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Abstract—Digital twins (DT) offer a low-overhead evaluation
platform and the ability to generate rich datasets for training ma-
chine learning (ML) models before actual deployment. Specifically,
for the scenario of ML-aided millimeter wave (mmWave) links
between moving vehicles to roadside units, we show how DT can
create an accurate replica of the real world for model training and
testing. The contributions of this paper are twofold: First, we pro-
pose a framework to create a multimodal Digital Twin (DT), where
synthetic images and LiDAR data for the deployment location are
generated along with RF propagation measurements obtained via
ray-tracing. Second, to ensure effective domain adaptation, we
leverage meta-learning, specifically Model-Agnostic Meta-Learning
(MAML), with transfer learning (TL) serving as a baseline val-
idation approach. The proposed framework is validated using a
comprehensive dataset containing both real and synthetic LIDAR
and image data for mmWave V2X beam selection. It also enables the
investigation of how each sensor modality impacts domain adap-
tation, taking into account the unique requirements of mmWave
beam selection. Experimental results show that models trained on
synthetic data using transfer learning and meta-learning, followed
by minimal fine-tuning with real-world data, achieve up to 4.09 x
and 14.04 X improvements in accuracy, respectively. These findings
highlight the potential of synthetic data and meta-learning to bridge
the domain gap and adapt rapidly to real-world beamforming
challenges.

Index Terms—Digital twin (DT), transfer learning, meta-
learning, multimodal data, mmWave, beam selection.

I. INTRODUCTION

EHICLE-TO-EVERYTHING (V2X) networks, in which
V a vehicle may communicate with or respond to stimuli
from other vehicles, infrastructure, pedestrians, or networks, are
shaping not only autonomous driving [1] but also our social
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and entertainment experiences [2], [3]. Central to this capability
is creating high-bandwidth communication links, such as in
the millimeter wave (mmWave) band, which can relay data at
Gbps rates [4]. To overcome the lengthy beam sweeping process
defined by the standard for such links [5], [6], recent works
have proposed leveraging machine learning (ML) [7], [8], [9].
However, training such ML models requires difficult-to-obtain
large datasets collected in the real world, along with data from
risky, outlier conditions to stress-test the model, which may
even be infeasible. In this paper, we address these challenges
for ML-aided V2X connectivity by designing digital twins (DT)
that create rich replicas of the real world for model training and
testing.

A. DT for Mitigating Scarcity of Real-World Data

Given several different environmental conditions that impact
mmWave links, such as blockage due to buildings, pedestrians,
and other cars, and the difficulty of setting up a persistent exper-
imental testbed in mobile, congested urban neighborhoods, we
need to consider alternate sources of V2X data collection. One
promising direction for V2X data collection is using software
that emulates the practical deployment conditions. The resulting
high-fidelity DT can construct virtual environments and run
experiments spanning lengthy intervals of time, thus solving the
challenge of missing data. Moreover, it can emulate adversarial
situations that may rarely occur or have dangerous consequences
(e.g., a pedestrian ahead of an oncoming vehicle).

B. Non-RF Modalities in Mmwave V2X Beam Selection

Despite the many benefits of mmWave bands in establishing
high bandwidth links, they are highly directional in nature and
thus, suffer from misalignment, blockages, and atmospheric
absorption, to name a few. We have had previous success with
using non-RF modalities for the purpose of selecting the best
beam in V2X scenarios, either individually or in conjunction
with RF data, to provide a richer representation of the envi-
ronment [10], [11]. Specifically, we have used synchronized
image, LiDAR, and Global Positioning System (GPS) data from
sensors installed in an actual autonomous car, in addition to
mmWave RF data, to train ML models for beam selection. While
intuitive, again, collecting such multimodal data is time and
cost-restrictive from using actual testbeds. Hence, we would like
to design a DT that also allows virtual captures of similar camera
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images and LiDAR pointclouds, generating valuable synthetic
datasets for training ML models.

C. Challenges in DT Design

While DT hold great promise in training and testing models
when real-world data is difficult to obtain, there are many open
challenges that need to be addressed.

e Challenge 1- Creation of DT for multimodal synthetic data
generation: There are practical considerations that should be
scrutinized at every stage of DT implementation. To begin, the
choice of software or data generation application has a large
impact on every parameter of the dataset, from the degree
of flexibility of open-sourced tools or the licensing cost and
duration of proprietary applications to the compatibility of the
different data types that will be generated within a multimodal
dataset. There will be some trade-offs between data resolution,
computation, and automation that should be addressed to create
the best-suited recreation of the real-world analog. Finally, data
organization and descriptive metadata, particularly when mul-
tiple variations of similar scenarios are generated, need to be
considered, especially if the DT suite or resultant dataset will be
made publicly available.

e Challenge 2- Bridging the Simulation-to-Reality Gap in
Digital Twin-Based mmWave V2X Communication:

a) Meta-Learning Driven Domain Adaptation for Enhanced
Sim2Real Transfer in mmWave V2X Communication:
While Challenge 1 addresses the creation of a high-fidelity
DT, there remains a simulation-to-reality gap that must
be addressed for effective deployment. Our prior works
have focused on applying advanced machine learning
techniques—including transfer learning (TL) [12] and
model-agnostic meta-learning (MAML) [13], [14] to en-
able robust adaptation to unseen scenarios. We have
demonstrated that selecting an appropriate starting sce-
nario for TL initiation and intelligently freezing selected
layers during fine-tuning can significantly improve per-
formance. Similarly, we leveraged MAML in [15] to
utilize limited data across a number of tasks seen during
training (e.g., pedestrian blockage) to find an adaptive
model that, when fine-tuned during testing time, performs
well on new or unseen scenarios (e.g., moving vehicular
blockage), given that these tasks still fall under a common
distribution. However, in both these works, we trained
and tested on data collected in the real world only. How
such models perform when transferring knowledge from
a multimodal DT to the real world remains unknown.

b) Domain adaptation from DT to real world: A key chal-
lenge in this transfer process is that real-world data often
contains noise, artifacts, and imperfections not present in
the synthetic dataset. Despite employing advanced sensor
simulation tools for DT creation, this gap will exist due to
differences in illumination, texture, and optical distortions
in camera images, while LiDAR point clouds experi-
ence variations in interference intensities and occlusions.
It would be particularly beneficial to examine how the
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performance of each sensor modality influences domain
adaptation, especially when considering an unconven-
tional ML task of mmWave beam selection.

D. MAML for Mmwave V2X Beam Selection: Motivation for
Designing SMART

In mmWave V2X communication, rapid environmental
changes due to vehicular obstacles and mobility create signif-
icant challenges for beam selection using conventional super-
vised learning, primarily due to the lack of large-scale real-
world datasets. As an alternative, this paper explores the po-
tential of Digital Twins (DT) to generate synthetic datasets that
replicate real-world environments, providing an initial dataset
for training machine learning models where real-world data is
unavailable. However, the limited availability of synthetic data
and constrained training time in V2X setups make traditional
supervised learning approaches impractical. To address this,
we propose SMART, an adaptive meta-learning-based beam
selection framework optimized for domain adaptation, bridg-
ing the Sim2Real gap specifically for beam selection in V2X
communication.

E. Our Contributions:

In this paper, we demonstrate how a combination of ap-
proaches, such as non-RF modality usage, DT-generated data,
and meta-learning can address the challenges of long com-
munication overheads and training time with limited data for
mmWave V2X communication. Specifically, we propose the
SMART framework, which makes the following contributions:

e Using a software suite comprised of Blender [16],
Blender Sensor Simulation (BlenSor) [17], and Wireless InSite
(WD) [18], we create a multimodal DT setup where synthetic
data can be generated to effectively train models for beam
selection in mmWave V2X environments. This DT consists of
high-fidelity reproductions of image and LiDAR samples that
closely resemble analogous samples collected in the real world
(addresses Challenge I).

* We implement an adapted version of the MAML framework,
a ML approach known for its robust generalization across di-
verse tasks, using simulated images and LiDAR samples created
within the DT for ML training. We demonstrate the effectiveness
of the models derived from meta-learning by validating them
on real-world data, analyzing their cross-domain and inter-task
performance across various scenarios in mmWave V2X com-
munication. (addresses Challenge 2a).

* We independently conduct meta-learning based domain
adaptation on image and LiDAR data samples to assist mmWave
beam selection. We provide insights into the unique domain
shifts experienced by each modality and their distinct impacts on
Sim2Real adaptation. Furthermore, we highlight the importance
of structured data representation and domain-informed DT mod-
eling in fully harnessing MAML’s generalization capabilities
to tackle a challenging problem of beam selection (addresses
Challenge 2b).
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* For evaluation purposes, we show baseline beam selection
results with our non-RF DT samples with empirical risk min-
imization (ERM), a non-meta-learning-based approach, then
compare the proposed MAML performance with a TL-based
domain adaptation method. Our results demonstrate that
MAML-trained models, with minimal fine-tuning, achieve
14.04x accuracy improvements when transitioning from syn-
thetic to real-world data, surpassing TL-based methods, which
achieve an accuracy of 4.09x, highlighting the robustness of
meta-learning to quickly adapt to unseen environments with
minimal data and compute.

» We will release the data and software code to generate such
multimodal DT and the ML codes for TL and MAML implemen-
tations that will allow the community to independently validate
results and design their own DT for accelerating research in this
emerging area.

Organization: The rest of this paper is structured as fol-
lows: Section II discusses the background and related works.
Section III presents the SMART problem statement and its
framework. Section IV describes the design of the SMART
framework along with DT creation. Section V provides an
overview of the datasets used for evaluation. Section VI details
the experimental setup, evaluation process, and comparisons
with competing methods. Finally, Section VII concludes the
paper with a discussion, and Section VIII outlines potential
future work.

II. PRELIMINARIES AND RELATED WORK

As this work touches on a number of topics, we select a few
relevant areas of discussion to sample the current state of the
research landscape.

A. Mmwave V2X Beam Selection Overhead Reduction With
Non-RF-Based Techniques

ML-based techniques leverage non-RF modalities to reduce
overhead by enabling classification, object detection, or seman-
tics extraction for faster beam selection. Sensors like LiDAR
facilitate 3D environmental mapping to detect motion [19] or
refine beam management using past trajectories [20]. Some
approaches adopt a multimodal strategy, integrating LIDAR with
GPS [19], [21], radar [22], or all three [23] to enhance user
detection and processing efficiency.

B. DT Applications in Vehicular Networks

Digital Twins (DT) are gaining traction across various in-
dustries, including 5G networks [24], wireless communica-
tions [25], and autonomous driving [26], offering scalable syn-
thetic data generation compared to real-world data collection.
In vehicular networks, DT applications extend beyond wireless
communications to physical routing [27], intersection man-
agement [28], environment monitoring and vehicle manage-
ment [29]. They also aid in resource management [30] and com-
munication reliability [31] in V2X networks. While DT-based
beam management for V2X is still emerging [32], [33], this
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paper presents the first real-world application of a DT-enabled
ML framework for mmWave beam selection.

C. Domain Transfer for Synthetic-to-Real Environments

Transferring models from synthetic to real-world applications
remains a key challenge in ML, as even slight feature vari-
ations, such as image resolution differences between training
and testing, can significantly affect performance [34]. Various
techniques address this issue, but knowledge transfer between
synthetic and real environments typically falls into two main
categories—a) decreasing the size of the shift such that the
source and target domains more closely resemble one another, or
b) learning adaptive policies from synthetic data for real-world
deployment. We further label these two approaches under TL
and meta-learning, respectively.

Transfer learning (TL) leverages knowledge from models
trained on a source domain to enhance performance on a target
domain with differing data distributions. A specific application,
domain adaptation, enables models to adjust to new contexts by
retraining or fine-tuning on target data. While effective, domain
adaptation methods often involve computational overhead and
multi-step process [35], [36]. In this paper, TL serves as a
state-of-the-art (SOTA) baseline for comparison.

Meta-learning, or the mechanism of learning to learn, focuses
on developing models that generalize across tasks by optimizing
their learning processes, enabling rapid adaptation with limited
data. MAML [14], a gradient-based approach, exemplifies this
by initializing models capable of fine-tuning effectively for new
tasks. This few-shot approach utilizes limited data across a
number of tasks seen during training to find an adaptive model
that, when fine-tuned during testing time, performs well on new
or unseen tasks, given that these tasks still fall under a common
distribution.

Comparison of TL and Meta-learning for Domain Adap-
tation: Between these two, the former approach aligns more
closely with traditional domain adaptation methods. Feature
extraction methods using encoders [37] are common [32], [38],
as are loss-centric methods, particularly using adversarial net-
works [39]. Our previous work on TL [35] that focuses on
retraining weights also falls within this category. Though using
these methods may provide high performance, there are often-
times more computational requirements to consider, with some
methods being multi-step processes that are invariably more
time-consuming.

The latter approach is more closely associated with meta-
learning, particularly gradient-based meta-learning policies,
such as those shown in [40], [41]. These approaches tend
to be more task-oriented, reducing either time complexity or
end-to-end computation time. Though the base framework that
these papers construct their approaches around, MAML [14],
has been optimized in areas such as convergence [42] and task
distribution [43], the fundamental area of meta-learning applied
to DT is still relatively unexplored, especially when LiDAR data
is considered.

Limitations in the State-of-the-art: Though DT applications
in V2X scenarios are promising, DT utilization with domain
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application is still early in development, let alone DT usage
itself. To our knowledge, there are no prior works based on
applying meta-learning on synthetic-to-real-world domain adap-
tation for mmWave beam selection, and our previous works
focused only on domain adaptation within the real world (i.e.,
training and testing a model on real-world data). We propose
the SMART framework as an initial solution to this deployment
idea.

III. SMART PROBLEM STATEMENT

In this section, we detail the two fundamental problems that
we seek to address, namely, beam selection via ML and DT-
based beam selection, and list the aspects of the SMART frame-
work that address these challenges. We summarize the notations
in Table I.

A. Beam Selection With an ML-Based Approach

To avoid the costly exhaustive search overhead in traditional
beam selection, one possible solution uses deep learning (DL)
models that predict the best beam using non-RF sensor data
captured from active sensors integrated in the vehicle [10].
In this method, a percentage (denoted by p) of the dataset is
available as a training set prior to deployment to L different
scenarios {E;}_;. Suppose the overall dataset of non-RF sam-
ples along with the RF ground-truth is represented as: Dyota1 =
X7 Yl,j}‘giu}%:p where X} is the j*" sample and Y} ; €
{0,1}5 is the corresponding label for the [ scenario, B is the
total number of possible beams, and |E; | is the total of samples for
the ™ scenario E;. Now, the training dataset Dy 45y 1S generated
by randomly selecting p% of samples and labels from the Dy ota1
in such a way that at least one sample from each L scenario is
present, both within Dy,.:,. The test dataset is then denoted as
the Dyeqy dataset. Hence, {E;}1_; € Divain, {Ei}j_; € Diests
Dirain = p X Diota1, and Dyegt = Diotar — Derain.

The learning model fg=(.) is trained on Dyyain, where fgu(.)
is a function parameterized by 6", i.e., a neural network with
weights §™. The empirical loss of the model parameters 6™ on
the training dataset Dy,.1y, is generated following [15]. The DL
training approach finds a model that minimizes the loss across
all training samples by solving: Hé;l}l £(0™) over multiple training

epochs. After the model training, the best beam is predicted as:

i = for (X1 ), (1)
where X[ ; is j"
respectively.
Challenges: In practical situations, it is not guaranteed that
the training data will come from all possible scenarios, thus,
introducing some ‘“‘unseen scenarios” [14] during test time.
Therefore, the trained model fg=(.) will generate unreliable
predictions when presented with samples from these scenarios.
Moreover, the challenges mentioned in Section I-C motivate us
to consider the scenarios generated from a synthetic environ-
ment as a training scenario or seen scenario and the scenarios
collected from the real world as test scenario or unseen scenario.

sample from [ scenario and Xll ; € Diest,
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TABLE I
NOTATION SUMMARY

Notation Description
(x{ 5> Ya, i) Input sample and corresponding

beam selection label

B Number of beam selection classes
(one-hot labels)

Txioc Transmitter location

Rxjoe Receiver trajectory locations

Oz, Oy Step increments for trajectory sam-

pling

S = {Cfont> Csides Liop } Multimodal sensor set (cameras

and LiDAR)

S,sup S, tar
7; k ﬁ,k

i Support and target sets for training

tasks

7’1.%5“'0, 7;17]];“" Support and target sets for unseen

testing tasks

M; Number of tasks in scenario 4

N Total number of training samples
across all scenarios

L(0,S:) Empirical loss function for training
scenario S;

éi,k Adapted model parameters after
meta-learning

adapt . )

Lyt Loss function evaluated on unseen
real-world tasks

Bopt Optimal beam selection for maxi-
mum received power Pr_

M Metadata dictionary storing key in-

formation about obstacles, sensors,
and trajectory

Rz = {Rx1, Rza, ..., RN} || Set of receiver positions along the

vehicle’s trajectory

Prediction from the trained model
on real-world test data

Z}Dies( = fGDT (xDlesl)

Synthetic and Real Scenario Definition: In this case, we
consider the Q different scenarios {S;}}_, collected from the
synthetic environment as the training set. However, during
testing time, the R different scenarios {U;}} ; are from the
real world. Hence, the characteristics of the training and test
datasets are represented as: {S; ?:1 € Dirain, {Sl}?zl ¢ Diest,
{Ul}?zl ¢ Dtrain’ and {Ul}?:1 € Dtest-

B. Digital Twin-Based Beam Selection

Suppose we have a real-world environment R where we need
to deploy a beam selection module that is pre-trained on the data
collected from a DT. We generate a representation D7 of R and
collect Dyyqiy, scenarios from DT . The objective is to generate
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Fig. 1. The proposed methodology based on meta-learning outperforms the
traditional transfer-learning-based method in terms of accuracy, the amount of
data used for training, and end-to-end computation time.

a neural network model in which fyor(.) will be trained on the
collected training data from {S;}}_, seen scenarios. We also
have a test dataset Dy, consisting of {U; }?:1 unseen scenarios.
Overall, we want to generate a trained model fpor (.) which will
be trained on the training data D¢y.in, where zp,, and yp,_,.
represent the data and ground truth of each sample within the
dataset. The same notation applies for the Dyesy. Overall, the
problem is formulated as:

min (Jp,... — YD....)
where gp,... = forr (p,...)

forr () is trained on Dyyain

@)

C. SMART Framework

SMART solves the above problems by proposing a learning
paradigm that generalizes on the synthetic dataset by creating
a model that is adapted with a few real-world samples during
real-world deployment by using a few fine-tuning steps. The
overall system function is given in Fig. 1.

® DT Creation: First, we create a DT environment that
replicates the real-world experiment setup (discussed in
Section IV-A).

e Synthetic Data Collection in DT: We collect a compre-
hensive synthetic dataset in the generated DT setup (see
Section IV-B).

® Meta-learning-based Training on the Synthetic Dataset:
We generate trained models that are generalized over dif-
ferent data categories within the synthetic dataset.

® Domain Adaptation using Meta-learning: We evaluate the
trained model on the real-world data after performing a few
fine-tuning steps on a few samples. Algorithm 1 outlines
the data collection and synchronization process used to
prepare the dataset for training. Further the results of the
evaluation is compared directly to the performance of TL
and ERM with the same datasets.

IV. SMART FRAMEWORK DESIGN

In this section, we elaborate on the individual solutions pro-
posed in Section III-C; namely, the creation of the DT, the
data collection process while using the DT, and the domain
adaptation methods used to adapt the ML models trained on
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the synthetic data from the DT to the real world in the SMART
framework.

A. DT Creation

The creation of a DT involves an accurate replication of the
real-world environment in simulation software. This process
begins with the generation of an experimentation scenario by
using a detailed, precise map, and defining the area of interest
using appropriate geographical coordinates. We initialize our
DT as DT : fiwin(map, O) — [0, 1]3, which signifies our twin
is a function of two components, map representing the coarse
terrain of the experiment area (in our case, imported from
OpenStreetMaps (OSM) [44]) and O incorporates the finer
details like trees, vehicles, sensors, and radio devices. To create
the twin world, the map is a function of the form map = fio.
(R4, Ryy) that requires the user to specify a rectangular region
covering the experiment area by specifying the geographical
coordinates (latitude and longitude) for the top left and bottom
right corner of the bounding box, R;; and R, respectively. Addi-
tionally, the surrounding objects are characterized by bounding
boxes in the DT, such that Oy = {(@k, Yk, 2k, L, w, h) HE |,
where K signifies the number of objects that are present in the
DT . Furthermore, (zy, yi, 2;) are the centroid coordinates of
the k*" object with dimensions (I, w, h) corresponding to the
length, width, and height respectively. To further elucidate the
development of the DT, we explain it in two components - a
multimodal sensor component to generate the synthetic input
data, and a wireless component to collect the corresponding
ground truth labels.

Multimodal Component: The multimodal sensor component
of DT focuses on replicating the position and visual sensors
integrated into an autonomous car. These include coordinates,
cameras, and LiDAR, which are integral sensors used in self-
driving cars, to enable perception and navigation. We leverage
these sensors to obtain contextual information about the envi-
ronment to understand the relative positions and orientations of
the radio devices, the transmitter (Tx) and receiver (Rx), along
with the presence of any obstacles in the line of sight (LOS)
path between the devices. We implement this by placing virtual
camera objects C'fy.on¢, to capture the front view, and Clige,
to focus on the right side view of the Rx, which is on top of
the car. We appropriately configure the focal length and field
of view of these virtual cameras according to the real-world
camera configurations. Correspondingly, we place a virtual Li-
DAR object Ly,, at the same locations as the Rx to capture a
360-degree view of the vehicular environment. We place these
virtual camera and LiDAR sensor objects at a height A, to
emulate these sensors being placed on top of an autonomous
car and collectively address the multi-modal sensor objects as S
such that {C'tront, Cside, Ltop} € S.

Wireless Component: We import the same coarse environment
landscape from the animation software to the wireless simulation
tool to collect corresponding optimal beam labels for training our
ML-based decision framework. Here, we utilize a ray-tracing
tool (in our case, WI) to accurately model the propagation
of electromagnetic waves through the V2X environment. We
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Custom Beam
Patterns

Tx-Rx Locations

A®blender

Python
Orchestrator

Camera Digital Twin .
(Multimodal Component) Twin Deep

Learning

m Model
Domain A N
N Adaptation
>
;,J‘" —— \Wireless InSite Ray Tracer|
(Wireless Component)
LIDAR Digital Twin Real-World y
(Multimodal Component) Deep Learning
Hedal Optimal Beam/Beam Labels

Fig.2.  Orchestration process between the DT components and the DL models
within the SMART framework to collect and process the multimodal sensor data
and ground truth beam labels.

follow Extensible 3D [45] for modeling the mmWave propa-
gation path that considers the phase information of the rays.
It accurately models reflections, transmissions and diffractions
along with frequency dependent atmospheric absorption for
conducting realistic simulations. The finer environment details
include the obstacles O, along with the placements of the radio
devices at appropriate locations obtained from the multimodal
component.

In our use case, there is one static transmitter 7'z, whereas
the receiver is integrated into the autonomous car that is moving
along a linear trajectory. To emulate this, we consider multiple
receiverinstances R = { Rz, }Y_; inboth components along the
vehicle’s trajectory that are linked between the two components
by coordinates, emulating a sampling scheme similar to the
synchronized samples in [10] and [11].

B. Synthetic Data Collection in DT

Since our DT consists of two components, we need to develop
a software orchestration module to coordinate the input data
generation and ground truth collection between these two com-
ponents. This section describes the overall orchestrator design,
as shown in Fig. 2 and the structured workflow of orchestra-
tion process is detailed in Algorithm 1, followed by the data
collection process in the two components.

1) Orchestration: Our data collection scenario involves a
static roadside transmitter placed at T'xj,. in both com-
ponents and a moving vehicle, accompanied by a re-
ceiver radio device. As outlined in Algorithm 1, we
model the moving Rx along the vehicle trajectory by uni-
formly sampling it at a particular frequency. We consider
a trajectory of length d with N sample points. Conse-
quently, we obtain the sampling locations, as shown in
Fig. 3, as Rujoe = {(z1,91), (21 + 02,41 + 0y), (w1 + 02 +
(2%85),y1 4+ (2%0y)).....(xN,yn) Hy.—,. Here, &, and d,
represent the step increment obtained by dividing the lengths
along each axis by the sampling period. The incremental step
size can be computed as 6, = (xx — x1)/ N and 6, = (yn —
y1) / N. We place our sensor objects .S and receivers R along
these sampled locations in their respective twin components to
collect the data. Static obstacles are placed using the centroid
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Fig. 3. Corresponding sampling locations (blue dots) and their coordinates
within the multimodal and wireless components, reflective of the real-world
GPS coordinates (orange dots). The sampling frequency is not to scale.

Real World

—
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points and dimensions of the objects described in O, whereas the
motion of dynamic obstacles additionally requires emulating the
motion in a similar way as the moving receiver devices. The static
objects simply use the bounding box information for placement,
represented by Og = {Op, }- On the other hand, dynamic ob-
jects require some additional information to recreate the motion,
which can be represented as Ons = {Opoz, Ostarts Ocnd, M },
where Ot 18 the starting frame number, O.,,q is the ending
frame number and M is the number of samples collected along
this path. To exchange the metadata between the multimodal
and wireless components, we create a metadata dictionary with
the structure M = {Og, Oy, T'%1oc, Rx1, Rx N, N}, where the
latter three components are used to emulate the moving receiver
device.

2) Multimodal Data Collection in DT: We collect the visual
data in terms of image samples and LiDAR pointclouds by
moving the corresponding sensor objects Crront, Ciide, and
L., along the trajectory of the car. We synchronize the frame
rate of the cameras C'f,.on¢, Csiqe With the sampling frequency
of the LiDAR L;,, to ensure uniform data collection. The
animation software provides a key-frame functionality to define
the starting and ending points for the motion of the receiver car
and surrounding objects, as described in the previous section.
This facilitates smooth motion and continuous rendering of data
samples, which are saved in an automated fashion. To systemati-
cally capture the multimodal sensor data, we define the following
functions to extract camera images and LiDAR point clouds at
each receiver position along the trajectory. The function CAP-
TURE_FRAME (camera_object, location) is used to
collect image frames from the front and side cameras, where:

X! [i][4][front] +~ CAPTURE_FRAME(Ciont, R (1))
XT[i][4][side] +~ CAPTURE_FRAME(Clge, Rz |;))

Similarly, the function CAPTURE_POINTS (lidar_object,
location) records LiDAR point clouds from the

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 26,2025 at 02:25:22 UTC from |IEEE Xplore. Restrictions apply.



11082

Algorithm 1: SMART Orchestration Algorithm.

Input: Transmitter location T'x;0c,
Receiver trajectory Rx = {Rx1, Rxa, ..
Static obstacles Og,

Dynamic obstacles O,

Sensor set S = {Chont, Csides Liop }»

Step increments d,, d,, Sampling frequency Fj,
Total sample points N

.,Rl‘N},

Output: Metadata dictionary M storing key sampling data

Compute step increments:

L Oy

Rx N Rxny—Rxq
Op ¢ =g, -~

Initialize metadata dictionary:
M {Os,0n, Txioc, Rx1, Rxn, N, samples < [ |}

where [ ] represents sequentially growing list storing
structured sensor data at each receiver location.

Position static objects: Og < {Opox }
for i <~ 1to N do

Compute receiver location:
Rxi < (Rzi 41 -0z, Rxy +1-6y)

Position dynamic objects:
O]\/[ <~ {Ob0X7 Ostart, Oend, Mz}

Position sensors at Rz;: S < {Chont, Csides Liop }

Update metadata dictionary:
M(samples].append({ Rz, Os, Onr, S})

end
Synchronize sensor frame rates:SYNC_FRAME_RATE(S)

for t < 1t0o N do
X"[i][5][front] +— CAPTURE_FRAME(Clront, Rzy))

X"[i][j][side] - CAPTURE_FRAME(Cjige, Rx[y))
X"[i][4]llidar] +~ CAPTURE_POINTS(Lp, Rz(;)

Scanning all beam patterns:
Y'[i][j] +~ SCAN_BEAM_PATTERNS(Rz/))

Optimal beam selection:
Bop: + OPT_BEAM_SELECTION (X [4][5], Y'[i] [5])

data, + {“image_front” : X [i][;][front], “image_side” :
XTT1i][4][side], “lidar” :
X[i][j][lidar], “beam_selection” : Bop }

M samples][t][“data’’] + data;

SAVE_DATA (M [samples][t])

end

return M

top-mounted LiDAR sensor:
X'[i][5][lidar] - CAPTURE_POINTS (Lo, R[]

These functions ensure synchronized data collection by aligning
the camera frame rate with the LiDAR sampling frequency,
facilitating structured dataset generation for downstream model
training and analysis.

3) Optimal Beam Label in DT: To automate the placement
of radio devices at the sampled locations and perform exhaus-
tive beam search scans along the defined trajectory, we use
a Python orchestrator. Our framework sequentially activates
each Rz, along the vehicle’s trajectory utilizing the positioning
information from the metadata dictionary M and performs a
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multi-path ray-tracing scan for all available beam patterns using
the function

Y[i][j] <~ SCAN_BEAM_PATTERNS(Rx[;)

For each of the beam patterns, we record the received power Pr,..
To identify the optimal beam for each frame, we introduce the
OPT_BEAM_SELECTION (X[i][j], Y[i][j]) function, which
identifies the beam pattern with maximum Ppg, beam pattern
and assigns it as the ground truth for that frame.

4) Data Preprocessing: The images can be readily supplied
to the convolutional neural network (CNN)-based DL models
such as the ones described in [10], [35]. Conversely, the LIDAR
pointclouds require some additional preprocessing to make them
compatible with the SMART framework. LiDAR pointclouds
consist of an unstructured set of points in 3D space. However, the
permutation invariance of these points poses a challenge when
leveraging CNN architectures. Unlike CNNs, which process
ordered grid structures like image pixels, rearranging the order
of LiIDAR points does not alter the represented scene. Therefore,
we need to convert LiIDAR pointclouds into structured, ordered
grid representations of the 3D space through a 3D quantized
cuboid structure. Each unit within this structure is called a voxel,
which stores the occupancy information of point clouds. Voxel
values are set to 1 if they contain at least one point, indicating
the presence of obstacles in that specific region. Conversely,
unoccupied voxels are assigned a value of 0, while the voxels
at the current Rx and Tx positions are labeled —2 and —1,
respectively. Thereafter, we select a 20 m radius around each
the Rx car and quantize each axis to a (20, 20, 4) grid, with each
voxel set to size (2, 2, 1).

C. Domain Adaptation Using MAML

As noted in Section I, we use two tools in the SMART frame-
work for domain adaptation: one which is based on TL, and
one which is based on meta-learning, namely, an adaptation of
the MAML algorithm [14]. We explain how we implement TL
in [35] and meta-learning in [15], but restate core meta-learning
concepts here in this section for framework completeness. Im-
plementation changes to our TL framework are explained briefly
in Section VI.

Recall that we have Q different scenarios {S;}7_; collected
from the synthetic environment that serve as the training set.
However, at test time, the R different scenarios {U;}}_; come
from the real-world. We can represent the characteristics of the
training and test datasets as {Sl}?zl € Dirain, {Sl}?z1 ¢ Diests
{Ul}?zl ¢ Dtrain’ and {Ul}?zl S Dtest-

Prior to model deployment, we access the training set of
labeled samples from Q different scenarios from the synthetic
environment. Training data corresponding to the i scenario is
given by S; := {(X};,Yi ;) }jen,, where each X}, € R? is a
sample, Y; ; € {0,1}5 is its corresponding label, and n; is the
number of samples from the scenario S;. The learning model
is a function fy : R? — R5 parameterized by § € R, e.g., fs
may be a neural network with weights 6. The empirical loss of
the model parameters 0 on a dataset S; is defined as £(0; S;) =
L e(fo(XT ), Yas)], where £ : RP x {0,1}F — RTisa

uz
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cross-entropy loss function measuring the discrepancy between
predicted and true labels.

The standard ML training approach is to find a model that min-
imizes the average loss across all of the training samples, namely,
Empirical Risk Minimization (ERM). Specifically, ERM solves
mingero L(0) := LS niL(6,S;), where N =31 n,.
One can run a variety of easy-to-implement gradient-based
algorithms to optimize this objective—for instance, stochastic
gradient descent (SGD). While this approach is natural for find-
ing high-performing models during training, it is not well-suited
to find models that can adapt samples from unseen scenarios
when deployed, as we show in [15] and Section VI.

Beam Selection in Real-world Unseen Scenarios: In practical
applications such as V2X networks, an ML framework does not
typically have enough data or computational budget to perform
full supervised learning in the new scenario; rather, it is only
provided with a few labeled samples and must yield a prediction
within a time frame on the scale of seconds, as a vehicle may
only be within communication range of a base station for a few
seconds.

We consider each of these adaptation opportunities as a
“task”. That is, a task consists of a small number of support
samples that can be used for adapting the model, along with
target samples for evaluating the adapted model. Each task has
data that is a subset of the dataset for a particular scenario.
Specifically, the k" task from scenario S; is defined by the pair
of datasets (TS i ’TS ,1"), where TSkS“p contains the support
samples, 7;'/" contains the target samples, 7;’ Ssup ’7;?,;” -
Siand 7577 N TS = 0. We let my = |T.5°"%| and my :=
|7;S;f[”' |, for all tasks ¢, k, and let M; denote the number of tasks
for scenario i.

Next, we denote the tasks for R real-world unseen scenar-
ios as as: (TU 5P Ut‘") following the same notation. We
suppose that the task specific adaptation procedure is 7 steps
of gradient descent (GD) with step size « using the sup-
port samples in the task’s support set, where 7 is small. Let
0ix := GD(6), ’TU *“P v, 7) denote the result of this adaptation

procedure starting from 0. Ultimately, we aim to find a 6 such
that the loss of 0;; is small on average across tasks from

unseen scenarios, i.e., our performance metric is: Ly, (6) =

iy, SOV L(Bik; ’TU ;1%"). As mentioned previously, mod-
els found by standard ERM are not well-suited to perform well
on the adaptive metric Ly, (). Thus, we leverage the unseen
scenarios in our approach, described next.

D. MAML for Beam Selection in Unseen Scenarios

In order to find models that perform well after adaptation, i.e.,
achieve a small L%t (.), we utilize a MAML-based approach.
MAML aims to find an adaptable initialization for task-specific
SGD in multi-task settings. To do so, MAML executes an
episodic training procedure, referred to as meta-training, in
which each episode consists of first adapting the current ini-
tialization to the corresponding task, then improving the initial-
ization based on the performance of the adapted model on the
same task. In particular, MAML aims to solve the following
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Fig. 4. Proposed MAML-based framework for adapting to unseen scenarios
for beam selection. 6 is the model after meta- training, and 01 . 1s generated
after fine-tuning, during meta-testing.

(©)

Fig. 5.
a camera image and LiDAR pointcloud side-view pairing from the real world
(a), (b) and a camera image and LiDAR pointcloud front-view pairing from the
synthetic environment (c), (d), respectively. The images for the LIDAR captures
were visualized in MATLAB LiDAR Toolbox [46].

Select samples taken from the e-FLASH and S-FLASH dataset with

objective in our setting:

M;
: train ,__ S,tar
min L = g ZZE 0 T ) 3)
1_1k 1

where 0; . := GD(0, Tf’,f“p ,a, 7). This process is depicted in
Fig. 4. In words, we aim to find an initial model 0 that performs
well after 7 GD steps using the samples 7,°“", on average across
all scenarios indexed by :. To solve (3), we execute the MAML
algorithm, which is equivalent to performing SGD on (3). This
framework is displayed in Fig. 4. Note that the MAML training
objective Ly, is the analogue of Ly, on the training data.
Indeed, our evaluation procedure on tasks from unseen scenarios
exactly corresponds to what MAML refers to as the meta-testing
phase. Overallj the training objectives over Lygis, and Lyl
ensures a solution for (2).

V. DATASETS

In this section, we detail the two datasets that we use for
our evaluation, the real-world e-FLASH dataset, and its DT
counterpart, S-FLASH.
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Fig. 6. Schematics of data collection environment for: A) Category 1: LOS
passing, B) Category 2: NLOS pedestrian, C) Category 3: NLOS static car, D)
Category 4: NLOS moving car.

TABLE II
SUMMARY OF DIFFERENT CATEGORIES OF DATA GENERATION

Cat. | Lane Featuring Obstacle Scenarios | # Eps. | # Smpl.
Same

1 Opposite | ~ - 10 1900
Standing

2 Opposite | Pedestrian Walking right to left
Walking left to right | 30 5700

3 Opposite | Static car In front 10 1900

. . Same lane
4 Opposite | Moving car Opposite lane 20 3800

A. Real-World Dataset: E-FLASH

The extended Federated Learning for Automated Selection of
High-band mmWave Sectors (e-FLASH) dataset is a real-world
multimodal dataset comprised of synchronized LiDAR, camera,
and GPS data with ML applications that are primarily used to
speed up beam selection in mmWave V2X networks. Though
the finer details of the dataset can be found in [11], we briefly
describe the dataset here: The e-FLASH dataset is an extension
of the Federated Learning for Automated Selection of High-band
mmWave Sectors (FLASH) dataset [10], and thus, is similarly
structured in terms of having four categories with MAML-
specific task quantities as follows: 1)LOS with no obstacles (1
task), 2)Non-LOS (NLOS) with a pedestrian obstacle (3 tasks),
3)NLOS with a static car obstacle (1 task), and 4)NLOS with
a moving car obstacle (2 tasks). (see Fig. 6) with additional
variations as shown in Table II. These categories consist of
unique scenarios and multiple episodes per scenario with syn-
chronized 16-channel LiDAR, 64-channel LiDAR, side-facing
camera images (to the right with respect to the moving Rx
vehicle), front-facing camera images (in the front of the Rx), and
GPS samples intended to comprehensively represent commonly
encountered LOS and NLOS V2X scenarios. Overall, e-FLASH
contains 10853 samples (~ 22GB processed data) that are
ready for use in mmWave V2X beam selection applications (see
sample camera and LiDAR pairings in Fig. 5(a) and (b)).

B. Synthetic Dataset: S-FLASH

1) Tool Selection for DT Creation: For creating a high-
fidelity DT, we selected Blender [16], Blender Sensor Simu-
lation (BlenSor) [17], and Wireless InSite (WI) [18] over other
alternatives like Sionna [49] due to their accuracy and robustness
to create realistic emulation environments.
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e Blender was selected to replicate the physical world due
to its open-source nature and widespread use. It offers
add-ons that facilitate seamless integration of geospatial
data from OpenStreetMap and enables exporting scenes to
Wireless InSite in various compatible formats. Moreover,
Blender’s advanced 3D modeling capabilities allow for
the creation of synthetic images, making it suitable for
simulating realistic environments.

® Blensor provides an open-source sensor simulation toolkit
to obtain high-precision LiDAR point clouds, making it
well-suited for accurately replicating real-world V2X sce-
narios.

e WI was chosen for conducting ray-tracing due to its ability
to provide detailed environment modeling including high-
fidelity terrain, material, and foliage effects, including in
environments with dense vegetation. It accurately mod-
els frequency-dependent interactions and terrain impacts.
While SionnaRT offers a GPU-accelerated differentiable
ray tracer with smoother Al integration, it does not yet
match WI’s precision in modeling the detailed physics of
the environment, making WI our preferred choice for cre-
ating a high-fidelity wireless DT for V2X beam selection.

By integrating Blender, BlenSor, and WI, our SMART frame-
work ensures realistic synthetic data generation, supporting
robust beam selection modeling across diverse real-world con-
ditions.(addresses Contribution 1).

2) Components of S-FLASH: The Synthetic FLASH (S-
FLASH) dataset is a virtual recreation of the e-FLASH dataset
that captures a high-fidelity V2X scenario along a 2-lane urban
road.

Multimodal Twin: We implement this following Section IV-A,
creating a replica of the e-FLASH environment with the use of
OSM and Blender, a 3D computer graphics software toolkit.
We use an add-on service named Blender-OSM that allows
users to select a rectangular region of interest based on geo-
graphical coordinates and import the associated landscape in
Blender. The imported terrain includes coarse details, such as
the surrounding buildings, roads, and walkways. Additionally,
we insert finer details like surrounding bushes, trees, and suitable
building textures and materials in the approximate location of
their real-world counterparts, then utilize Blender functionalities
to modify the visual properties for a quality representation of
the virtual world and production of camera images that closely
resemble their real-world counterparts. We place a box to play
the role of the roadside Tx while capturing the visual data.
Furthermore, we collect LiDAR data using a complementary
open-source sensor simulation tool, BlenSor [50]. It implements
a 64-channel Velodyne-64 LiDAR object to collect point cloud
samples.

Wireless Twin: We leverage Wireless Insite (WI) to per-
form ray-tracing for collecting signal strengths and determining
optimal beam patterns. The wireless system parameters are
highlighted in Table ITII. We place a Tx at a height of 1.5 m
to simulate the roadside BS and place the Rx at a height of
3.5 m (the height of the real-world car) at specific points along
the vehicle’s trajectory, with the Tx and Rx configured with
compatible mmWave antenna patterns. On the Tx side, we scan
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TABLE III TABLE IV
WIRELESS DT SYSTEM PARAMETERS COMPARING TALON AND WI METRICS
Buildings: Concrete ) bs [ 05 SNR
Materials Road: Asphalt Talon [6] [—90°,90°] 1.8° | [0°,32.4°] | 3.6° | same
Foliage: Grass WI [—100°, 100°] 2° [0°,36°] 4° same
Antenna orientation Tx and Ry facing opposite directions
‘Waveform fe=60GHz BW =2.16GHz 100 100
Tx power 24 dBm [47]
Tx and Rx pattern source Talon antenna measurements [48]
Tx height On a cart, 1.5m g g
Rx height On a car, 3.5m > >
Noise power (N) —100.99 dBm < £
Antenna sensitivity —250dBm E E
Ray spacing (Aw) 0.25°
Number of allowed diffraction 1
Number of reflections 3 2 3 2 3
Scenarios LOS and NLOS Category Category
(a) Images (b) LIDAR

270° 270°

(c) (d)

Fig. 7. Re-created antenna pattern examples in Wireless InSite: (a) Tx
Antenna-24 (t24) and (b) the Rx antenna. Antenna pattern comparisons be-
tween the Talon antenna patterns (solid blue line) and the re-created beams in
WI (shaded area): (¢) Azimuth, (d) Elevation.

the 34 available patterns [6], collecting the received powers
for each scan. The beam patterns which comprise the ground
truth for our problem come from a pre-defined codebook of
34 beams of the Talon AD7200 mmWave radio [26] used while
collecting the real-world FLASH dataset. The beam pattern with
maximum power is assigned as the optimal beam label for a
particular sample captured. One example of the custom antenna
patterns is shown in Fig. 7. The Talon manufacturers release the
MATLARB files of the precise measurements of these 34 antenna
patterns, with RSSI values for the entire range of azimuth and
elevation values, which are pre-processed and imported in WI.
In Fig. 7(c) and (d), we provide an example comparison between
the Talon antenna patterns (solid blue line) and the re-created
beams in WI (shaded area) for the 24" beam (element 54) in
2D azimuth (f = 0°) and elevation (¢ = 0°), respectively. The
slight discrepancy comes from the fact that WI’s user defined
antenna patterns only accept sample points with integer incre-
ments (¢g, 05). To maintain the full SNR values, we allocate the

Fig. 8. Testing accuracies for TL models when trained and tested on only
synthetic data, i.e., keeping training and testing within D7 .

experimental SNR values across the nearest azimuth and eleva-
tion regions, keeping ¢ = 0 as the reference point. As a result,
¢ ranges from —100° to 100° and 6 spans from 0° to 36°. The
complete metrics for antenna pattern sample comparison is given
in Table IV. Ultimately, S-FLASH contains 26,600 samples
(~90GB processed data) across four categories analogous to
the categories in e-FLASH that can support DT-based mmWave
V2X beam selection.

VI. RESULTS

In this section, we evaluate the performance of our proposed
SMART framework, with the help of mmWave beam selection
task described in Section III-A. The model is trained to pre-
dict the optimal sector from a pre-defined codebook based on
multimodal sensor inputs (i.e.,camera images and LiDAR point
clouds). This prediction is critical for reducing the exhaustive
beam search overhead in mmWave V2X communications. The
accuracy results presented in Figs. 9 to 11 quantify the perfor-
mance improvements achieved by our adapted meta-learning
(MAML) approach compared to traditional methods, thereby
demonstrating the effectiveness of our domain adaptation strat-
egy in bridging the Sim2Real gap. We also validate our pro-
posed SMART framework using the two datasets described in
Section V by analyzing algorithm performance in a few select
experiments. We note that we only use the side-view camera
images and LiDAR samples from S-FLASH, as they provide the
most amount of information [11]. We perform all experiments
on an NVIDIA Tesla A100 GPU with PyTorch v1.10.0.

A. Competing Methods

As outlined in Section IV, we evaluate the SMART framework
using the following approaches:

ERM: We use an Empirical Risk Minimization (ERM) algo-
rithm with objectives presented in Sections IV-C and I'V-D.

TL: The TL framework is adapted from the state-of-the-art
domain adaptation technique presented in [35]. We make two

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 26,2025 at 02:25:22 UTC from |IEEE Xplore. Restrictions apply.



11086

Fig. 9.

Accuracy (%)

Fig. 10.

Accuracy (%)

Fig. 11.

Accuracy (%)

100

80

[T
ERM TL
Approach

(a) Images

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 10, OCTOBER 2025

100
80
S
~ 60
o
@©
5
3 40
O
<
20
[T I
6 ERM TL
Approach
(b) LiDAR

Accuracy when training on all data from D7 and testing on all data from R for each approach.

[TJ ERM B TL

B MAML [ ERM B8 TL EEE MAML
100 100
80 80
8
60 = 60
o
@
~
40 2 40
&}
<
20 20
0 1 2 3 4 0 1 2 3 4
Category Category
(a) Images (b) LiDAR
Results for training on individual category data from D7 and testing on analogous individual category data from R.
[Tl ERM B8e TL BN MAML [ ERM B8 TL BEE MAML
100 100
80 80
S
60 = 60
o
@
~
40 2 40
O
<
20 20
0 1 2 3 4 0 1 2 3 4
Category Category
(a) Images (b) LiDAR
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distinct changes such that (1) the framework is able to train on,
create models from, and test on the generated synthetic data
from the DT and (2) we change the model architecture such
that it no longer uses CameraNet or LidarNet, instead using
the VGGNet-16 (VGQG) architecture [51] for our beam selection
problem, given that VGG is implemented in MAML, and we

keep the model architecture between approaches as consistent
as possible. Notably, the VGG architecture for both LIDAR and
image modalities is the same, with changes made only to the
input layer to accommodate the different input sizes. This is done
to preserve the effect of the VGG architecture in our evaluation
and to fairly assess performance, regardless of the data modality.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on October 26,2025 at 02:25:22 UTC from |IEEE Xplore. Restrictions apply.



MURUGANANDHAM et al.: SMART: SIM2REAL META-LEARNING-BASED TRAINING FOR MMWAVE BEAM SELECTION

MAML: We use the MAML algorithm as presented in Sec-
tion IV-C and IV-D. As MAML in its original implementation
was designed for image classification tasks, we take advantage
of the unstructured nature of LiDAR pointclouds, noting that
simply reshaping each pointcloud into a (length, width, chan-
nel) structure as used to traditionally represent images in three
dimensions is enough while keeping the voxel values as defined
in Section IV-B4 the same. Subsequent results we present in this
section support this notion.

B. Experiment Setup

For all experiments, we set a maximum of 100 epochs for
training and use the Adam optimizer [52] with a learning rate
of 0.001 for all algorithms, with early stopping implemented
if training accuracy does not increase in 10 epochs. Slightly
modified from [15], we use 70 samples per class per task for a
total of m := my + mgy = 2380 samples per task in ERM while
using 20 support samples and 50 target samples from each class
per task in MAML. Since each task has 34 classes, this means
that my; = 680 and my = 1700 for all tasks. For MAML and
ERM, the batch size is set to 5 tasks sampled per epoch, and for
MAML specifically, we use five fine-tuning steps and set 7 = 5.

For TL, we note that the experiment setup process is slightly
different as defined in [35], but the intended end result is
comparable to the results produced by MAML and ERM. Since
TL is inherently a two-step process, we set a batch size of
32 samples for all experiments with differently-sized partitions
used at each step. When creating the initial model, we perform no
TL at all and use training, validation, and testing partition sizes of
80%, 10%, and 10% of the input synthetic dataset, respectively.
When performing TL by using the previously generated on the
real-world dataset, we fully retrain the existing weights with a
respective 5% and 2% of the real-world data for training and
validation partition in order to keep training sets similar in total
samples across each step. The rest of the real-world data is used
for testing. This approach ensures a fair comparison between
TL and MAML by maintaining consistency in dataset propor-
tions while highlighting the effectiveness of minimal real-world
fine-tuning.

C. Evaluation

To evaluate model performance across various experiments,
we compute accuracy using the following formula:

TP + TN
TP + TN + FP + FN

where TP, TN, FP, and FN denote the number of true positives,
true negatives, false positives, and false negatives, respectively.
This metric enables us to assess the effectiveness of beam
selection predictions across synthetic and real-world datasets.
1) Domain Adaptation Using All Categories: To begin, we
simply train models on synthetic data generated in the DT from
all categories, then test on the real-world data from the real-world
category counterparts. In short, we train on all data from D7
and test on all data from R and show the results in Fig. 9. This
initial experiment demonstrates MAML’s superior performance

Accuracy = x 100 4)
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over the other approaches and establishes a benchmark for the
subsequent experiments.

Observation 1: We note that MAML outperforms ERM and
TL by 14.04 x and 2.79 x, respectively, when using images, and
13.12x and 3.24 x, respectively, when using LiDAR pointclouds
(see Fig. 9, validates Contribution 4).

Additionally, we note that the accuracy computed using (4)
is 10.30% higher for LIDAR with MAML compared to images
with MAML. Our results show that LiDAR data adapts more
efficiently than camera images due to its ability to capture spatial
structure consistently across synthetic and real-world domains.
LiDAR point clouds, whether generated in the DT or collected
from real-world environments, primarily encode geometric in-
formation such as object positioning and obstacle presence.
Since our beam selection task relies on coarse spatial features
rather than fine-grained information, this structural alignment
ensures a minimal domain gap. Furthermore, to effectively
utilize LiDAR data, we had transformed the point clouds into
structured, ordered grid representations of the 3D space using
a quantized voxel-based encoding. This structured encoding
reduces sensitivity to domain-specific noise while preserving
key spatial features relevant to beam selection. MAML-based
adaptation learns an optimal initialization that quickly refines
these voxelized representations with minimal adjustments, pri-
marily addressing minor density variations and noise. In con-
trast, camera images exhibit significant variations in illumina-
tion, color distortions, and textures, making direct adaptation
more challenging. These discrepancies necessitate additional
domain adaptation techniques beyond MAML to achieve robust
real-world alignment. Our findings highlight that leveraging
LiDAR’s stable depth-based features, combined with structured
voxel encoding, enables more efficient Sim2Real transfer for
beam selection, reducing the need for extensive fine-tuning and
making it a more reliable modality for adaptation.

2) Domain Adaptation Using Individual Categories: We
then analyze the effects of each approach in a category-wise
manner, i.e., training on a single category with synthetic data
from DT and testing on the analogous category with real-world
data from R. Fig. 10 shows the results across all categories for
each approach for image (Fig. 10(a)) and LiDAR (Fig. 10(b))
modalities. Using (4) the accuracy results presented in Fig. 10
are based on multi-class classification accuracy, where the model
predicts the optimal beam among multiple beam patterns. This
metric allowed us to evaluate the model’s ability to predict
beam selection outcomes when trained on DT data and tested
on analogous real-world data from R. We include Fig. 8 for
completeness, showing the accuracy of the models used in TL
when tested on synthetic data. Note that this data is not available
in MAML or ERM as the pre-trained model is fine-tuned and
tested directly on real-world data instead of being retrained.

Across all experiments, we note that MAML outperforms
ERM and TL by an average of 5.34x and 1.49x, respectively,
for image samples. MAML performs at least ~15% better in
Category 1 conditions versus the other NLOS environments,
which may be attributed to a low number of sector variability due
to the lack of obstacles present. MAML’s ability to generalize
across tasks helps it adapt more effectively to unseen NLOS
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conditions, where TL struggles with domain shifts. The model
benefits from meta-training across diverse synthetic NLOS sce-
narios, which improves its ability to fine-tune on real-world
NLOS cases with minimal data. General MAML performance
is increased when using LiDAR samples, with an average 1.51x
accuracy increase over using images and boosting the average
accuracy up by 8.98x over the ERM performance and 4.09 x
over the TL performance for each individual category. These
boosts in accuracy illustrate how LiDAR, as a 3D representation
of the environment, is able to capture more information from
the environment, specifically in the presence of obstacles and
thus has more leverageable knowledge when performing domain
adaptation from a synthetic to real environment. (addresses Con-
tribution 3). Noticeably, ERM and TL performance remained
consistent across modalities with both approaches having nearly
equal performance in Category I and Category 3 and TL having
much higher accuracies in Category 2 and Category 4, regardless
of modality. This may speak to the importance of modeling
dynamic conditions within a DT; even with a stationary Tx and
a mobile Rx, the ray-tracer may not be able to mimic real-world
changes to the optimal sector without the presence of moving
obstacles. With regards to the TL performance, we note that
a simple retraining step, even when using a larger portion of
the real-world dataset in comparison to the few-shot fine-tuning
process of MAML, may not be adequate in the presence of such
a large domain shift, i.e., from D7 to R.

Observation 2: Throughout all the experiments, MAML out-
performs ERM and TL by 5.34x and 1.49x respectively when
using images, and 8.98x and 4.09x respectively when using
LiDAR samples. Using MAML, the LiDAR data outperforms
the image experiments by an average of 1.51 x (refer to Fig. 10,
validates Contribution 3).

The experimental findings in Fig. 10 shows that MAML
outperforms ERM and TL significantly, with LiDAR achiev-
ing an 8.98 x improvement over ERM compared to 5.34x for
images. Additionally, MAML performance for LiDAR remains
relatively consistent across categories along with a 1.51 x higher
performance over images, aligning with our insight that LIDAR
requires fewer adjustments, making it inherently more adaptable
in meta-learning-based domain transfer.

3) All Data Domain Adaptation Using Individual Cate-
gories: In this set of experiments, we use single-category syn-
thetic data for training, but test instead on real-world data
from every category, keeping testing partition sizes and con-
tent the same. This is done to analyze the practical effec-
tiveness of using single-category synthetic data in domain
adaptation to any given data from a real-world environment.
Again, we use the TL models with accuracies shown in Fig. 8
and display the experiment results computed using (4) in
Fig. 11.

As the test set is the same across all experiments, we note
that image sample performance is consistent (within ~1%)
across all categories, with Category 2 having the highest MAML
performance at 38.48%. There is more of a discrepancy when
using LiDAR samples, with Category 3 having the highest
MAML-based accuracy at 75.01%, and LiDAR samples yielding
accuracies about 1.98 x that of images on average. ERM and TL
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TABLE V
TRAINING COMPUTATION TIME ACROSS ALL CATEGORIES FOR SINGLE
CATEGORY-WISE DOMAIN ADAPTATION PERFORMED WITH TL AND MAML

A h Images LiDAR
PPTOACh | Avo 4 Std. Dev. (s) | Avg. =+ Std. Dev. (s)
TL 12.61£2.68 751E£1.09
MAML 520L0.27 5.0020.30

The times given for TL are the sum of the computation times for pre-training the
model on synthetic data and re-training the model on real-world data.

performances remain similar across categories and modalities
with MAML outperforming, on average, 8.01 x and 1.68 x ERM
and TL with images and a remarkable 15.87x and 3.32x ERM
and TL, respectively. These results suggest the environmental
similarities across categories within D7 while highlighting
the larger discrepancies between categories in their real-world
counterparts, suggesting the need for greater resolution and
variability when creating the D7 .

Observation 3: We observe similar outcomes for MAML, as
it outperforms ERM and TL by 8.01x and 1.68 x for images,
and 15.87x and 3.32x for LiDAR samples, respectively. With
MAML, LiDAR samples outperform the image experiments by
1.98x (refer to Fig. 11, validates Contribution 2).

4) Computation Time: Finally, we provide a brief synopsis
of computation time for the TL and MAML algorithms. Table V
shows the average computation time per epoch during training
in single-category-wise domain adaptation (Section VI-C2), as
the number of training epochs per category may vary due to
early stopping. We do not evaluate ERM, as it has the lowest
performance out of the three approaches, and do not account for
fine-tuning time, inference time, and the time it takes to load the
pre-trained model for TL specifically, as these are negligible.

The larger computation time for each training epoch when
performing TL can be accounted for by two sources: 1) as TL
is inherently a two-step process, meaning that a model has to be
pre-trained with the synthetic data before performing TL with
the real-world data, two runs need to be executed in comparison
to the singular execution of MAML, which has fine-tuning built
into the meta-testing phase, and 2) When retraining the pre-
trained model in TL, a significantly greater amount of data is
required compared to the few-shot nature of MAML, leading to
higher memory usage and increased computational overhead. In
contrast, MAML remains a lightweight adaptation mechanism
that drastically reduces training overhead, making it far more
practical for real-time, low-latency V2X deployments, where
rapid beam selection is critical.

Observation 4: As model creation and training take up the
majority of the computation time, MAML deployment provides
faster domain adaptation than the SOTA TL technique (refer to
Table V, validates Contribution 4).

VII. DISCUSSIONS

The proposed SMART framework demonstrates the effective-
ness of DT-based synthetic data and meta-learning in address-
ing domain adaptation challenges for mmWave beam selection
in V2X networks. By creating multimodal DT environments
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that generate high-fidelity LiDAR and camera data alongside
ray-tracing-based RF measurements, the framework enables
robust model training without the constraints of real-world data
collection.

* Broader Observations: Our experimental results show that
meta-learning, particularly MAML, significantly outperforms
traditional TL by achieving up to 14.04 x higher accuracy with
minimal real-world fine-tuning. However, challenges remain in
improving DT fidelity, optimizing computational efficiency, and
expanding the framework’s applicability.

e Future Directions: Future work will focus on enhancing the
robustness and scalability of the SMART framework by expand-
ing the dataset to include higher-resolution data, performing
data augmentation for camera-based images, incorporating ad-
ditional modalities such as radar, and introducing greater varia-
tions to better capture complex real-world scenarios. Our results
indicate that camera-based images exhibit significant variability
due to illumination changes and texture inconsistencies, limiting
their direct Sim2Real transfer. Addressing this requires higher-
quality image data and improved domain adaptation techniques
before effectively integrating them into a multimodal fusion
approach. We also aim to enable real-time deployment of the
framework for V2X mmWave beam selection by optimizing
computational efficiency through methods like quantization and
model pruning, ensuring compatibility with edge devices.

Additionally, to improve accessibility and reproducibility, we
plan to migrate the data collection process from the commercial
Wireless InSite (WI) [18] framework to the open-source Sionna
[49] framework. While WI offers high-fidelity ray-tracing with
detailed material modeling, its computational cost and licensing
constraints limit large-scale dataset generation. Sionna, with its
GPU-accelerated architecture, provides a more efficient alter-
native for generating extensive and diverse datasets, making it
a viable option for future DT-based simulations. To address
challenging beam selection scenarios, we will explore task-
robust MAML [43] to ensure equal importance is given to rare
or difficult tasks, thus improving adaptability across dynamic
conditions. Finally, we intend to expand the S-FLASH dataset,
improve open-source accessibility, and evaluate the framework
under adversarial attacks and dynamic spectrum allocation, en-
suring its robustness and reliability for future V2X applications.

VIII. CONCLUSION

We make a case for leveraging DT-generated multimodal
sensor data to enhance mmWave beamforming in V2X networks,
addressing the limitations of solely RF-based approaches. The
SMART framework integrates deep learning-driven synthetic
data generation with advanced domain adaptation techniques,
demonstrating how multimodal data fusion—incorporating Li-
DAR, camera images, and ray-traced RF signals—can improve
beam selection efficiency while reducing the dependency on ex-
tensive real-world data collection. Our results show that models
trained on synthetic DT-generated data, when fine-tuned with
minimal real-world samples using meta-learning, significantly
outperform traditional transfer learning approaches. Specifi-
cally, our MAML-based domain adaptation method achieves up
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to 14.04 x accuracy improvements over models trained without
adaptation and surpasses transfer learning approaches by up
to 4.09x. Additionally, LiDAR-based learning demonstrates
superior adaptation efficiency compared to image-based models,
emphasizing the robustness of structured 3D representations
in overcoming domain shift challenges. Our study highlights
the feasibility of DT-based synthetic-to-real adaptation for real-
world V2X deployments, paving the way for practical, scalable,
and computationally efficient beam selection solutions. The
dataset and code for the proposed SMART framework, includ-
ing multimodal data generation and meta-learning-based beam
selection models, will be released online [53] for independent
validation and further research on Sim2Real adaptation in V2X
communication upon the acceptance of this article.
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