links, the required θ3dB significantly
grows compared to UAV-to-Ground links, to guarantee suf-
ficient coverage when transmitter and receiver UAVs hover in
opposite directions.

F. Algorithm Performance

We evaluate the performance of our proposed algorithm in
Section VI, on the UAV-to-UAV link in Fig.14, where the LoS
is blocked by the presence of a M100 UAV. Both UAVs rely on
GPS for localization, and we characterize their hovering as a
bi-modal distribution. We utilize an angular subset lE P R9x9

with θr “ 11.2° of the data shown in Fig.2(b), leaving the
centroid out of the subset. By doing so, we evaluate the

TABLE IX: Required θ3dB such that PiB ă 0.05 for different,
distance, type of links and hovering conditions

d (m)
θ3dBpUGq
Moderate
Hovering

θ3dBpUGq
Strong

Hovering

θ3dBpUUq
Moderate
Hovering

θ3dBpUUq
Strong

Hovering
50 1.1° 3° 1.8° 5.1°
25 2.2° 6° 3.6° 10.2°
15 3.6° 10° 6° 16.9°
10 5.4° 15° 9° 25°
6 9.1° 24.6° 15° 40.6°

algorithm performance in a situation wherein, in addition to
blockage, the angular directions containing high performing
beams are not evaluated during beam-sweeping. We take
the centroid performance in Fig.2(b), as well as in Fig.2(a)
(same scenario under LoS), as baselines for evaluation. We
consider the deployment stage in Section VI-A1, so that a
high performance link has not previously been established.

Following Fig.8, we first prove the link sub-optimal per-
formance, as the path loss for the selected pair of beams
after beam-sweeping (lowest path loss in the subset), is
not within the theoretical estimated range according to (5)
lEpθmstx , θmsrxq “ 96.56dB R r88.73dB, 92.25dBs. We
select a value of εT “ 1.2m for the theoretical estimation,
in order to consider the maximum joint displacement range
for simultaneous hovering from two UAVs under moderate
hovering conditions, and characterize 2LAfr „ 7dB offline.

To determine whether our solution should be triggered,
from Fig.11 and the maxtXcrossplT , lEqu “ 0.381 value, we
calculate P pLoS|Dq “ 6.32 ¨ 10´6, P pblock|Dq “ 2.7610´3

according to (10). We determine not to be under LoS con-
ditions (11). To select what effect we should tackle first, we
estimate PoRpθR “ 11.2°q “ 77.62% for the worst hovering
pattern (upper bound in Fig.12(b)), and our system parameters.
Given that PoR ‰ 0, we calculate the averaged gradient over
the filtered subset lE according to (7). We show this result
in Fig.15(a). After averaging the gradient projection over the
transmitter and receiver angular pointing directions, we obtain
| ¯Epθmtx q

|“| ´0.12 |ă 0.98, | ¯∇lEpθmrx q |“| 0.7 |ą 0.39,
and thus, only receiver is rotated towards ` ˆθmrx (see Table
I). After rotation, the centroid is within the coverage range,
and the path loss is reduced to 95.18 dB (a factor of 27.22%).
Since, even after rotation, the link performance is not within
the estimated path loss range, link degradation is associated to
blockage with a certainty of 99.81%, according to (19)-(20).
After UAVs displacement to overcome blockage, path loss
decreases an additional factor of 64.6%, according to Fig.2(a).

To show the PHY-bitrate gain achievable after overcoming
the obstacle, we run the experiment in Fig.14, during which we
continuously log the PHY-bitrate under blockage conditions.
After half the flying time, we move the M100 blocking
UAV and continue measurements on the link under LoS
conditions. We show the Empirical Cumulative Distribution
Function (ECDF) for the PHY-bitrate in presence and absence
of blockage in Fig.15(b). The M100 introduces an average of
6.67 dB additional path loss, which translates into a fall in the
bitrate of 1.45 Gbps. Finally, we fix the beamwidth θ3dB “ 15°
according to Table IX, to maintain PiB ă 95%.
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Fig. 14: UAV-to-UAV 60 GHz link under blockage conditions.
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Fig. 15: (a) Averaged gradient over lE for out of range
detection. (b) Effect of a M100 UAV blockage on PHY-bitrate.

VIII. CONCLUSIONS

In this paper, we characterize the impact of factors that
significantly affect UAV communications in the 60 GHz
mmWave band, specifically blockage and those arising from
the continuous UAV hovering motion. Based on our observa-
tions on experimental data collected with channel sounders
mounted on M600 DJI UAVs during the standard beam-
sweeping procedure, we propose to exploit the information
contained in the angular domain to identify the cause(s) for
link performance degradation. We take a stochastic analytical
approach which, combined with individual solutions to the
effects considered, help identify the cause for sub-optimal
link performance while avoiding unnecessary computations.
Our individual solutions involve feature tracking from image
processing as well supervised ML classification. Moreover,
with our stochastic approach, we create a UAV hovering bi-
modal characterization for given hovering conditions during
flight and beamforming configuration. Using empirical data,
we demonstrate its superior accuracy compared to simple
Gaussian existing models. Our proposed algorithm is validated
with experimental data, and reduces link loss a factor up to
74.7%. This translates into 260% PHY-bit-rate gain compared
to the classical standards-defined approach.

ACKNOWLEDGEMENT

This work is supported by the Office of Naval Research un-
der grant N000141612651. The Terragraph Channel Sounders
used for the experiments in this paper are part of the Facebook
Connectivity initiative.

REFERENCES

[1] J. Zhao, F. Gao, G. Ding, T. Zhang, W. Jia, and A. Nallanathan, “In-
tegrating communications and control for UAV systems: Opportunities
and challenges,” IEEE Access, vol. 6, pp. 67519–67527, 2018.

[2] Z. Xiao, P. Xia, and X.-G. Xia, “Enabling UAV cellular with millimeter-
wave communication: Potentials and approaches,” IEEE Communica-
tions Magazine, vol. 54, no. 5, pp. 66–73, 2016.

[3] T. Nitsche, A. B. Flores, E. W. Knightly, and J. Widmer, “Steering
with eyes closed: mm-wave beam steering without in-band measure-
ment,” in IEEE Conference on Computer Communications (INFOCOM),
pp. 2416–2424, 2015.

[4] M. Hashemi, A. Sabharwal, C. E. Koksal, and N. B. Shroff, “Efficient
beam alignment in millimeter wave systems using contextual ban-
dits,” in IEEE Conference on Computer Communications (INFOCOM),
pp. 2393–2401, 2018.

[5] M. Gapeyenko, V. Petrov, D. Moltchanov, S. Andreev, N. Himayat, and
Y. Koucheryavy, “Flexible and reliable UAV-assisted backhaul operation
in 5G mmWave cellular networks,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 11, pp. 2486–2496, 2018.

[6] J. Zhao and W. Jia, “Channel transmission strategy for mmWave hybrid
UAV communications with blockage,” Electronics Letters, vol. 54, no. 2,
pp. 74–76, 2017.

[7] L. Zhang, H. Zhao, S. Hou, Z. Zhao, H. Xu, X. Wu, Q. Wu, and
R. Zhang, “A survey on 5G millimeter wave communications for UAV-
assisted wireless networks,” IEEE Access, vol. 7, pp. 117460–117504,
2019.

[8] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile unmanned
aerial vehicles (UAVs) for energy-efficient Internet of Things commu-
nications,” IEEE Transactions on Wireless Communications, vol. 16,
no. 11, pp. 7574–7589, 2017.

[9] S. Zhang, H. Zhang, Q. He, K. Bian, and L. Song, “Joint trajectory and
power optimization for UAV relay networks,” IEEE Communications
Letters, vol. 22, no. 1, pp. 161–164, 2017.

[10] M. Zarifneshat, C.-J. Liu, and L. Xiao, “A Protocol for Link Blockage
Mitigation in mm-Wave Networks,” in IEEE 14th International Con-
ference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 215–223,
2017.

[11] Y. Yaman and P. Spasojevic, “Reducing the LOS ray beamforming setup
time for IEEE 802.11 ad and IEEE 802.15. 3c,” in IEEE MILCOM,
pp. 448–453, 2016.

[12] M. Zarifneshat, L. Xiao, and J. Tang, “Learning-based Blockage Predic-
tion for Robust Links in Dynamic Millimeter Wave Networks,” in 16th
Annual IEEE International Conference on Sensing, Communication, and
Networking (SECON), pp. 1–9, 2019.

[13] M. Park and Y. Choi, “Performance analysis of degradation detection
method on millimeter wave channel,” in IEEE International Conference
on Information and Communication Technology Convergence (ICTC),
pp. 971–973, 2015.

[14] M. Giordani, M. Mezzavilla, A. Dhananjay, S. Rangan, and M. Zorzi,
“Channel dynamics and SNR tracking in millimeter wave cellular
systems,” in European Wireless; 22th European Wireless Conference,
pp. 1–8, VDE, 2016.

[15] S. Sur, X. Zhang, P. Ramanathan, and R. Chandra, “BeamSpy: enabling
robust 60 GHz links under blockage,” in 13th tUSENIXu Symposium on
Networked Systems Design and Implementation (tNSDIu 16), pp. 193–
206, 2016.

[16] Y. Koda, K. Yamamoto, T. Nishio, and M. Morikura, “Reinforcement
learning based predictive handover for pedestrian-aware mmWave net-
works,” in IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pp. 692–697, 2018.

[17] V. Petrov, M. Komarov, D. Moltchanov, J. M. Jornet, and Y. Kouch-
eryavy, “Interference and SINR in millimeter wave and terahertz com-
munication systems with blocking and directional antennas,” IEEE
Transactions on Wireless Communications, vol. 16, no. 3, pp. 1791–
1808, 2017.

[18] N. Tafintsev, D. Moltchanov, M. Gerasimenko, M. Gapeyenko, J. Zhu,
S.-p. Yeh, N. Himayat, S. Andreev, Y. Koucheryavy, and M. Valkama,
“Aerial Access and Backhaul in mmWave B5G Systems: Performance
Dynamics and Optimization,” IEEE Communications Magazine, vol. 58,
no. 2, pp. 93–99, 2020.

[19] L. Zhu, J. Zhang, Z. Xiao, X. Cao, X.-G. Xia, and R. Schober,
“Millimeter-Wave Full-Duplex UAV Relay: Joint Positioning, Beam-
forming, and Power Control,” arXiv preprint arXiv:2004.11070, 2020.

[20] L. Zhu, J. Zhang, Z. Xiao, X. Cao, D. O. Wu, and X.-G. Xia, “3-D
beamforming for flexible coverage in millimeter-wave UAV communi-



IEEE INTERNET OF THINGS. SPECIAL ISSUE ON INTERNET OF UAVS OVER CELLULAR NETWORKS 16

cations,” IEEE Wireless Communications Letters, vol. 8, no. 3, pp. 837–
840, 2019.

[21] S. Huang, Y. Gao, W. Xu, Y. Gao, and Z. Feng, “Energy-angle domain
initial access and beam tracking in millimeter wave V2X communica-
tions,” IEEE Access, vol. 7, pp. 9340–9350, 2019.

[22] Y. Ke, H. Gao, W. Xu, L. Li, L. Guo, and Z. Feng, “Position prediction
based fast beam tracking scheme for multi-user uav-mmwave communi-
cations,” in IEEE International Conference on Communications (ICC),
pp. 1–7, 2019.

[23] C. A. Balanis, Antenna theory: analysis and design. John wiley & sons,
2016.

[24] W. Hong, K.-H. Baek, Y. Lee, Y. Kim, and S.-T. Ko, “Study and
prototyping of practically large-scale mmWave antenna systems for
5G cellular devices,” IEEE Communications Magazine, vol. 52, no. 9,
pp. 63–69, 2014.

[25] J.-C. Yoo and T. H. Han, “Fast normalized cross-correlation,” Circuits,
systems and signal processing, vol. 28, no. 6, p. 819, 2009.

[26] “MATRICE 600 UAV Specifications.” https://www.dji.com/es/
matrice600/info. Accessed: 2020-04-01.

[27] M. T. Dabiri, H. Safi, S. Parsaeefard, and W. Saad, “Analytical channel
models for millimeter wave UAV networks under hovering fluctuations,”
IEEE Transactions on Wireless Communications, 2020.

[28] D. R. Fuhrmann, J. Stomberg, S. Nooshabadi, D. McIntire, and W. Mer-
ill, “Node Synchronization in a Wireless Sensor Network Using Un-
reliable GPS Signals,” in IEEE Military Communications Conference,
pp. 630–636, 2014.

[29] T.-c. Li, J.-y. Su, W. Liu, and J. M. Corchado, “Approximate Gaussian
conjugacy: parametric recursive filtering under nonlinearity, multimodal-
ity, uncertainty, and constraint, and beyond,” Frontiers of Information
Technology & Electronic Engineering, vol. 18, no. 12, pp. 1913–1939,
2017.

[30] L. Sahawneh and M. Jarrah, “Development and calibration of low cost
MEMS IMU for UAV applications,” in 5th International Symposium on
Mechatronics and Its Applications, pp. 1–9, IEEE, 2008.

Sara Garcia Sanchez received the B.S. and M.S.
degrees in Electrical Engineering from Universidad
Politecnica de Madrid in 2016 and 2018 respec-
tively. She is currently a PhD candidate at the
Department of Electrical and Computer Engineering
in Northeastern University, under the guidance of
Professor Kaushik Roy Chowdhury. Her research
interests include mmWave, UAV communications,
MIMO and optimization techniques.

Kaushik Roy Chowdhury (M’09-SM’15) received
the M.S. degree from the University of Cincinnati
in 2006, and the Ph.D. degree from the Georgia
Institute of Technology in 2009. He is currently a
Professor in the Electrical and Computer Engineer-
ing Department. He was a winner of the Presidential
Early Career Award for Sci- entists and Engineers
(PECASE) in 2017, ONR Director of Research Early
Career Award in 2016 and the NSF CAREER Award
in 2015. His current research interests include deep
learning for wireless sensing and spectrum access,

networked robotics, wireless RF energy harvesting/transfer and IoT applica-
tions for intra/on-body communication.

TABLE X: TABLE OF NOTATIONS

Symbol Description
List of Acronyms
mmWave Millimeter wave
UAV Unmanned Aerial Vehicle
PHY ´ bitrate Physical layer bitrate
Tx,Rx Transmitter, Receiver
pNqLoS (Non-)Line-of-Sight
ML Machine Learning
SNR Signal-to-Noise Ratio
FSPL Free Space Path Loss
RF Radio Frequency
RTK Real-Time Kinematic
IMU Inertial Measurement Unit
ICDF Inverse of the Cumulative Distribution Function
ECDF Empirical Cumulative Distribution Function
LTS{STS Large / Small Temporal Scale
PDF Probability Density Function
ROS Robot Operating System
Path Loss Angular Distribution Parameters
lE Experimental path loss angular distribution
lT Theoretical path loss angular distribution
mtx,mrx Beam index for Tx, Rx over lE
Mtx,Mrx Total number of beams for Tx, Rx over lE
PM Number of beam pairs evaluated during beam-sweeping
pms Pair of beam fixed after standard beam-selection
Ntx, Nrx Total number of beams for Tx, Rx over lT
PN Number of beam pairs included in the estimation lT
ntx, nrx Beam index for Tx, Rx over lT
θ Azimuth
θnstx ,θnsrx Beam pointing directions for Tx, Rx over lT
pms Best beam pair (lower loss) according to lT
rd GPS-based measured distance
εT GPS error
ltx and lrx Tx, Rx beam misalignment loss
δ Beam-sweeping angular resolution
θr Beam-sweeping angular range
εE Experimental path loss error
Antenna Parameters
θ3dB Antenna half-power beamwidth
θbs Antenna broadside angular direction
ftxpθq, frxpθq Tx, Rx antenna radiation patterns
ET Total radiated electric field
E0 Single element radiated electric field
β Phase excitation between radiating elements
ds Distance between radiating elements
c Speed of light in vacuum
S Number of radiating elements in horizontal axis
LAfr Loss caused by the UAV airframe
fc Frequency of operation
Feature Tracking Parameters for Out of Range Detection
ξthptxq, ξthprxq Tx, Rx thresholds to perform rotation
dlE ,lT Euclidean distance between lE and lT
w Window containing the feature lT
xcross Normalized cross-correlation between lE and lT
ML Parameters for Obstacle Detection
D Dataset of empirical observations
P pLoS|Dq, P pblock|Dq Posteriori probability of LoS, blockage
P pD|LoSq, P pD|blockq Likelihood function for LoS, blockage
P pDq Evidence given the dataset of observations
PLoS ,Pblock Probability of LoS, blockage
Stochastic Analytical Approach Parameters
∆d UAV hovering displacement range
µ1, µ2 Mean values for bi-modal hovering distribution
σ2
1 , σ

2
2 Variance for bi-modal hovering distribution

v1, v2 Bi-modal distribution tailor parameters
∆dmin Minimum hovering range
∆dr Linear hovering displacement
∆θr Rotational hovering displacement
∆dT Joint displacement in the linear dimension
fp∆dq PFD for hovering displacement ∆d
∆D Dirac delta function
fN p∆dT q Normalized ∆dT
Ă∆d Estimated hovering displacement for θr

2
PoR Probability for out of range
∆dC Joint displacement for UAV-UAV links
PiB Probability for insufficient beamwidth
ρ Numerical resolution of discrete integration
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