
Leveraging Explainable AI for Reducing Queries of
Performance Indicators in Open RAN

Chinenye Tassie, Brian Kim, Joshua Groen, Mauro Belgiovine, Kaushik R. Chowdhury
Institute for the Wireless Internet of Things, Northeastern University, Boston, USA

{tassie.c, br.kim, groen.j, belgiovine.m }@northeastern.edu, krc@ece.neu.edu

Abstract—Open Radio Access Network (O-RAN) is positioned
to play a pivotal role in shaping the future of telecommunications
networks through open interfaces and virtualization, allowing
interoperability between different vendors. As a key departure
from single-operator managed RAN, a remote RAN intelligence
controller (RIC) queries the gNB for the Key Performance
Indicators (KPIs) that are required for making RAN control
decisions, often leveraging advanced machine learning (ML)
models. However, this repeated querying increases control traffic
overhead on the so called E2 interface connecting the gNB to
the RIC. To address this challenge, we utilize a method from
Explainable Artificial Intelligence (XAI), specifically SHapley
Additive exPlanations (SHAP), which quantifies the contribution
of each requested KPI to a model’s prediction. Furthermore, we
explore two different methods of choosing the most discriminative
KPIs influencing model’s performance, so that a smaller subset
of KPIs may be queried, thus lowering the overhead on the
E2 interface. Our analysis reveals that a model trained for the
task of traffic classification using as input only the fraction of
the top contributing KPIs identified by SHAP reduces control
traffic overhead by up to 33% with only 7% reduction in ML
classification accuracy.

I. INTRODUCTION

Open Radio Access Network (O-RAN) is set to transform
5G and future networks with its four key specifications: disag-
gregation, intelligent controllers, virtualization, and open in-
terfaces. It champions virtualized RANs, linking disaggregated
elements through open interfaces and enhancing them with
RAN intelligent controllers (RICs) [1] leading to networks
that are interoperable across various vendor components and
adaptable to dynamic resource requirements [2].
Problem. The O-RAN framework introduces programmable
control namely near-real time (RT) RIC and non-RT RIC
which process data and leverage machine learning (ML) to
determine policies to be applied by the RAN [1]. The non-RT
RIC is integrated with the network orchestrator and supports
the near-RT RIC on longer term network management tasks
(t ≥1s). Meanwhile, The near-RT RIC is deployed at the
edge of the network and operates on a faster time scale (10
ms ≤ t ≤ 1 s). It hosts xApps, which receive real-time
data such as key performance indicators (KPIs) over the E2
interface that connects the gNB and the near-RT RIC. With
these KPIs, the xApp can run a pre-trained ML model and send
back control actions to quickly handle tasks such as dynamic
resource allocation, load balancing, and interference manage-
ment [3]. However, utilizing xApps for network management
requires frequent probing for KPIs which introduces a large
communication overhead. For example, consider a scenario

Fig. 1: O-RAN architecture with RT-RIC running an ML xApp that
uses KPIs sent over the E2 interface from the base station. The
SHAP method for Explainable AI identifies the KPIs that are most
discriminative, selects a subset depending on the chosen policy and
the re-trains a new model with fewer KPI inputs. This simpler model
is returned back to the RT-RIC.

where all 17 KPIs described in Table I are reported for one
UE. Requesting all 17 KPI results in median packet sizes
of about 280 bytes, compared to 240 bytes and 200 bytes
for 8 and 4 KPIs respectively. Scaling that up to 20UEs,
the packet size can go up to 5088 bytes. Furthermore, these
KPIs are transmitted in plain text, which raises concerns of
data poisoning and eavesdropping by unauthorized parties.
Encryption of the KPIs at the gNB followed by decryption
at the RIC can address this concern, but again the processing
overheads of cryptography and computing hashing functions
are considerable. We showed earlier in [4], that computation is
generally the bottleneck when large number of KPIs undergo
the encryption/decryption process to secure the E2 interface,
resulting in a delay of ≤ 50µs.
Solution. Given that most examples of RT-RIC-based RAN
control involve operations performed by ML models [3], our
proposed solution is to explore if the same model outcomes
can be achieved with fewer KPIs. This will result in less
computational and communication overheads compared to the
baseline case, without impacting the network performance. In
recent years, there has been significant interest in the field
of explainable artificial intelligence (XAI), which provides
insight into a model’s inner workings. Such methods have
been used primarily for two applications: (i) interpretabil-
ity/explainability (ii) optimization. Interpretability refers to
presenting the intuition of the model in human-understandable
terms [5], and explainability refers to understanding the
fundamental operation of the model [6]. While explainabil-

ity/interpretability are relevant to xApp development, in this
paper, we will focus on optimization which leverages the
explanations to reduce the overhead at the E2 interface within
the O-RAN. A summary of our approach is shown in Fig. 1.

Only a few works have explored XAI in the context of
interpretability/explainability for the wireless domain. In [7],
SHapley Additive exPlanation (SHAP) is used to understand
which input features, such as traffic demand, active users, and
time of delay, are important to the real-time decision of the
model for short-term resource reservation (STRR) in 5G. Sim-
ilarly, [8] proposes a method to describe the decision rationale
of a DNN that predicts random environmental conditions for
autonomous edge devices. These works on understanding how
models deduce their results help in building better models,
streamline data collection for model training, increase trust
in the model, and identify biases or flaws in logic. For these
reasons, we propose to use SHAP to understand which KPIs
are most useful to the ML model in the xApp. However, this
is not a trivial selection of KPIs simply ranked by SHAP:
in a multi-class inference model, SHAP reveals the extent to
which a given KPI contributes to each class. Thus, since such
contribution levels vary widely on the SHAP scale, how to
leverage the outcomes of SHAP to decide the overall set of
KPIs is an open challenge.
Contributions. To demonstrate how XAI can help in the de-
sign of xApps, we present a case study of an ML model trained
for traffic classification using O-RAN KPIs. We leverage
SHAP to explain which KPI contributes most to the model’s
prediction. Then, we train the model only with selected KPIs
to reduce the overhead of transmitting all KPIs and observe
the model’s accuracy. While there exist works that aim to show
feature contribution to a model’s prediction, to the best of our
knowledge, this is the first paper that leverages XAI to train
the model using selected features based on contribution to the
model’s prediction. Our contributions are as follows:

• We design a SHAP-based XAI software framework to
identify the KPIs that contribute the most to the perfor-
mance of an ML model trained for the example xApp of
traffic classification.

• We present two methods to reduce the input size (number
of KPIs) of the model, namely, top K overall and top K
per class. We show that with reduced KPIs, we can still
achieve high accuracy with only a 7% drop.

• We analyze the impact of communication overhead using
fewer KPIs and observed a reduction of up to 33% of the
data rate for control traffic compared to using all available
KPIs while maintaining accuracy.

II. XAI METHODOLOGY

XAI methods provide an opportunity to understand the inner
workings of a model and increase trust in the model. How-
ever, there are various considerations when choosing an XAI
method as outlined in [6]. These considerations include model
dependency, the scale of interpretability, and the data type.
Model dependency distinguishes between methods tailored to
specific models (model-specific) and those applicable to any
model or algorithm (model-agnostic). Another factor is the

scale of interpretability, with local explanations addressing
individual predictions and global explanations shedding light
on the overall workings of the entire model. Finally, data type
refers to the data formats compatible with an XAI method
such as text, tabular, and image data being the most popular.

With these considerations in mind, we chose SHAP [9] as
our XAI method. SHAP provides a powerful framework that
quantifies the contribution of each input feature to a model’s
prediction. It uses a game theory approach that considers all
possible combinations of feature values and computes the
marginal average contribution of each feature across these
combinations. Specifically, we first define a subset of features
S ⊆ F where F is a list of all possible permutations of
features. Next, we calculate the marginal contribution for
each permutation of the features. Consider a model prediction
f(xS∪{i}) that is trained with feature i present compared to
a model f(xS) that is trained without feature i, the change
in the model’s prediction is the marginal contribution of that
feature i. Given that the effect of a feature on the model’s
prediction also depends on the other features in the model,
the marginal contributions have to be weighted. Finally, the
weighted marginal contributions are averaged over all possible
permutations. In summary, shapley value ϕ(i) is the weighted
average marginal contributions that feature i makes to all pos-
sible feature subsets in F . Our formulation below is obtained
from [9]:

ϕ(i) =
1

|F |!
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)![f(xS∪{i})− f(xS)]

In our work, we use DeepSHAP, an extension of SHAP
that integrates DeepLift [10] and Shapley values. DeepSHAP
is specifically tailored for deep neural networks (DNNs) which
generates more accurate and fine-grained explanations. It uses
the same game theory approach as above but assesses the
contribution of each feature to a prediction by considering
how they interact within the neural network’s layers.

III. TRAFFIC CLASSIFICATION MODEL

In this section, we discuss three stages of the data collection
process for capturing KPIs, the details of the traffic classifica-
tion model, and the pre-processing done to the model’s input.

A. Data Collection and Pre-Processing

To train our traffic classification model, we generate a
dataset using a three stage process. First, we collect real-
world 5G user traffic using Google Pixel 6 Pro smartphones.
Per 5G specifications, there are 3 defined types of network
slices for different types of traffic where Ultra Reliable Low
Latency Communications (URLLC) focuses on low latency
and high reliability, enhanced Mobile Broadband (eMBB) aims
to provide high-speed data rates, and massive Machine Type
Communications (mMTC) maximizes the number of concur-
rent connections. In our scenario, we generate eMBB traffic
through Netflix streaming, URLLC traffic through video chat
on Facebook Messenger (including one audio-only period),

KPI Name Description
dl mcs downlink modulation and coding
dl n samples number of download samples in previous 250 ms
dl buffer bytes downlink queue length in bytes
tx brate downlink Mbps downlink bitrate in Mbps
tx pkts downlink downlink number of packets transmitted in previous 250 ms
dl cqi downlink channel quality indicator
ul mcs uplink modulation and coding
ul n samples uplink number of samples in previous 250 ms
ul buffer bytes uplink queue lengith in bytes
rx brate uplink Mbps uplink bitrate in Mbps
rx pkts uplink uplink number of packets recieved in previous 250 ms
rx errors up perc uplink percent of packets with errors in previous 250 ms
ul sinr uplink signal to interference and noise ratio
phr UE power head room
sum reqsted prbs sum of the resource blocks requested in previous 250 ms
sum granted prbs sum of the resource blocks granted in previous 250 ms
ul turbo iters uplink turbo encoding

TABLE I: List of the 17 KPIs used for traffic classification.

and mMTC traffic through text messaging while capturing all
background application data.

In the second stage, we use the collected packets to generate
traffic between the UE and gNB on Colosseum [11], the
world’s largest publicly available RF emulator with actual
SDRs in the loop. The experimental setup consists of one
UE, a gNB, and the near-RT RIC which are implemented in
LXC containers each connected to separate software Defined
Radios (SDRs) [4]. Each UE is allocated a distinct traffic slice
in accordance with the 3 defined in the 5G specifications:
URLLC, eMBB, and mMTC, while the gNB is connected
to the near-RT RIC over a wired 10 Gbps called the E2
interface. This E2 interface functionality is integral for the later
collection of KPIs. Our replay script allows us to replicate the
timing and length as if the original communication was taking
place on Colosseum.

In the final stage, we capture the KPIs as they traverse the
E2 interface. We modify the sample KPI monitor xApp that
is integrated with ColO-RAN [12] and probe the gNB for the
requested KPIs every 250 ms. We use tcpdump to capture
every packet traversing the E2 interface to analyze the actual
throughput and packet level details in an O-RAN system.

B. Training CNN model

Before training the model, we pre-process the collected
KPIs. To protect user privacy, we remove any KPIs that
contain uniquely identifiable information for device or user
identification. The 17 KPIs used to train our model are listed
in Table I. Next, we trim surplus time from both the beginning
and the end of the KPI capture. Although the replay script
reproduces the initial capture, there are intervals before and
after its execution when KPIs continue to be captured. Finally,
certain slices may experience extended periods of no traffic so
we manually examine and eliminate those silent intervals to
ensure suitability for training.

To create the input for our model, we divide the KPIs into
batches of L consecutive time samples for each KPI where
L = {8, 16, 32}. For the traffic classification task, we train
a Convolutional Neural Network (CNN) using PyTorch. Our
model consists of 3 layers: a single 2D CNN layer with 20
kernels using ReLU activation, 1 fully connected (FC) hidden
layer of 512 neurons with ReLU activation function and the
Softmax output layer with CrossEntropyLoss as loss function.

Fig. 2: Overview of CNN architecture where L represents slice
length and K represents the number of KPIs.

For the CNN layer, the spatial size of the filters is set to
be 4 × 1 to capture the local patterns in time dimension for
each individual feature value, given that they are not spatially
correlated on the KPI features dimension. We train our model
for up to 350 epochs with early stopping strategy. The CNN
model is depicted in Fig. 2. We have 4 classes, i.e. {eMBB,
URLLC, mMTC, ctrl}, where ctrl represents packets with
periods of inactivity.

We divide the dataset into an 80/20 split for training and
testing, conducting multiple training iterations of our model.
We then choose the model with the highest accuracy for the
subsequent evaluation of feature contributions in Section IV.

IV. PROPOSED METHODS FOR MODEL OPTIMIZATION

Now, we introduce our proposed methods for identifying
the most influential KPIs for the model’s performance. Our
approach to identifying the most influential KPIs can be split
into two steps. In the first step, we use DeepSHAP to generate
feature importance explanations for the traffic classification
model. In the second step, we select a subset of KPIs that
are positively contributing to the model prediction where we
propose two methods to select KPIs, top K KPIs overall and
top K KPIs per class.

A. Feature Importance Explanations - DeepSHAP

To obtain the feature importance of the KPIs, we used
DeepSHAP, an extension of SHAP specifically for neural
networks. First, we initialize an object called explainer which
takes the trained CNN model and training data as input. Then,
using the explainer object, we calculate the SHAP values for
the test data. This process is repeated for all instances and
feature permutations. Fig. 3 shows, in a human understandable
way, how much each KPI (feature) contributes to the prediction
of the traffic classification model.

B. Method 1 - Top K KPIs Overall

After obtaining the feature contribution for all KPIs, method
1 (MTH1) proposes to pick the top K KPIs across all classes.
The returned SHAP values have dimensions [C, N , L, 17]
which represents the number of class, number of samples,
the slice length, and the number of all available features
respectively. The SHAP values are computed per class and

Fig. 3: DeepSHAP results showing the feature contribution
of the 17 KPIs for the traffic classification model for slice
length L = 32. Blue represent positive contribution while red
represents negative contribution.

for each instance, but to determine the overall contribution of
KPIs, we apply averaging. First, we reshape the SHAP value
array from 4D to a 2D array with dimensions [C × N × L,
17]. Next, we average each column to obtain an array of
dimension 1×17, containing the averaged SHAP values across
all classes (i.e., overall) for all KPI which can be visualized
as Fig. 3. By sorting these averaged SHAP values, we identify
the top K contributing features. Here, we opt for average
SHAP value because it offers a holistic view of the net feature
contribution. This choice accommodates situations where a
KPI might have a strongly negative impact on one class but
significantly positive impact on another - helping us identify
features that have a stable influence across various classes. To
further analyze the impact of K, we retrain the model with
different K values in Section V-A.

C. Method 2 - Top K KPIs per class

For method 2 (MTH2), we use the mean absolute SHAP
values or the average of the absolute SHAP values. We start
with the 4D array of SHAP values with dimensions [C, N ,
L, 17] returned by the SHAP explainer object. For each class
C, we extract the SHAP values array with dimensions [N ,
L, 17] and average along the L dimension to obtain an array
with dimension [N , 17]. Next, we take the mean absolute
which will result in an array of dimension 17 for each KPI
and for that class. We repeat the process for all classes and the
resulting array has dimensions [C, 17] which represents the
mean absolute SHAP values for all KPI and for each class.
When choosing the top K per class, we start selecting K KPIs
for one class and move on to the other class when selecting is
finished. However, there is a possibility of selecting the same
KPI for different classes. Then, we choose the next top KPI
when the KPI overlaps with that from another class. Again,
to further analyze the impact of K, we retrain the model with
different values of K in Section V-A.

Method (L= 32, K=8) Model Accuracy
MTH1 (mean SHAP) 83.6%

MTH1 (mean absolute SHAP) 77.5%
MTH2 (mean SHAP) 77.8%

MTH2 (mean absolute SHAP) 80.8%

TABLE II: Average model accuracy comparing MTH1 (mean
and mean absolute) to MTH2 (mean and mean absolute). For
MTH1, mean gives better results while mean absolute gives
better results for MTH2.

Here, we order SHAP values by their absolute mean because
it outperforms mean SHAP values (as illustrated in Table II).
Since this is on a per class basis, we are more concerned with
the most discriminative features (regardless of if positive or
negative). Using the mean on a per class basis will overcom-
pensate and risk excluding features that are discriminative but
have very negative contributions.

V. PERFORMANCE EVALUATION

In this section, we present the results of method 1 and
method 2 which use a reduced number of KPIs as input
and compared to the result of using all 17 KPIs. We also
analyze the impact of using fewer KPIs on the communication
overhead over the E2 interface. For our KPI reduction analysis,
we partition our dataset into training and testing data. We opt
for a balanced training and test dataset of 200 samples for
4 classes (eMBB, URLLC, mMTC, ctrl), resulting in a total
of 800 samples for SHAP analysis. Next, we use DeepSHAP
to calculate the SHAP values for the features resulting in an
array of dimension [4×800×32×17], where 4 represents the
number of class C, 800 represents the number of samples N ,
32 represents the slice length L and 17 represents the number
of available features.

A. Reduced KPIs for Traffic Classification

To evaluate how the model’s accuracy is affected by using
a reduced set of KPIs selected by MTH 1 and MTH2 2, we
compare its performance with using all 17 KPIs. We also
compare our proposed methods to two benchmark alternatives,
namely, random K KPIs (RND K) and least K KPIs overall
(LST K) where we choose K KPIs randomly or pick K KPIs
with the most negative contributions over all classes. For the
random K case, K KPIs are randomly picked once and fixed
for the simulation.

In Fig. 4(a), we observe that method 1 consistently out-
performs method 2 for all slice lengths. However, for slice
length 8, RND8 outperforms method 1. From our analysis,
we have observed that model accuracy tends to decrease with
shorter slice lengths where slice length 8 yields the lowest
accuracy even with utilizing all 17 KPIs. Since SHAP feature
contributions rely on the trained model, it is reasonable to
conclude that KPIs obtained from slice length 8 may not
accurately represent the contributions of the selected KPIs
compared to those derived from slice length 32. As anticipated,
our method 1 outperforms LST8 for all slice lengths. For
method 2, we consider K = 2 for each class, resulting in
8 KPIs. Compared to K = 8 for method 1, we observe that

MTH1 RND8 LST8 MTH2
Methods

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Slice 32 Slice 16 Slice 8

(a) Model accuracy across different meth-
ods when K = 8 for MTH 1 and K = 2
for MTH2.

4 8 16 32 64
Slice Length

2

4

6

8

10

12

14

16

De
la
y
(s
)

100

200

300

400

500

600

700

800

SH
AP

 In
fe
re
nc

e
Ti
m
e
(s
)

Slice Length vs. Delay
Slice Length vs. SHAP Inference

(b) CNN classification time and SHAP
inference time for various slice lengths
where L = {4, 8, 16, 32, 64}.

17 KPIs 8 KPIs, M1 8 KPIs, M2 4 KPIs, M1 4 KPIs, M2
180

200

220

240

260

280

300

320

P
T

 P
a

c
k
e

t
S

iz
e

 (
B

y
te

s
)

(c) Packet sizes for different number of
KPIs for both MTH1 and MTH2. MTH
2 offers up to 28% reduction for K = 4 .

Fig. 4: Results showing the model accuracy for the proposed methods and the CNN delay cost for various slice lengths.

K Avg. Model Accuracy
4 76.0%
5 78.0%
8 80.3%

10 76.7%
12 71.5%
17 87.1%

TABLE III: Average model accuracy for 17 KPIs and method 1
(Top N) where N = {4, 5, 8, 10, 12}. The accuracy is averaged
across slice lengths and N = 8 offers the best performance
among method 1.

method 2 performs worse than method 1, as illustrated in Fig.
4(a). We attribute this drop in performance to the varying
contributions of the 4 classes to the model where method 2
weights contribution equally. For example, the top KPI for
a class might have a low SHAP value when compared to all
KPIs. Overall, method 1 outperforms method 2 as seen in Fig.
4(a) and we observe only a slight drop of approximately 7% in
model accuracy (considering the best-case scenario of a slice
length of 32 and method 1 with K = 8) when compared to a
model trained with all 17 KPIs.

Further analysis of method 1 is presented in Table III
where we consider K = {4, 5, 8, 10, 12}. Here we observe
two key things: 1) the accuracy of the model increases with
slice length and 2) increasing K beyond a limit can reduce
accuracy due to the inclusion of features that might have
negative contributions to the model. For example, Fig. 3 shows
that 8 features contribute non-negatively to the model. In this
case, selecting more than 8 features will introduce features that
have a negative impact on the model’s performance, potentially
lowering its accuracy. As seen in Table. III, the accuracy of
the model is highest for K = 8 and there is a downward trend
in accuracy when K = {10, 12}. Note that we average over
different slice lengths (L = 8, 16, 32) for K KPIs chosen by
method 1.

It is important to note that the consideration for choosing
the best method should not be solely based on accuracy; there
is an associated cost to consider. For each slice length, there
is a cost that relates to the time it takes for the CNN to make
a decision. The various slice lengths S = {4, 8, 16, 32, 64}
translate to a CNN classification time T = {1, 2, 4, 8, 16}s, as

illustrated in Fig. 4(b). Thus, choosing the best method and set
of KPIs should give consideration to the model slice length.
We also include the time it takes SHAP to generate the feature
contributions for the various slice lengths in Fig. 4(b).

B. Impact on encryption overhead
In O-RAN, there is always a cost to moving data between

different nodes. In systems with open interfaces, there is an
additional cost of securing the data while in transit. While
the cost of securing the E2 interface is generally low [4], the
cost grows as the system scales in size. Thus, reducing the
size of the metrics or KPIs that must be sent across this E2
interface, without reducing the performance of the ML agents
using them, directly reduces the cost of O-RAN.

We design an experiment using our emulation environment
described in Sec. III-A to empirically determine the reduction
in the data sent across the E2 interface based on our proposed
methods. We use a single UE connected to the gNB and send
a mixed data trace containing all three traffic slices. The gNB
generates KPIs and sends them over the E2 interface to our
near-RT RIC. It is important to note that KPIs are encoded
using ASCII and are not fixed size. In other words, if a specific
KPI has values in the range [0, 12500], the data size of that KPI
can change from 1 to 5 Bytes. We capture all traffic traversing
the near-RT RIC to observe the actual packet size based on
the number of KPIs. We created a baseline by sending all 17
KPIs, and then repeated the experiment using 4 and 8 KPIs
with method 1 and method 2.

The experiment generates 5,433 to 14,868 individual pack-
ets captured on the E2 interface per trial. Fig. 4(c) is a box-plot
of the actual plain text (PT) packet sizes for each experiment.
It is clear that reducing the number of KPIs decreases the
amount of data sent across the E2 interface, by up to 28%
when sending 4 KPIs using Method 2.

While these results clearly show the reduction in data sent
across the E2 interface, more analysis is needed to fully
understand the cost savings. These KPIs were sent without
any encryption in order to capture and correctly identify the
packets. However, the O-RAN Alliance specifications call for
using IPsec to secure all traffic crossing the E2 interface.
Adding IPsec adds additional headers increasing the overhead
by at least 57 Bytes. Additionally, these KPIs were generated

Fig. 5: Data reduction ratio for U = 20 UEs. Method 2 with
4 KPIs reduces the bit on the wire by 1/3.

from a single UE connected to a gNB. As the number of UEs
served by the gNB increases, the amount of KPIs sent must
also increase. However, multiple UEs’ KPIs can be reported
in a single packet, reducing some of the overhead associated
with the various headers at each network layer. Therefore, we
build a model to analyze these variables and understand the
data reduction when IPsec is used and the number of UEs
scales.

We use the median packet size for each experiment shown in
Fig. 4(c) and subtract all headers to find the median payload
size. We use this median payload size for a single UE and
add on a fixed overhead of 60 Bytes for IPsec as well as the
transport layer (SCTP), network layer (IP), and data link layer
(Ethernet) header overheads. We then increase the number of
UEs until the packet reaches the MTU size of 1500 Bytes, at
which point we form a new packet. We can then calculate the
total data sent over the E2 interface for a specific number of
UEs. In Fig. 5, we plot the data reduction ratio for each method
and number of KPIs for U = 20 UEs. The data reduction ratio
is given by

1−
∑U

u=1 bm,k∑U
u=1 b0,17

where bm,k is the total bits on the wire sent for method m and
number of KPIs k summed for U number of UEs. This ratio
gives the relative reduction in bits sent across the E2 interface
for a particular method and number of KPIs compared to
sending all 17 KPIs for a certain number of UEs.

As Fig. 5 shows, reducing the number of KPIs can reduce
the total bits sent over the E2 interface by up to a third. This
means the actual throughput decreases by up to 1/3, freeing
network resources to carry other traffic. Perhaps more impor-
tantly, this also decreases the burden on the local processor. In
fact, CPU utilization increases linearly with throughput when
using IPsec [4]. Therefore, reducing the throughput will reduce
the CPU utilization by the same factor. For a distributed, edge
device with limited computing resources, reducing the CPU
utilization due to IPsec by 1/3 represents a huge savings in
the cost of securely transferring the KPIs.

VI. CONCLUSION

ORAN is poised to transform the telecommunications land-
scape by embracing open interfaces and virtualization for

enhanced interoperability among diverse vendors. The inte-
gration of RIC and xApps for network management provide
an agile and dynamic system. However, the repeated probing
for KPIs introduces a large communication overhead on the
E2 interface connecting the gNB to the RIC. In this work,
we propose XAI techniques, specifically SHAP, to precisely
quantify the impact of individual KPIs on a traffic classifica-
tion model’s predictions. Furthermore, we explore 2 strategies
for selecting the most influential KPIs, Top K overall and Top
K per class, effectively reducing the query load on the E2 in-
terface. Our findings demonstrate that by training models using
only the top-contributing KPIs identified by SHAP for traffic
classification, we can curtail control traffic overhead by up to
one-third, with a modest 7% reduction in ML classification
accuracy. Our study highlights the possibility of achieving a
balance between network efficiency and predictive accuracy,
ushering in a promising era of innovation and deployment in
the realm of O-RAN.

REFERENCES

[1] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Un-
derstanding O-RAN: Architecture, interfaces, algorithms, security, and
research challenges,” 2022.

[2] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open,
programmable, and virtualized 5G networks: State-of-the-art and the
road ahead,” Computer Networks, vol. 182, p. 107516, dec 2020.
[Online]. Available: https://doi.org/10.1016%2Fj.comnet.2020.107516

[3] L. Bonati, S. D'Oro, M. Polese, S. Basagni, and T. Melodia, “Intelligence
and learning in O-RAN for data-driven NextG cellular networks,”
IEEE Communications Magazine, vol. 59, no. 10, pp. 21–27, oct 2021.
[Online]. Available: https://doi.org/10.1109%2Fmcom.101.2001120

[4] J. Groen, B. Kim, and K. Chowdhury, “The Cost of Securing O-RAN,”
in IEEE International Conference on Communications (ICC), 2023.

[5] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable
machine learning,” 2017.

[6] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable
AI: A review of machine learning interpretability methods,” Entropy,
vol. 23, no. 1, 2021. [Online]. Available: https://www.mdpi.com/
1099-4300/23/1/18

[7] P. Barnard, I. Macaluso, N. Marchetti, and L. A. DaSilva, “Resource
reservation in sliced networks: An explainable artificial intelligence
(XAI) approach,” in ICC 2022 - IEEE International Conference on
Communications, 2022, pp. 1530–1535.

[8] P. M. Dassanayake, A. Anjum, A. K. Bashir, J. Bacon, R. Saleem,
and W. Manning, “A deep learning based explainable control system
for reconfigurable networks of edge devices,” IEEE Transactions on
Network Science and Engineering, vol. 9, no. 1, pp. 7–19, 2022.

[9] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Advances in Neural Information Processing
Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates,
Inc., 2017, pp. 4765–4774. [Online]. Available: http://papers.nips.cc/
paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

[10] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important
features through propagating activation differences,” CoRR, vol.
abs/1704.02685, 2017. [Online]. Available: http://arxiv.org/abs/1704.
02685

[11] L. Bonati, P. Johari, M. Polese, S. D’Oro, S. Mohanti, M. Tehrani-
Moayyed, D. Villa, S. Shrivastava, C. Tassie, K. Yoder, A. Bagga,
P. Patel, V. Petkov, M. Seltser, F. Restuccia, A. Gosain, K. R. Chowd-
hury, S. Basagni, and T. Melodia, “Colosseum: Large-Scale Wireless
Experimentation Through Hardware-in-the-Loop Network Emulation,”
in 2021 IEEE International Symposium on Dynamic Spectrum Access
Networks (DySPAN), 2021, pp. 105–113.

[12] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “ColO-
RAN: Developing machine learning-based xApps for Open RAN closed-
loop control on programmable experimental platforms,” IEEE Transac-
tions on Mobile Computing, vol. 22, no. 10, pp. 5787–5800, 2023.

https://doi.org/10.1016%2Fj.comnet.2020.107516
https://doi.org/10.1109%2Fmcom.101.2001120
https://www.mdpi.com/1099-4300/23/1/18
https://www.mdpi.com/1099-4300/23/1/18
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://arxiv.org/abs/1704.02685
http://arxiv.org/abs/1704.02685

	Introduction
	XAI Methodology
	Traffic Classification Model
	Data Collection and Pre-Processing
	Training CNN model

	Proposed Methods For Model Optimization
	 Feature Importance Explanations - DeepSHAP
	Method 1 - Top K KPIs Overall
	Method 2 - Top K KPIs per class

	Performance Evaluation
	Reduced KPIs for Traffic Classification
	Impact on encryption overhead

	Conclusion
	References

